Auf dem Gelände der Pferdezucht Gestüt Lewitz in Mecklenburg-Vorpommern soll eine Biomethananlage zur Vergärung von Pferdemist, Geflügelmist und pflanzlichen Reststoffen errichtet werden. Momentan wird ca. 15 - 20 % des auf dem Gestüt Lewitz anfallenden Pferdemists in einer Biogasanlage verwertet. Der Rest wird ohne Behandlung auf die Felder ausgebracht. Das erzeugte Biomethan soll zu LNG verflüssigt werden und im Wesentlichen zur Dekarbonisierung der Unternehmensgruppe dienen. Die Anlage wird eine Produktionsleistung von ca. 1.000 Nm³/h Biomethan aufweisen und ca. 97.500 t/a Substrate verarbeiten. Der Wirtschaftsdüngeranteil liegt bei 80%. Der Anteil Pferdemist an der Gesamtmenge beträgt rund 72%. Die Gemeinde hat schon den Aufstellungsbeschluss für den Bebauungsplan erlassen sowie einen B-Plan-Vorentwurf genehmigt. Die weitere Erstellung des B-Plans ist in Bearbeitung. Antragsteller sind die Schockemöhle Bioenergie GmbH & Co. KG (nachfolgend Schockemöhle BE genannt) und das Institut für Biogas, Kreislaufwirtschaft und Energie (IBKE). Die Schockemöhle BE übernimmt auch die Projektentwicklung und wird die Anlage zukünftig betreiben. Die geplante Biomethananlage wird den anfallenden Pferdemist aus der Pferdezucht der verschiedenen Standorte in der Lewitz vergären. Die wissenschaftliche Begleitung erfolgt durch das IBKE.
Auf dem Gelände der Pferdezucht Gestüt Lewitz in Mecklenburg-Vorpommern soll eine Biomethananlage zur Vergärung von Pferdemist, Geflügelmist und pflanzlichen Reststoffen errichtet werden. Momentan wird ca. 15 - 20 % des auf dem Gestüt Lewitz anfallenden Pferdemists in einer Biogasanlage verwertet. Der Rest wird ohne Behandlung auf die Felder ausgebracht. Das erzeugte Biomethan soll zu LNG verflüssigt werden und im Wesentlichen zur Dekarbonisierung der Unternehmensgruppe dienen. Die Anlage wird eine Produktionsleistung von ca. 1.000 Nm³/h Biomethan aufweisen und ca. 97.500 t/a Substrate verarbeiten. Der Wirtschaftsdüngeranteil liegt bei 80%. Der Anteil Pferdemist an der Gesamtmenge beträgt rund 72%. Die Gemeinde hat schon den Aufstellungsbeschluss für den Bebauungsplan erlassen sowie einen B-Plan-Vorentwurf genehmigt. Die weitere Erstellung des B-Plans ist in Bearbeitung. Antragsteller sind die Schockemöhle Bioenergie GmbH & Co. KG (nachfolgend Schockemöhle BE genannt) und das Institut für Biogas, Kreislaufwirtschaft und Energie (IBKE). Die Schockemöhle BE übernimmt auch die Projektentwicklung und wird die Anlage zukünftig betreiben. Die geplante Biomethananlage wird den anfallenden Pferdemist aus der Pferdezucht der verschiedenen Standorte in der Lewitz vergären. Die wissenschaftliche Begleitung erfolgt durch das IBKE.
Das Verbundvorhaben zwischen der Bioenergy Concept GmbH und des CC4E der HAW Hamburg hat zum Ziel, eine innovative Modell- und Demonstrationsanlage im Landkreis Lüneburg zu realisieren, die Wirtschaftsdünger von mehreren Landwirtschaftsbetrieben zentral zu Biogas vergärt und weiter zu Biomethan aufbereitet. Die hierfür nötige Prozesswärme wird durch den Betrieb einer Pyrolyse erzeugt. Der Einsatz ligninhaltiger Reststoffen und die Produktion von Biokohle stellen ein nachhaltiges und ökologisch zukunftsfähiges Verfahren dar. Das produzierte Biomethan soll primär im Verkehrssektor eingesetzt werden. Als potentieller Hauptabnehmer hat der Landkreis Lüneburg bereits sein Interesse bekundet, das Biomethan in der vom Landkreis betriebenen Elbfähre Bleckede - Neu Darchau und zukünftig auch im ÖPNV zu nutzen. Die als Nebenprodukt pyrolytisch erzeugte Biokohle soll zur Tierfütterung und zur Stabilisierung der Prozessbiologie im Fermenter eingesetzt werden. Sie trägt so zur Aufwertung der Gärreste und zum Humusaufbau der landwirtschaftlichen Flächen bei. Das Ziel der wissenschaftlichen Begleitung seitens der HAW ist es, die Akzeptanz zur Vergärung von Wirtschaftsdüngern zu untersuchen und ggfs. zu stärken. Für die Grundlage des dafür angestrebten Wissenstransfers in alle beteiligten Gruppen soll eine umfangreiche Ausarbeitung bestehender Forschungsergebnisse dienen. Zusätzlich wird mittels Nährstoffanalysen von Edukten und Produkten ein praxisspezifischer Kenntnisstand geschaffen, insbesondere der durch Gärung bedingten, veränderten Düngeeigenschaften von Wirtschaftsdünger. Ferner soll ein allgemeiner Leitfaden zur energetisch-stofflichen Nutzung von Wirtschaftsdüngern in Biogasanlagen geschaffen werden. Eine Bilanzierung von Treibhausgasemissionen der Demonstrationsanlage bilden die Grundlage für mögliche Erweiterungen. Das Verbundvorhabens ist auf drei Jahre vom 07/2023 - 6/2026 ausgelegt und hat ein angestrebtes Fördervolumen von 1,38 Mio €.
reTURN wird ein Verfahren zur Herstellung CO2-neutraler synthetischer Kraftstoffe demonstrieren. Dieses beinhaltet nicht nur das Potenzial signifikanter CO2-Reduktionen, sondern auch das Erzielen einer wesentlichen Effizienzsteigerung in der Produktion synthetischer Kraftstoffe und damit eine drastische Kostenreduktion. Im Verfahren werden drei etablierte Prozessschritte erstmalig in einem skalierbaren Einzelreaktor integriert, um auf Basis von rezykliertem CO2 und Biomethan aus organischen landwirtschaftlichen/ städtischen Restabfällen Synthesegas herzustellen: (1) Plasma-Verfahren mittels Biomethanpyrolyse, (2) Boudouard-Reaktion, (3) heterogene Wassergas-Shift-Reaktion mit anschließendem Quenching. Diese Kombination ermöglicht eine flexible Zusammensetzung des entstehenden Synthesegases, sodass nachfolgend verschiedene Konversionstechnologien als vierter Schritt des reTURN Verfahrens eingesetzt und damit verschiedene klimafreundliche Kraftstoffe oder Grundchemikalien produziert werden können. Das Projekt verwendet die Fischer-Tropsch-Synthese, um die gesamte Prozesskette bis hin zu den Endprodukten in einer Testanlage zu erforschen und zu erproben sowie einen Nachweis der technischen Machbarkeit und Massenmarkttauglichkeit zu erbringen. Schwerpunkte von reTURN sind der Bau und Testbetrieb des neuartigen Reaktors, begleitet von verschiedenen Forschungen am Reaktor, wie bspw. Messkampagnen und einer ökologischen Nachhaltigkeitsbetrachtung mit dem Fokus auf CO2 Äquivalenten. reTURN bietet vielfältige Verwertungsmöglichkeiten, insb. neue Geschäftsmodelle für CAPHENIA und Betreiber von Biogas- bzw. Fermentationsanlagen. Mit dem Einsatz erneuerbarer Energie entsteht zudem ein wesentliches Potenzial für eine nachhaltige Sektorenkopplung des Verkehrs- und Stromsektors. Damit stellt reTURN nicht nur ein Vehikel zur Stärkung der nationalen Vorreiterrolle im Nachhaltigkeitskontext bereit, sondern leistet auch einen entscheidenden Beitrag zum weltweiten Klimaschutz.
Auf dem Gelände der Pferdezucht Gestüt Lewitz in Mecklenburg-Vorpommern soll eine Biomethananlage zur Vergärung von Pferdemist, Geflügelmist und pflanzlichen Reststoffen errichtet werden. Momentan wird ca. 15 - 20 % des auf dem Gestüt Lewitz anfallenden Pferdemists in einer Biogasanlage verwertet. Der Rest wird ohne Behandlung auf die Felder ausgebracht. Das erzeugte Biomethan soll zu LNG verflüssigt werden und im Wesentlichen zur Dekarbonisierung der Unternehmensgruppe dienen. Die Anlage wird eine Produktionsleistung von ca. 1.000 Nm³/h Biomethan aufweisen und ca. 97.500 t/a Substrate verarbeiten. Der Wirtschaftsdüngeranteil liegt bei 80%. Der Anteil Pferdemist an der Gesamtmenge beträgt rund 72%. Die Gemeinde hat schon den Aufstellungsbeschluss für den Bebauungsplan erlassen sowie einen B-Plan-Vorentwurf genehmigt. Die weitere Erstellung des B-Plans ist in Bearbeitung. Antragsteller sind die Schockemöhle Bioenergie GmbH & Co. KG (nachfolgend Schockemöhle BE genannt) und das Institut für Biogas, Kreislaufwirtschaft und Energie (IBKE). Die Schockemöhle BE übernimmt auch die Projektentwicklung und wird die Anlage zukünftig betreiben. Die geplante Biomethananlage wird den anfallenden Pferdemist aus der Pferdezucht der verschiedenen Standorte in der Lewitz vergären. Die wissenschaftliche Begleitung erfolgt durch das IBKE.
Ziel des Projektansatzes ZeoClean ist die Entwicklung und Erprobung nanoporöser Materialien als Membranmaterial für die Aufbereitung und Bereitstellung von Biomethan. Der große Vorteil bei Verwendung einer Membran im Vergleich zur Adsorption, zum Strippen oder zur kryogenen Trennung ist einerseits die hohe erzielbare Flussleistung, andererseits auch die chemische und mechanische Stabilität. Hierbei grenzen sich die anorganischen, keramischen Membranen deutlich von den Polymermembranen ab. Adressiert wird im Rahmen dieses Forschungsantrages die Entwicklung anorganischer, keramischer Membranen für Volumina im Bereich bis zu 1.000 m³/h. ZeoClean richtet sich auf die Trennaufgabe von CO2 und CH4 mittels Membrantechnologie aus und verfolgt einerseits die Membranentwicklung mit einer CO2/CH4 Selektivität von mehr als 50 und einer CO2-Permenaz von mindestens 1 m³/(m²hbar) und andererseits die Umsetzbarkeit anhand eines experimentellen Nachweises in realem Biogas. Im Rahmen von ZeoClean soll eine neue und hoch selektive Zeolithmembran entwickelt werden, die nahezu undurchlässig für CH4, sehr hohe CO2-Flüsse aufweist und überaus robust gegen Störstoffe ist. Am meisten interessieren die Zeolithe CHA und DD3R. Für das Erreichen dieser Ziele ist das Vorhaben in zwei Projektphasen gegliedert. Die erste Projektphase 'Materialentwicklung und Funktionsnachweis' adressiert die Entwicklung dieser Membranen. In Abhängigkeit der Entwicklungsergebnisse wird eine zweite Projektphase 'Prototypenentwicklung und Technologie' angestrebt, wo es vordergründig um Skalierung und Pilotierung der Membransynthese, aber auch der Technologieentwicklung im Ganzen gehen soll. Der Fokus de DBI (TV 2) liegt die Testung der am Fraunhofer IKTS entwickelten Membran. Dies beginnt im Labor, wird aber primär an einer Biogas- bzw. Klärgasanlage im Projekt erfolgen. Damit wird gewährleitet, dass die Membran auch bezüglich Stabilität und Trennverhalten im realen Anwendungsfall getestet und bewertet wird.
Ziel des Projektansatzes ZeoClean ist die Entwicklung und Erprobung nanoporöser Materialien als Membranmaterial für die Aufbereitung und Bereitstellung von Biomethan. Der große Vorteil bei Ver-wendung einer Membran im Vergleich zur Adsorption, zum Strippen oder bspw. zur kryogenen Trennung ist einerseits die hohe erzielbare Flussleistung, andererseits auch die chemische und mechanische Stabilität. Hierbei grenzen sich die anorganischen, keramischen Membranen deutlich von den Polymermembranen ab, die darüber hinaus auch anfällig für Verunreinigungen sein können. Adressiert wird im Rahmen dieses Forschungsantrages die Entwicklung anorganischer, keramischer Membranen für Volumina im Bereich bis zu 1.000 m³/h. Dadurch sind die Membrankosten bezogen auf die Gesamtkosten der Gasaufbereitung als gering zu bewerten. Insbesondere bei Biogas- und Klärgasanlagen liegen die Volumenströme im Bereich von 200 - 500 m³/h. Das Produkt ist ein Gemisch bestehend aus CO2 und CH4, welches vor der Einspeisung ins Erdgasnetz aufgereinigt werden muss. Die in diesem Zusammenhang bereits gestellte Antragsskizze 'FlexMethan' (FKZ: 220NR154A) wurde substanziell überarbeitet und der Projektfokus erheblich geschärft. ZeoClean richtet sich auf die Trennaufgabe von CO2 und CH4 mittels Membrantechnologie aus und verfolgt einerseits die Membranentwicklung mit einer CO2/CH4 Selektivität von mehr als 50 und einer CO2-Permenaz von mindestens 1 m³/(m²hbar) und andererseits die Umsetzbarkeit anhand eines experimentellen Nachweises in realem Biogas.
Origin | Count |
---|---|
Bund | 344 |
Kommune | 1 |
Land | 71 |
Wissenschaft | 3 |
Type | Count |
---|---|
Daten und Messstellen | 3 |
Ereignis | 2 |
Förderprogramm | 279 |
Text | 62 |
Umweltprüfung | 53 |
unbekannt | 15 |
License | Count |
---|---|
geschlossen | 96 |
offen | 289 |
unbekannt | 29 |
Language | Count |
---|---|
Deutsch | 397 |
Englisch | 71 |
Resource type | Count |
---|---|
Archiv | 27 |
Datei | 33 |
Dokument | 84 |
Keine | 194 |
Webdienst | 3 |
Webseite | 138 |
Topic | Count |
---|---|
Boden | 291 |
Lebewesen und Lebensräume | 274 |
Luft | 223 |
Mensch und Umwelt | 414 |
Wasser | 200 |
Weitere | 364 |