API src

Found 1539 results.

Related terms

Hocheffiziente Biogas-SCR-Systeme, Teilvorhaben 1: Experimentelle Untersuchung der Eindüsung von Harnstoff-Wasser-Lösung für SCR-Systeme von Biogas-BHKW

Das Projekt "Hocheffiziente Biogas-SCR-Systeme, Teilvorhaben 1: Experimentelle Untersuchung der Eindüsung von Harnstoff-Wasser-Lösung für SCR-Systeme von Biogas-BHKW" wird/wurde gefördert durch: Bundesministerium für Ernährung und Landwirtschaft. Es wird/wurde ausgeführt durch: Leibniz Universität Hannover, Institut für Technische Verbrennung.

Erneuerbare Wärme

Umweltwärme und Wärmepumpen Abwärme Solarthermie Photovoltaisch-Thermische (PVT) Module Oberflächennahe Geothermie Eisspeicher Biomasse Biogas / Bio-Methan Die neuen Generationen von Wärmenetzen ermöglichen es, Wärme aus der Umgebung für die Versorgung von Gebäuden nutzbar zu machen, die für konventionelle Wärmenetze der älteren Generationen nicht erschlossen werden konnte. Schlüsseltechnologie, um diese Wärmequellen zu nutzen, ist die Wärmepumpe. Das grundlegende Funktionsprinzip einer Wärmepumpe ähnelt einem Kühlschrank, nur, dass der thermodynamische Kreisprozess in die umgekehrte Richtung läuft. Während im Kühlschrank die Wärme aus dem Inneren abgeführt und an die Umgebung übertragen wird, entzieht die Wärmepumpe einer Wärmequelle Energie und hebt diese, angetrieben meist durch Elektrizität, auf ein höheres Temperaturniveau, sodass sie zum Heizen genutzt werden kann. Die Wärmepumpe besteht aus einem geschlossenen Kreislauf, in dem ein Kältemittel zirkuliert und einen thermodynamischen Kreisprozess durchläuft. Die wesentlichen Komponenten einer Wärmepumpe sind Verdampfer, Verdichter, Kondensator und Drosselventil. Der Verdampfer ist ein Wärmeübertrager, in dem die Wärme der externen Wärmequelle an das Kältemittel in der Wärmepumpe übergeht, wodurch dieses verdampft. Durch den Verdichter wird der Druck des nun gasförmigen Kältemittels erhöht. Dadurch kommt es auch zu einer Erhöhung der Temperatur des Kältemittels. Diese muss oberhalb der zu erreichenden Heiztemperatur liegen, damit es im Kondensator, einem weiteren Wärmeübertrager, zur Abgabe der Wärme an das Heizwasser kommt. Durch die Wärmeabgabe kondensiert das Kältemittel im Kondensator und liegt wieder flüssig vor. Der Kondensator wird daher auch oft als Verflüssiger bezeichnet. Das Drosselventil reduziert den Druck des Kältemittels, wodurch die Temperatur weiter abfällt und der Kreisprozess mit Wiedereintritt in den Verdampfer von vorn beginnen kann. Zu den möglichen Wärmequellen zählen unter anderem Außenluft, Oberflächengewässer und Grundwasser sowie die oberen Schichten des Erdreichs (oberflächennahe Geothermie). Entsprechend kommen folgende Wärmepumpen-Typen zum Einsatz: Luft-Wasser-WP; Außenluft oder Abluft einer technischen Anlage Sole-Wasser-WP; Erdkollektoren und -sonden, PVT, Eisspeicher, etc Wasser-Wasser-WP; Grundwasser, Flusswasser, Abwasser, Kühlwasser Weiterführende Informationen Umweltbundesamt Bundesverband Wärmepumpe zur grundlegenden Funktionsweise von Wärmepumpen Bundesverband Wärmepumpe zur Rolle von Wärmepumpen in Nah- und Fernwärmenetzen Abwärme ist Wärme, die als Nebenprodukt in einem Prozess entsteht, dessen Hauptziel die Erzeugung eines Produktes, die Erbringung einer Dienstleistung oder eine Energieumwandlung ist, und ungenutzt an die Umwelt abgeführt werden müsste . Kann die Abwärme nicht durch eine Optimierung der Prozesse, bei denen sie entsteht, vermieden werden, wird sie als unvermeidbare Abwärme bezeichnet. Aus Effizienzgründen sollte eine hierarchisierte Verwendung mit Abwärme angestrebt werden: 1. Verfahrensoptimierung/ Vermeidung, 2. prozess- bzw. anlageninterne Nutzung, 3. betriebsinterne Nutzung, 4. außerbetriebliche Nutzung. Je nach Temperaturniveau der Abwärme lässt sie sich für unterschiedliche Zwecke nutzen. Abwärme kann bei ausreichend hohen Temperaturen direkt in Fern- und Nahwärmenetze eingespeist werden oder über Wärmepumpen auf das benötigte Temperaturniveau angehoben werden. Bei niedrigen Temperaturen ist die Nutzung in LowEx- oder teilweise auch kalten Nahwärmenetzen möglich. Unvermeidbare und damit extern nutzbare Abwärme fällt typischerweise in Industrieprozessen an. Aber auch die Abwärme von Kälteanlagen, die beispielsweise zur Kühlung von Rechenzentren oder großer Büro- und anderer Nichtwohngebäude genutzt werden, lässt sich sinnvoll in Wärmenetzen nutzen. Abwasserwärme ist eine weitere übliche Abwärmequelle in urbanen Gebieten, die ganzjährig eine Temperatur zwischen etwa 12 °C und 20 °C aufweist. Sie eignet sich daher besonders für die Nutzung als Wärmequelle für Wärmepumpen oder in kalten Netzen. Eine Herausforderung bei der Nutzung von unvermeidbarer Abwärme können Schwankungen im Wärmeangebot sein. So fällt Abwärme von Kälteanlagen zur Büroklimatisierung hauptsächlich im Sommer an und auch Abwärme aus Industrieprozessen kann z.B. bedingt durch Produktionszyklen volatil sein. Hier ist in der Detailplanung des Nahwärmenetzes darauf zu achten, dass ein unregelmäßiges Abwärmeangebot durch entsprechende Speicher oder andere, regenerative Quellen ausgeglichen werden kann. Weiterführende Informationen Informationen rund um Abwasserwärme der Berliner Wasserbetriebe Analyse zum Abwärmepotenzial der Senatsverwaltung für Mobilität, Verkehr, Klimaschutz und Umwelt Die Einstrahlung der Sonne kann zur direkten Erwärmung eines Wärmeträgermediums genutzt werden. Diese Umwandlung von Sonnenenergie in thermische Energie über Kollektoren wird Solarthermie genannt. Dabei kommen hauptsächlich Flachkollektoren oder Vakuumröhrenkollektoren zum Einsatz. Bei Flachkollektoren sind Kupferrohre in eine verglaste Absorberebene eingelassen. Vakuumröhrenkollektoren zeichnen sich durch einzelne, parallele und vakuumierte Glasröhren aus, in denen das Heizrohr mit Absorber verläuft. In den Kollektoren strömt in der Regel ein Wasser-Glykol-Gemisch, auch Sole, Solarflüssigkeit oder Wärmeträgerflüssigkeit genannt. Das beigemischte Glykol dient als Frostschutz, um bei geringer Einstrahlung und Außentemperatur ein Einfrieren im Winter zu verhindern. Mit Vakuumröhrenkollektoren können höhere Temperaturen und damit höhere Erträge pro Kollektorfläche erzielt werden. Besondere Bauformen besitzen auch Parabolspiegel, die das Sonnenlicht stärker auf die Absorber konzentrieren. Auch Systeme, die Wasser statt Sole führen, werden eingesetzt. Der Vorteil besteht in der höheren Wärmekapazität von Wasser gegenüber Sole, wodurch höhere Erträge und Temperaturen erzielt werden können. In wasserführenden Systemen findet im Winter bei fehlender Einstrahlung in regelmäßigen Abständen eine Zwangsumwälzung des Wassers statt, wodurch ein Einfrieren des Wärmeträgermediums in den Rohren vermieden wird. Mit einem Jahresertrag pro benötigte Grundfläche von 150 kWhth/(m²*a), ist die durchschnittliche Flächeneffizienz von ST-Anlagen beispielsweise um den Faktor 30 höher als die von Biomasseheizwerken bei der Verwendung von Holz aus Kurzumtriebsplantagen. In den letzten Jahren werden Solarthermie-Projekte zur Einspeisung in großstädtische Wärmenetze verstärkt umgesetzt. Bei der Einbindung von Solarthermischen Anlagen in Wärmenetze bietet sich sowohl die zentrale als auch die dezentrale Variante an. Zentrale Systeme speisen am Standort des Hauptwärmeerzeugers oft in einen vorhandenen Wärmespeicher ein. Dazu wird die Wärme von der Anlage über ein separates Rohrsystem zu der Heizzentrale geführt. Zu beachten: Im Sommer kann eine solarthermische Anlage die Deckung der gesamten Wärmelast übernehmen und je nach Auslegung auch einen Wärmespeicher füllen. Im Winter wird in der Regel ein weiterer Wärmeerzeuger eingesetzt, da Leistung und Wärmemenge aus der Solaranlage oft nicht ausreichen. Die Solarthermie kann in Wärmenetzen in Konkurrenz zu Grundlastquellen oder -Erzeugern stehen, z.B. Abwärme, Biomasse oder Blockheizkraftwerk (BHKW) und so den Bedarf an nötigem Wärmespeichervolumen erhöhen Eine Nutzung als Wärmequelle in kalten Netzen gestaltet sich schwierig, da die Sommertemperaturen zu hoch sind Weiterführende Informationen Solarthermie Wärmenetze PVT-Kollektoren sind ein Spezialfall der Sonnenenergienutzung. Sie kombinieren Photovoltaikzellen und solarthermische Kollektoren, um so Wärme und Strom in einem Modul zu erzeugen. Die verfügbare Dachfläche wird so optimal ausgenutzt. Die Kollektoren bestehen aus einem PV-Modul und einem rückseitig montiertem Wärmeübertrager. Dadurch, dass zeitgleich zur Stromerzeugung Wärme abgeführt wird, entsteht ein Kühleffekt, der zu einem höheren Stromertrag führt, da die Effizienz von PV-Modulen temperaturabhängig ist. PVT-Module gibt es in mehreren Varianten, die sich vor allem durch das Temperaturniveau der erzeugten Wärme unterscheiden. Für die Erzeugung hoher Temperaturen wird der Wärmeübertrager vollständig mit Wärmedämmung eingehaust. Dadurch geht jedoch der stromertragssteigernde Kühleffekt an den PV-Zellen verloren, sodass diese Module vor allem zur Erzeugung von Prozesswärme eingesetzt werden. Als Wärmequelle für Wärmepumpen in Nahwärmenetzen eignen sich daher vor allem ungedämmte sogenannte unabgedeckte PVT-Kollektoren, bei denen die Rohre des Wärmeübertragers mit zusätzlichen Leitblechen für einen Wärmeübergang aus der Luft optimiert sind. Diese liefern ganzjährig Energie, die beispielsweise direkt in ein kaltes Nahwärmenetz eingespeist werden kann. Weiterführende Informationen Informationen zu PVT-Modulen und Wärmepumpen im Rahmen des Forschungsprojektes integraTE Verwendung von PVT-Modulen im degewo Zukunftshaus In den oberen Erdschichten folgt die Bodentemperatur der Außenlufttemperatur. Mit zunehmender Tiefe steigt die Temperatur an und ist ab ca. 15 m unter Gelände Oberkante nahezu konstant. Die Wärme aus dem Erdreich kann über verschiedene horizontale und vertikale Erdwärmeübertrager oder auch Grundwasserbrunnen gewonnen und als Wärmequelle für Wärmepumpen genutzt werden. Horizontale Erdwärmeübertrager werden Erdkollektoren genannt. Es handelt sich hierbei um Rohrregister, üblicherweise aus Kunststoff, die horizontal oder schräg, spiral-, schrauben- oder schneckenförmig in den oberen fünf Metern des Untergrundes verlegt werden. Bei der häufigsten Nutzung der Erdwärme werden Erdsonden – meist Doppel-U-Rohrleitungen in vertikalen Tiefenbohrungen bis 100 m verwendet. Ab Tiefen über 100 m gilt Bergbaurecht, womit komplexere Genehmigungsverfahren verbunden sind, die eine Nutzung in kleinen, dezentralen Netzen in der Regel ausschließen. Perspektivisch wird durch das 4. Bürokratieentlastungsgesetz voraussichtlich die oberflächennahe Geothermie bis 400 m nicht mehr unter das Bergrecht fallen. Es können mehrere Sonden zu einer Anlage vereint werden. Hierbei ist durch einen ausreichenden Abstand der Sonden untereinander eine gegenseitige Beeinflussung auszuschließen. Auch zu benachbarten Grundstücken muss ein entsprechender Abstand gewahrt bleiben. In Erdwärmeübertragern wird ein Gemisch aus Wasser und Frostschutzmittel, Sole genannt, verwendet, da die Temperatur der Sole auch unter 0 °C fallen kann. Aufgrund des Einsatz Wassergefährdender Stoffe und weil der Eingriff in den Wärmehaushalt nach geltendem Recht eine Gewässernutzung darstellt, ist für Erdwärmesonden im Allgemeinen und Erdwärmekollektoren, die weniger als 1 m über dem höchsten Grundwasserstand verlegt werden, in Berlin eine wasserbehördliche Erlaubnis erforderlich. Als Alternative zu Erdsondenanlagen kommen bei größeren Anlagen auch Grundwasserbrunnen in Frage, bei denen über zwei Bohrungen die im Grundwasser enthaltene Wärme genutzt wird. Dabei dient eine Bohrung der Entnahme und eine weitere der Rückspeisung des entnommenen Wassers. Die Eignung des örtlichen Grundwasserleiters für eine Wärmeanwendung muss im konkreten Einzelfall geprüft werden. Für eng bebaute Gebiete eignet sich auch ein Koaxialsystem in Form eines Grundwasserzirkulationsbrunnens, welcher aus nur einer Bohrung besteht. Weiterführende Informationen Informationen und Anforderungen zur Erdwärmenutzung in Berlin Energieatlas mit geothermischen Potenzialen Informationen zur oberflächennahen Geothermie Beim Phasenübergang von flüssig zu fest gibt Wasser bei konstantem Temperaturniveau Energie in Form von Wärme ab. Diese Wärme, die allein bei der Aggregatzustandsänderung transportiert wird, wird als latente Wärme bezeichnet. Bezogen auf die Masse von 1 kg handelt es sich um die Erstarrungsenthalpie eines Stoffes, die bei Wasser in etwa der Energiemenge entspricht, die auch benötigt wird, um dasselbe 1 kg Wasser von 0 °C auf 80 °C zu erwärmen. Zu- oder abgeführte Wärme, die eine Temperaturveränderung bewirkt, wird als sensible Wärme bezeichnet. In Eisspeichern wird eine Wassermenge, z.B. in einer unterirdischen Betonzisterne durch Wärmeentzug vereist. Dazu strömt ein Gemisch aus Wasser und Frostschutzmittel, Sole genannt, mit geringerer Temperatur als dem Gefrierpunkt von Wasser durch Rohrspiralen im Speicher. Durch den Temperaturgradienten kommt es zum Wärmetransport zwischen dem erstarrenden Wasser in der Betonzisterne und der Sole in den Rohrspiralen. Die latente Wärme aus dem Phasenübergang des Wassers wird an die Sole übertragen, welche sich dadurch erwärmt. Die erwärmte Sole dient wiederum einer Wärmepumpe als Wärmequelle. Am Verdampfer der Wärmepumpe gibt die Sole die Wärme wieder ab und kann anschließend erneut Wärme aus dem Eisspeicher aufnehmen. Durch Kombination mit Solarkollektoren kann die Effizienz der Anlage erhöht werden, wenn die damit gewonnene thermische Energie zur Regeneration des Eisspeichers genutzt wird. Weiterführende Informationen Informationen zu Eisspeichern Funktion und Kosten von Eisspeichern im Überblick Bei der Wärmebereitstellung durch Biomasse kommen in der Regel Anlagen zum Einsatz, in denen holzartige Biomasse verfeuert wird. Hierfür gibt es verschiedene Brennstoffe, die sich in Qualität und Kosten z.T. deutlich unterscheiden. Holzpellets sind kleine hochstandardisierte Presslinge mit einer Länge von 2-5 cm, die in unter anderem aus Resten der Holzverarbeitung gepresst werden. Ihr Einsatz in Pelletkessel ist hoch automatisiert und damit nur wenig störanfällig. Dennoch sind jährlich kleinere Arbeiten durch z.B. Ascheaustragung o.ä. erforderlich. Zudem ist eine entsprechende Lagerhaltung in einem sogenannten Bunker inkl. Fördersystem erforderlich. Der Einsatz von Holzhackschnitzeln ist etwas arbeitsaufwändiger, da sowohl Brennstoff als auch das Gesamtsystem zur Wärmeversorgung weniger automatisierbar ist. Die Beschaffung des etwa bis zu 10 cm großen, mechanisch zerkleinerten Holzpartikel ist deutlich günstiger und sie können zudem auch in außenliegenden, überdachten Lagerbereichen oder Wirtschaftsgebäuden gelagert werden. Jedoch bestehen größere Anforderungen an die Einbringtechnik und den Betrieb einer Feuerungsanlage. Durch den gröberen Brennstoff, unterschiedliche Brennstoffqualitäten und Ascheaustrag, kann es gegenüber einem Pelletkessel zu häufigerem Arbeitsaufwand kommen, sodass regelmäßige Präsenzzeiten zur Betreuung erforderlich sind. Des Weiteren kann zur Verteilung des Brennstoffes auch schweres Arbeitsgerät vor Ort erforderlich werden. Neben einer reinen Verbrennung der Holzbrennstoffe kann in einem Vergaser auch Holzgas aus der Biomasse gewonnen werden, um diese anschließend in einem speziellen BHKW in Wärme und Strom umzuwandeln. Holz als Brennstoff ist ein vergleichsweise günstiger und preisstabiler Brennstoff, der jedoch einen gewissen Arbeitsaufwand mit sich bringt. Hierbei sind auch die gegenüber der Verbrennung von gasförmigen Energieträgern erhöhten Staubanteile im Abgas zu beachten, welche im urbanen Bereich stärkere Anforderungen an die Abgasreinigung und Ascheentsorgung mit sich bringen. Auch ist bei der Verwendung von nicht lokal verfügbarer Biomasse ein umfangreicher Logistikaufwand zu betreiben, was zu mehr Verkehr auf den Straßen und einer zusätzlichen Belastung durch Emissionen führt. Ebenso ist bei der Abwägung, ob die Wärme für ein Nahwärmenetz mit Holz erzeugt werden soll, zu berücksichtigen, dass Holz nur bedingt als „klimaneutral“ bezeichnet werden kann. Die Verbrennung setzt neben Feinstaub auch Treibhausgase wie CO 2 und Methan frei. Die Annahme, dass die Wärmeerzeugung mit Holz klimaneutral ist, setzt eine nachhaltige Waldbewirtschaftung voraus, bei der mindestens genauso viel Kohlenstoff durch das Wachstum neuer Bäume gebunden wird, wie durch die Verbrennung von Holz freigesetzt wird. Wird Holz aus nicht nachhaltiger Waldbewirtschaftung (beispielsweise der Abholzung von Urwäldern) für die Wärmeerzeugung verwendet, dann fällt die Bilanz der Umweltauswirkungen negativ aus. Eine stärkere Reduktion von Treibhausgasen kann zudem erreicht werden, wenn das Holz für langlebige Produkte (beispielsweise als Bauholz) verwendet wird, da der Kohlenstoff dann dem natürlichen Kreislauf auf längere Zeit entzogen wird und nicht als CO 2 in die Atmosphäre gelangt. Empfehlenswert für die Wärmeerzeugung ist daher vor allem Restholz aus Produktionsprozessen, das nicht für andere Nutzungen geeignet ist, sowie Altholz, das am Ende der Nutzungskaskade angekommen ist. Die Qualität von Holzbrennstoffen lässt sich verschiedenen Normen in Güteklassen einteilen. Hierfür dient bspw. die DIN EN ISO 17225 oder das DINplus-Zertifizierungsprogramm, um Vergleichbarkeiten zu ermöglichen und eine entsprechende Brennstoffqualität sicherzustellen. Des Weiteren sollten Nachweise über die Herkunft der Biomasse bei den Lieferanten angefragt werden, um möglichst regionale Produkte zu nutzen. Die Senatsverwaltung für Mobilität, Verkehr, Klimaschutz und Umwelt hat zu den Potenzialen von Biomasse in Berlin eine Untersuchung durchführen lassen, deren Ergebnisse hier einzusehen sind: Biomasse . Weitere Informationen zu diesem Thema finden Sie beim Bundesumweltministerium: BMUV: Klimaauswirkungen von Heizen mit Holz sowie beim Umweltbundesamt: Heizen mit Holz . Weiterführende Informationen Hackschnitzel: Qualität und Normen FNR – Fachagentur Nachwachsende Rohstoffe Für die Wärmeerzeugung aus Biogas existieren regionale unterschiedliche Möglichkeiten. Im ländlichen Raum kann häufig direkt Biogas aus Gärprozessen aus der Landwirtschaft verwendet werden. Abfallstoffe wie z.B. Gülle können dafür genutzt werden, wie auch eigens dafür angebaute Energiepflanzen. Die Verwendung von Anbaubiomasse zur Produktion von Biogas steht jedoch in starker Kritik und kann ebenso wie die Produktion von flüssigen Energieträgern auf die Formel ‚Tank oder Teller‘ reduziert werden. Daher wurde mit den letzten Novellen des Erneuerbare-Energien-Gesetzes (EEG) die Nutzung von Anbaubiomasse zu Biogasproduktion immer weiter eingeschränkt (Stichwort ‚Maisdeckel‘). Biogas kann vor Ort genutzt und in Wärme und Strom umgewandelt und verbraucht bzw. über ein kleines Nahwärmenetz verteilt werden. Für eine Einspeisung in das Erdgasnetz ist eine Methan-Aufbereitung des Gases erforderlich. In Berlin besteht die Möglichkeit, ein Biogas- bzw. Biomethanprodukt eines beliebigen Lieferanten aus dem öffentlichen Gasnetz zu beziehen. Dieses Biomethan ist in der Regel aufbereitetes Biogas, z.B. aus Reststoffen oder Kläranlagen, welches in das Netz an einem anderen Verknüpfungspunkt eingespeist wird. Vor Ort zur (Strom- und) Wärmeerzeugung wird dann bilanzielles Biomethan eingesetzt – ähnlich dem Bezug von Ökostrom aus dem öffentlichen Versorgungsnetz. Der tatsächliche Anteil von Biomethan im Erdgasnetz entsprach im Jahr 2022 lediglich etwa 1 %. Bei dem Kauf gibt es entsprechende Nachweiszertifikate (z.B. “Grünes Gas Label” – Label der Umweltverbände oder TÜV) der Anbieter. Die Umsetzung in Wärme (und Strom) erfolgt dann klassisch über Verbrennungstechnologien wie Gaskessel oder BHKW.

ReFlex: Replicability Concept for Flexible Smart Grids, Wüstenrot Germany

Das Projekt "ReFlex: Replicability Concept for Flexible Smart Grids, Wüstenrot Germany" wird/wurde ausgeführt durch: Gemeinde Wüstenrot.Introduction: By 2020, the community Wuestenrot wants to cover its energy needs through the utilization of renewable energy sources, such as biomass, solar energy, wind power and geothermal energy, within the town area of 3000 hectares. In order to elaborate a practicable scheme for realizing this idea in a 'real' community and to develop a roadmap for implementation, the project 'EnVisaGe' under the leadership of the Stuttgart University of Applied Sciences (HFT Stuttgart) was initiated. Accompanying particular demonstration projects are a) the implementation of a plus-energy district with 16 houses connected to a low exergy grid for heating and cooling, b) a biomass district heating grid with integrated solar thermal plants. Project goal: The aim of the project is to develop a durable roadmap for the energy self-sufficient and energy-plus community of Wüstenrot. The roadmap shall be incorporated in an energy usage plan for the community, that shall be implemented by 2020 and brings Wüstenrot in an energy-plus status on the ecobalance sheet. A main feature within the EnVisaGe project is the implementation of a 14,703-m2 energy-plus model district called 'Vordere Viehweide'. It consists of 16 residential houses, supplied by a cold local heating network connected to a large geothermal ('agrothermal') collector. Here PV systems for generating electricity are combined with decentralised heat pumps and thermal storage systems for providing domestic hot water as well as with batteries for storing electricity. Another demonstration project is a district heating grid fed by biomass and solar thermal energy in the neighbourhood 'Weihenbronn'. It's based on a formerly oil-fired grid for the town hall and was extended to an adjacent residential area.

THG-Bilanz für Ethanol aus Weizenstroh und Maisstrohsilage

Das Projekt "THG-Bilanz für Ethanol aus Weizenstroh und Maisstrohsilage" wird/wurde ausgeführt durch: DBFZ Deutsches Biomasseforschungszentrum gemeinnützige GmbH.

Synergien durch Integration von Biomassenutzung und Power-to-X in der Produktion erneuerbarer Kraftstoffe, Teilvorhaben 6

Das Projekt "Synergien durch Integration von Biomassenutzung und Power-to-X in der Produktion erneuerbarer Kraftstoffe, Teilvorhaben 6" wird/wurde gefördert durch: Bundesministerium für Digitales und Verkehr. Es wird/wurde ausgeführt durch: Martech GmbH.

Synergien durch Integration von Biomassenutzung und Power-to-X in der Produktion erneuerbarer Kraftstoffe, Teilvorhaben 5

Das Projekt "Synergien durch Integration von Biomassenutzung und Power-to-X in der Produktion erneuerbarer Kraftstoffe, Teilvorhaben 5" wird/wurde gefördert durch: Bundesministerium für Digitales und Verkehr. Es wird/wurde ausgeführt durch: Clariant Produkte (Deutschland) GmbH.

WIR! - Waste2Value - GreenGlue, TP3: Nutzung organischer Reststoffe, Hydroponik in Mikroalgenflüssigkeit, Qualitätskontrolle der hydroponischen Nutzpflanzen

Das Projekt "WIR! - Waste2Value - GreenGlue, TP3: Nutzung organischer Reststoffe, Hydroponik in Mikroalgenflüssigkeit, Qualitätskontrolle der hydroponischen Nutzpflanzen" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Dienstleistungszentrum Ländlicher Raum - Rheinpfalz.

Alterierung von Wüstenaerosol in belasteten Umgebungen und ihr Einfluss auf die optischen Eigenschaften

Das Projekt "Alterierung von Wüstenaerosol in belasteten Umgebungen und ihr Einfluss auf die optischen Eigenschaften" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Technische Universität Darmstadt, Institut für Angewandte Geowissenschaften, Fachgebiet Umweltmineralogie.Die Strahlungsabsorption des atmosphärischen Aerosols ist einer seiner Haupteffekte im Einfluss auf die solar-terrestrische Energiebilanz und damit auf das Klima. Die Absorption wird im Wesentlichen durch drei Komponenten verursacht: Ruß, Mineralstaub und absorbierende Organika. Allerdings sind die relativen Beiträge dieser Stoffe aus anthropogenen und natürlichen Quellen nicht gut bekannt. Der vorliegende Antrag zielt daher auf eine Quantifizierung Ruß-, Staub- und organischen Anteils, basierend auf der Analyse der chemischen Zusammensetzung und Struktur viele einzelner Partikel mittels Elektronenmikroskopie. Das östliche Mittelmeer wurde als Fokusregion ausgewählt, da hier im Frühjahr eine komplexe Mischung von Aerosol aus der Biomassenverbrennung, anthropogenen Emissionen, marinem Aerosol und afrikanischem sowie asiatischem Wüstenstaub entsteht. Die vorgeschlagenen Arbeiten werden in Verbindung mit einer von dritter Seite finanzierten großen Flug- und Bodenmesskampagne durchgeführt. Hierbei ergibt sich die einmalige Gelegenheit, Messungen aus der Fokusregion in Verbindung mit einer Vielzahl anderer atmosphärischer Messungen sowie Aerosol- und Wolkenmessungen zu erhalten. Hauptziele des Projektes sind: A) Charakterisierung der Aerosolzusammensetzung: Aerosoltypen werden an Hand chemischer Merkmale identifiziert und quantifiziert. Größenverteilungen der chemischen Zusammensetzung werden erstellt für Partikel kleiner 2.5 mym aus der relativen Zusammensetzung und externen Größenverteilungsmessungen, für größere Partikel direkt aus spezialisierten Sammelverfahren. B) Aufteilung in volatile / nichtvolatile Komponenten: entsprechende Komponenten werden auf Einzelpartikelbasis identifiziert und quantifiziert. Typen nichtvolatiler Komponenten werden unterschieden. C) Aufteilung nach Staub- / Ruß-Absorption für Einzelpartikel: Der absorbierende Anteil im atmosphärisch alterierten Aerosol wird an Hand chemischer und morphologischer Kriterien identifiziert. Durch Bildanalyse wird der jeweilige Volumenbeitrag bestimmt. Die Konzentration absorbierender Anteile wird dann zur Bestimmung der relativen Beiträge von Staub und Ruß genutzt. Rußmikrosktruktur und chemische Zusammensetzung werden genutzt, um Haupt-Rußquellen zu identifizieren. D) Ermittlung des Einflusses der Staubquelle auf die Staubabsorption: Die Absorption, modelliert durch die Staubzusammensetzung, wird im Hinblick auf die jeweilige Quelle untersucht; basierend auf einer Jahreszeitreihe können so systematische Zusammenhänge aufgedeckt werden. Insgesamt wird das vorgeschlagene Projekt neue und detailreiche Einsichten in die Beiträge zur Absorption und den Mineralstaub-Beitrag zum Strahlungsantrieb in einer belasteten und gemischten Umgebung liefern, möglicher Zusammenhänge zwischen Staubquelle und Absorption aufdecken und Information über die Haupt-Rußquellen liefern.

Synergien durch Integration von Biomassenutzung und Power-to-X in der Produktion erneuerbarer Kraftstoffe, Teilvorhaben: 7

Das Projekt "Synergien durch Integration von Biomassenutzung und Power-to-X in der Produktion erneuerbarer Kraftstoffe, Teilvorhaben: 7" wird/wurde gefördert durch: Bundesministerium für Digitales und Verkehr. Es wird/wurde ausgeführt durch: Technische Universität München, Campus Straubing für Biotechnologie und Nachhaltigkeit, Lehrstuhl für Chemie Biogener Rohstoffe.

Phosphor Speziation in Mineral Staub und Marineaerosol Partikeln

Das Projekt "Phosphor Speziation in Mineral Staub und Marineaerosol Partikeln" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Leibniz-Institut für Troposphärenforschung e.V..Makronährstoffe, wie Phosphor, sind wichtig für das Wachstum von Meeresmikroorganismen, wie Phytoplankton. Diese sind sehr bedeutsam für die marine Nährstoffkette und Biologie. Verschiedene Phytoplanktonarten emittieren klimarelvante organische Verbindungen, z.B. DMS, welches in der Atmosphäre zu Schwefelsäure oxidiert wird und anschließend zur Bildung neuer Aerosolpartikel beiträgt. Diese können weiterhin als potentielle Wolkenkondensaktionskeime dienen. Informationen über die Verfügbarkeit von Phosphor für diese Mikroorganismen sind somit essentiell für ein besseres Verständnis der Ozean-Atmosphären-Wechselwirkung. Der Haupteintrag von Phosphor in den offenen Ozean erfolgt vorwiegend über atmosphärische Deposition. Informationen über atmosphärische Phosphorkonzentrationen, die Bioverfügbarkeit und Quellen sind notwendig, um den Verbleib in den Ozeanen zu verstehen. Dabei werden vor allem in den Regionen des tropischen Nord- und Südost-Atlantik immer noch Daten benötigt. Die wenigen verfügbaren Daten basieren zumeist auf kurzzeitigen Schiffsmessungen, die in ihrer Anwendung auf langfristige Prognosen und jahreszeitlichen Zyklen sehr begrenzt sind. Um das Verständnis über die Phosphorverfügbarkeit, -quellen, und -bioverfügbarkeit in diesen ozeanischen Gebieten zu verbessern, sollen größenaufgelöste Langzeitmessungen zur Bestimmung des Phosphorgehalts von Aerosolpartikeln durchgeführt werden. Weiterhin werden analytische Methoden entwickelt und optimiert (basierend auf der Kombination von drei Techniken). Diese sollen eine empfindliche Bestimmung von löslichem als auch dem Gesamtphosphor in feinen Partikeln ermöglichen, aufgrund der geringen Aerosolmasse in dieser Größenfraktion. Die ermittelten Daten werden benutzt, um wichtige Quellen des Phosphors in diesen Regionen zu charakterisieren, die Rolle von unterschiedlichen Quellen wie Mineralstaub, Biomassenverbrennung, sowie anthropogenen Verbrennungsaerosols auf die Speziation (organische und anorganische Zusammensetzung), Löslichkeit und atmosphärische Prozessierung des Phosphors, sowie ihre saisonale Variabilität zu untersuchen. Darüber hinaus soll eine regionale Staubmodellsimulation angewendet werden, um den Aerosoltransport und die Staupdeposition in diesen Regionen besser zu beschreiben. Die Ergebnisse sind wichtig für kombinierte Modelle zur Ozean-Atmosphäre Wechselwirkung und das Verständnis der wichtigsten Faktoren, die den Verbleib von atmosphärischem Phosphor im Ozean beeinflussen.

1 2 3 4 5152 153 154