s/biologisches-testverfahren/Biologisches Testverfahren/gi
Veranlassung Bei der ökotoxikologischen Untersuchung von Wasser- und Sedimentproben kann oftmals nur ein Anteil der beobachteten Effekte durch bekannte Schadstoffe erklärt werden. Gleichzeitig zeigen chemische Non-Target-Analysen, dass aquatische Lebensgemeinschaften einer Vielzahl unbekannter oder unzureichend charakterisierter Stoffe ausgesetzt sind. Für eine Priorisierung und Identifizierung von Stoffen werden deshalb dringend innovative Ansätze zur Kopplung moderner chemischer und ökotoxikologischer Verfahren benötigt. Im Projekt SOURCE werden Wasser- und Sedimentproben entlang der Elbe chemisch und ökotoxikologisch charakterisiert und die Ergebnisse mithilfe wirkungsorientierter Analytik und der Modellierung molekularer und adverser Effekte integriert. Unter Berücksichtigung von Kombinationseffekten, die bei Umweltmischungen unweigerlich zu erwarten sind, wird somit eine Möglichkeit zur Identifizierung und Priorisierung von Schadstoffen und ihren Quellen geschaffen. Ziele - Bestandsaufnahme von Stoff- und Wirkungsprofilen von Sedimenten und Wasserproben entlang der Elbe - Kombination von chemisch analytischen Verfahren, Modellierung toxischer Effekte und effektbasierten Biotests - Entwicklung und Anwendung von Verfahren zur Identifizierung toxischer Stoffe und ihrer Eintragsquellen in Bundeswasserstraßen Woher kommen die Schadstoffe in unseren Flüssen? Um dieser Frage nachzugehen, werden im Projekt SOURCE Methoden der chemischen Target- und Non-Target-Analytik, bioanalytische Testverfahren und Modellierungsansätze kombiniert. Die Zahl der industriell hergestellten Chemikalien hat sich in den letzten 20 Jahren mehr als verdreifacht und liegt heute bei über 350.000 Substanzen. Gewässer werden in Europa routinemäßig jedoch nur auf wenige ausgewählte Stoffe untersucht. Dadurch bleiben Identität und Wirkung vieler Stoffe, die unsere Gewässer gefährden können, unerkannt. Vor dem Hintergrund der aktuellen Aktivitäten, z.B. zum Sedimentmanagement an der Elbe, ist es für die Entwicklung nachhaltiger Maßnahmen notwendig, die für Schadwirkungen verantwortlichen Stoffe zu identifizieren. Nur auf dieser Basis können Vorschläge zur zielgerichteten Minimierung der Einträge erarbeitet werden.
Bio-assays are increasingly used in supplement to classical analyses to determine the effect of contamination of waters with herbicides, some of which have been shown to be able to determine herbicides within the limits in compliance with EC-ordonance for drinking water. Preliminary work carried out at the University of Bonn has demonstrated that contamination of different water systems can be identified using inhibition of the light dependent production of oxygen by chloroplasts. Further experiments at IRMM have shown a potential to transfer membrane systems of chloroplasts into stable powder that can be used to carry out such bio-assays. Results: A method has been developed tor the isolation and breakage ot chloroplasts that allow freeze drying of the thylakoid membranes. The photosynthetic activity of the lyophilized material was maintained to 86 - 95 per cent. This powder can be stored for over five month without loss of activity.
Der Einsatz von Moosen und terrestrischen Algen für verschiedene Biomonitoring-Zwecke wird untersucht.
Das Forschungsprojekt NORAH wird von der NPZ Innovation GmbH (NPZi) und der Abteilung für Molekulare Phytopathologie und Biotechnologie der Universität Kiel mit dem Ziel beantragt, die technischen und wissenschaftlichen Voraussetzungen für die Züchtung von Rapssorten mit hoher Resistenz gegen die Weißstängeligkeit (zu schaffen. Die Krankheit wird durch Sclerotinia sclerotiorum verursacht und die NPZi verfügt über Rapslinien mit hoher quantitativer Resistenz gegen diesen Schadpilz. Diese Resistenz wurde über Biotests in nicht-adaptierten Linien identifiziert und durch Kreuzung kombiniert. Über die physiologische Ursache dieser Resistenz und deren genetische Veranlagung ist nichts bekannt und soll im Rahmen des NORAH-Projektes erforscht werden. Darüber hinaus wird untersucht, welches Potential die Heterosis von F1-Hybriden für die Verbesserung der Sclerotinia-Resistenz besitzt.
Das Forschungsprojekt NORAH wird von der NPZ Innovation GmbH (NPZi) und der Abteilung für Molekulare Phytopathologie und Biotechnologie der Universität Kiel mit dem Ziel beantragt, die technischen und wissenschaftlichen Voraussetzungen für die Züchtung von Rapssorten mit hoher Resistenz gegen die Weißstängeligkeit (zu schaffen. Die Krankheit wird durch Sclerotinia sclerotiorum verursacht und die NPZi verfügt über Rapslinien mit hoher quantitativer Resistenz gegen diesen Schadpilz. Diese Resistenz wurde über Biotests in nicht-adaptierten Linien identifiziert und durch Kreuzung kombiniert. Über die physiologische Ursache dieser Resistenz und deren genetische Veranlagung ist nichts bekannt und soll im Rahmen des NORAH-Projektes erforscht werden. Darüber hinaus wird untersucht, welches Potential die Heterosis von F1-Hybriden für die Verbesserung der Sclerotinia-Resistenz besitzt.
An einer groesseren Anzahl von Tieren aus dem Rhein wird die Auswirkung gleichzeitiger Belastung mit 3-4 Stoffen bzw. Schadfaktoren (O2-Mangel, Erwaermung) geprueft. Gemessen wird nicht der Tod der Versuchstiere, sondern bereits vorher sich andeutende, sublethale Schaedigung ueber die Messgroessen Sauerstoff-Verbrauch, Aktivitaet, Filtrationsleistung etc. Als Ergebnisse sind Daten ueber Resistenz-Unterschiede bei den Versuchstieren zu erwarten, weiterhin Auskunft ueber synergistisch besonders aktive Substanzen im Abwasser.
Durch die Haloformreaktion entsteht bei der Chlorung von Trink- und Schwimmbadwasser Chloroform. Bislang weitgehend unbeachtet sind die ebenfalls im Zuge dieser Reaktion entstehenden schwerfluechtigen halogenorganischen Verbindungen. Ziel dieser Arbeit ist es, diese Stoffe zu charakterisieren sowie deren mutagene Aktivitaet mit Hilfe des Ames Testes und des HGPRT-Testes an CHO Zellen zu untersuchen. Die augenreizende Wirksamkeit wird mit dem HET-CAM-Test untersucht.
Oberflächengewässer sammeln die Wasser- und Stoffflüsse eines Einzugsgebiets. Flüsse liefern daher ein räumlich und zeitlich integriertes chemisches Signal einer Landschaft. Ziel des Projekts ist es, den Einfluss physikalisch-chemischer und biologischer Prozesse auf Transport und Umsetzungsprozesse von Schadstoffen im Gewässer besser zu verstehen. Mittels Lagrange'scher Beprobung in Kombination mit neuen analytischen und bioanalytischen Methoden werden Frachten und Abbaupotentiale bekannter und bisher nicht detektierter Mikroschadstoffe und deren Transformationsprodukte quantifiziert. Mit Hilfe eines neuen Masse/Effekt-Bilanzierungsmodell lassen sich wesentliche Faktoren bezüglich biologischer Wirkung und Umsetzungsprozesse identifizieren und beschreiben.
Origin | Count |
---|---|
Bund | 953 |
Land | 7 |
Wissenschaft | 7 |
Type | Count |
---|---|
Förderprogramm | 915 |
Messwerte | 1 |
Strukturierter Datensatz | 5 |
Text | 17 |
unbekannt | 26 |
License | Count |
---|---|
geschlossen | 42 |
offen | 920 |
unbekannt | 1 |
Language | Count |
---|---|
Deutsch | 873 |
Englisch | 182 |
Resource type | Count |
---|---|
Archiv | 4 |
Bild | 2 |
Datei | 1 |
Dokument | 12 |
Keine | 752 |
Webseite | 198 |
Topic | Count |
---|---|
Boden | 547 |
Lebewesen & Lebensräume | 897 |
Luft | 467 |
Mensch & Umwelt | 963 |
Wasser | 592 |
Weitere | 919 |