API src

Found 1419 results.

Related terms

Industrielle Umsetzung von Wasserstoff-Produktion aus Fruchtsaft-Abfällen mit Hilfe von Purpurbakterien, Teilvorhaben: Prozessoptimierung, Überführung des Prozesses in den industriellen Maßstab

Erprobung eines geschlossenen Hochleistungsreaktors fuer die biologische Abwasserreinigung

Untersuchung eines Bioreaktors fuer die biologische Abwasserreinigung. Der Reaktor besteht aus einem zylindrischen Behaelter, in dem sich zum dispergieren der Luft und zur Durchmischung der Biosuspension eine Hubeinrichtung befindet. Die Hubeinrichtung - bestehend aus einer Hubstange mit Lochscheiben - ist massgebend fuer die Leistungsfaehigkeit des Bioreaktors. Aus diesem Grunde soll der Einfluss von Hubfrequenz, Hubamplitude und Abstand der Lochscheiben auf die Verweilzeit des Abwassers untersucht werden. Weitere zu untersuchende Einflussgroessen sind: Bakterienkonzentration, Ruecklauf der Biokonzentration und Energiebedarf.

Entwicklung eines modularen Konzeptes zum Aufbau von Biogasreaktoren

Es sind eine Reihe von anaeroben Prozessen bekannt, die alle mehr oder weniger stark den Aspekt der Behandlung bzw. Entsorgung fester, pastoeser oder fluessiger Abfaelle in den Vordergrund stellen. Das Spektrum der Anlagengroesse reicht von Kleinanlagen fuer die Guelleverwertung bis zu grosstechnischen Anlagen. Allen Aufbauprinzipien gemeinsam ist die Tatsache, dass die Anlagengroesse nur schwierig an Rahmenbedingungen wie Groesse der zu entsorgenden Gebietskoerperschaft oder Ergiebigkeit der Substratquelle angepasst werden kann; up-scaling (oder auch down-scaling) erfordert immer Entwicklungstaetigkeit. Dadurch sind Anlagen entweder nicht voll ausnutzbar oder andere Anlagen muessen vorgehalten werden, um Ent- oder Versorgungssicherheit zu gewaehrleisten. Unter Umstaenden muessen lange Transportwege akzeptiert werden. Diese Probleme wirken sich negativ auf die Wirtschaftlichkeit des Einsatzes der Verfahren aus. Daher wird oft auf die Gewinnung von Biogas verzichtet, obwohl die Rahmenbedingungen gut waeren. Dies bedeutet, dass eine wichtige Quelle regenerativer Energie praktisch nicht genutzt wird. Ziel dieses Projektes ist die Entwicklung eines modularen Konzeptes fuer Anaerobreaktoren, das eine Anpassung der Anlagengroesse ohne besondere Entwicklungstaetigkeit erlaubt. Dazu bedarf es der Entwicklung kleiner Reaktoren, die einfach aufzubauen und preiswert herzustellen sind, die dennoch stabil arbeiten und keine aufwendige Regelungstechnik brauchen. Beabsichtigtes Einsatzfeld fuer die Reaktoren ist dabei nicht nur die Behandlung und Entsorgung von Abfaellen, die gleichwohl mit den entwickelten Komponenten moeglich sein sollte, sondern vor allem die Bereitstellung nachhaltiger Energiequellen. Fernziel der Arbeiten des Labors fuer Umwelttechnik der MFH in dieser Richtung ist die Kombination von Anaerobprozessen mit der Biomassegewinnung durch Algen, d.h. direkte Biogasgewinnung aus Solarenergie und CO2-Recycling.

Optimierung und Steuerung eines Fermentationssystems mit sequentieller Prozessfuehrung, dargestellt am System Ammonifikation-Nitrifikation

Voraussetzung fuer eine sequentielle Prozessfuehrung ist die genaue Kenntnis der reaktionskinetischen Daten fuer die einzelnen biologischen Systeme. Sie bilden die Grundlage fuer die Bemessung, Optimierung und Steuerung der Verfahrenselemente. Ausschlaggebend fuer die Wahl der Reaktortypen ist die Aufrechterhaltung optimaler Umweltbedingungen (z.B. pH-O2-Konzentration) sowie die Erhaltung einer moeglichst grossen Organismenmenge im System. Fuer die Nitrifikation sind Ruehrkessel-, Festbett- und Wirbelschichtreaktor die zu untersuchenden Alternativen. Die Loesung dieses Problems wird als Beitrag zur Leistungssteigerung von Klaeranlagen sowie zur Entwicklung einer Hochleistungsnitrifikation fuer Industrieabwaesser verstanden.

Ursachen und Gegenstrategien für Schaumereignisse in Biogasanlagen

Ziel dieses Projektes ist es, Ursachen der übermäßigen Schaumbildung im Biogasprozess, die durch Vergärung von leicht abbaubaren Substraten verursacht wird, im Detail zu untersuchen, Verständnis aufzubauen und Gegenmaßnahmen zu entwickeln. Dabei soll die Rolle der Hydrolyse-Stufe im Vordergrund stehen. Um das Forschungsthema so umfassend wie möglich zu bearbeiten, werden Expertisen aus unterschiedlichen Bereichen zusammengeführt - die Expertise zur Schaumbildung in biotechnologischen Prozessen (UFZ), zur zweiphasigen Vergärung (Universität Hohenheim), zu molekularbiologischen Aspekten der Prozessstörungen im Biogasfermenter (UFZ), sowie zur Wirtschaftlichkeitsanalyse und Akzeptanzforschung im Bereich der erneuerbaren Energien (HfWU). Am UFZ wird erforscht, welche physikochemischen Parameter der Substrate und des Fermenterinhaltes einen Einfluss auf übermäßige Schaumbildung im Biogasfermenter haben. Dabei wird untersucht, welche Parameter für die Bildung von Schaum von Bedeutung sind, wie diese Parameter so beeinflusst werden können, dass das Risiko der Schaumbildung minimiert wir und wie das Substrat vorbehandelt werden muss, um Schaumbildung im Fermenter vorzubeugen. Weiterhin wird der Frage nachgegangen, welche biotischen Parameter in der Prozessstabilisierung der anaeroben Vergärung leicht abbaubarer Substrate eine Rolle spielen. Konkret wird ermittelt, welchen Einfluss die Aktivität von Enzymen und Mikroorganismen hat und wie die Nährstoffzusammensetzung während einer Prozessstörung die Schaumentstehung beeinflusst. Dabei wird angestrebt, mikrobielle Indikatoren für ein erhöhtes Risiko zur Schaumbildung oder für einen stabilen Prozess bei der Vergärung leicht abbaubarer Substrate zu identifizieren. Auf der Basis der Ergebnisse des Projektes wird es möglich sein, stabile Prozessführung durch optimale Zusammensetzung des Substratmix und durch zielgerichtete Dosierung von Zusatzstoffen auf enzymatischer bzw. mikrobieller Basis zu gestalten.

Ursachen und Gegenstrategien für Schaumereignisse in Biogasanlagen, Teilvorhaben 1: Bioprozesstechnische und molekularbiologische Untersuchungen zu Ursachen und Bekämpfungsstrategien von Schaumbildung in Biogasanlagen

Ziel dieses Projektes ist es, Ursachen der übermäßigen Schaumbildung im Biogasprozess, die durch Vergärung von leicht abbaubaren Substraten verursacht wird, im Detail zu untersuchen, Verständnis aufzubauen und Gegenmaßnahmen zu entwickeln. Dabei soll die Rolle der Hydrolyse-Stufe im Vordergrund stehen. Um das Forschungsthema so umfassend wie möglich zu bearbeiten, werden Expertisen aus unterschiedlichen Bereichen zusammengeführt - die Expertise zur Schaumbildung in biotechnologischen Prozessen (UFZ), zur zweiphasigen Vergärung (Universität Hohenheim), zu molekularbiologischen Aspekten der Prozessstörungen im Biogasfermenter (UFZ), sowie zur Wirtschaftlichkeitsanalyse und Akzeptanzforschung im Bereich der erneuerbaren Energien (HfWU). Am UFZ wird erforscht, welche physikochemischen Parameter der Substrate und des Fermenterinhaltes einen Einfluss auf übermäßige Schaumbildung im Biogasfermenter haben. Dabei wird untersucht, welche Parameter für die Bildung von Schaum von Bedeutung sind, wie diese Parameter so beeinflusst werden können, dass das Risiko der Schaumbildung minimiert wir und wie das Substrat vorbehandelt werden muss, um Schaumbildung im Fermenter vorzubeugen. Weiterhin wird der Frage nachgegangen, welche biotischen Parameter in der Prozessstabilisierung der anaeroben Vergärung leicht abbaubarer Substrate eine Rolle spielen. Konkret wird ermittelt, welchen Einfluss die Aktivität von Enzymen und Mikroorganismen hat und wie die Nährstoffzusammensetzung während einer Prozessstörung die Schaumentstehung beeinflusst. Dabei wird angestrebt, mikrobielle Indikatoren für ein erhöhtes Risiko zur Schaumbildung oder für einen stabilen Prozess bei der Vergärung leicht abbaubarer Substrate zu identifizieren. Auf der Basis der Ergebnisse des Projektes wird es möglich sein, stabile Prozessführung durch optimale Zusammensetzung des Substratmix und durch zielgerichtete Dosierung von Zusatzstoffen auf enzymatischer bzw. mikrobieller Basis zu gestalten.

Forschergruppe (FOR) 5094: Dynamik des tiefen Untergrundes von Hochenergiestränden, Teilprojekt: Reaktiver Stofftransport

Durch DynaDeep wird ein Verständnis der Funktionsweise und Relevanz des Land-Meer Übergangs im Untergrund von Hochenergiestränden gewonnen werden. Wir nehmen an, dass dieser einen hoch dynamischen Bioreaktor und einzigartiges mikrobiologisches Habitat darstellt und Netto-Stoffflüsse in Richtung Meer stark beeinflusst. Um dieses Ziel zu erreichen werden sechs Teilprojekte gemeinsam Felduntersuchungen und experimentelle Arbeiten durchführen und diese mit mathematischen Modellen integrativ kombinieren. Die reaktiven Stofftransportprozesse in subterranen Ästuaren (subterranean estuary, STE) sind bislang nur wenig unter Zuhilfenahme numerischer reaktiver Transportmodellierung untersucht worden. In der Grundwasserforschung ist die reaktive Transportmodellierung ein unverzichtbares Werkzeug geworden, um die gekoppelten, nicht-linearen, und meist nicht intuitiv nachvollziehbaren hydrodynamischen und biogeochemischen Prozesse im Untergrund aufzulösen und zu quantifizieren. In Bezug auf den in DynaDeep postulierten hochdynamischen Bioreaktor ist die reaktive Stofftransportmodellierung eine Herausforderung, aber eben auch ein sehr vielversprechender Weg die verzahnten Prozesse unter Hochenergiestränden aufzulösen. Das hier vorgestellte Teilprojekt P6 soll die Forschungsgruppe in ihrer Aufgabe unterstützten die komplexen Zusammenhänge im STE unter dem Einfluss der extrem instationären Randbedingungen zu verstehen. Dafür werden in enger Zusammenarbeit und im ständigen Feedback mit den Projektpartnern (P1-P5) reaktive Transportmodelle entwickelt, welche die untersuchten Einzelprozesse und Effekte in den Laborversuchen, als auch das Verhalten des Gesamtsystems am Feldstandort so gut wie möglich wiedergeben können. Mit dem resultierenden Feldstandort-Modell werden die Effekte der Einzelprozesse auf das Gesamtsystem, als auch die Stoffflüsse in den Bioreaktor hinein und aus ihm heraus quantifiziert. In Zusammenarbeit mit Teilprojekt P1 soll das Modell dann in Hinblick auf DynaDeep Phase 2 für ein weites Spektrum möglicher und für Hochenergiestrände repräsentativer Standortbedingungen angewendet werden.

Forschung 'Biokunststoffe' - Untersuchungen zur anaeroben Vorbehandlung von Biokunststoffen

Für die anaerobe Verwertung von Biokunststoffen ist deren Auflösung notwendig, um verfahrenstechnische Störungen zu vermeiden. Dies beinhaltet auch, dass die Desintegration bereits zu Beginn der Verwertung möglichst in großem Umfang stattfindet. Eine Desintegration innerhalb der entsprechenden Verweilzeit einer Vergärungsanlage ist nicht ausreichend. Aufgrund der unzureichenden Desintegration können Biokunststoffe vor allem in Nassvergärungsanlagen verfahrenstechnische Störungen hervorrufen. So können beispielsweise schon bei der Vorbehandlung (Zerkleinerung, Anmaischen) oder bei der Einbringung (Förderung, Dosierung) des Materials in den Fermenter Probleme entstehen. Besonders längere Folien und Tüten können sich um Aggregate wickeln und dadurch Stillstands- und Ausfallzeiten aufgrund der aufwendigen Beseitigung hervorrufen. Aber auch im Fermenter kann es zu Störungen der Rührwerke oder der Förderaggregate in die nachfolgenden Fermentern bzw. Gärrestbehältern kommen. Das Ziel der Untersuchungen ist es verschiedene Möglichkeiten der anaeroben Behandlung von Biokunststoffen zu untersuchen, um deren Desintegration vor der Vergärung zu verbessern. Dazu sollen verschiedene physikalische und chemische Behandlungsmethoden untersucht und auf ihre Eignung zur Desintegration hin untersucht werden. Nachfolgend sind Beispiele der untersuchten Biokunststoffe dargestellt. Die Untersuchungsergebnisse zeigen, dass eine anaerobe Verwertung desintegrierter Biokunststoffe möglich ist. Detailliertere Ergebnisse werden im Laufe des Jahres 2015 veröffentlicht.

Mikrobieller Abbau von Azofarbstoffen

Die in der Textilbranche verwendeten synthetischen Farbstoffe sind schwer abbaubar, weshalb ihre gezielte Elimination heute ueber Faellungs- und Adsorbtionsverfahren praktiziert wird. Die dadurch entstehenden Probleme der Schlammbeseitigung und Traegerregeneration sind aber noch nicht zufriedenstellend geloest. Mit der Methode der Langzeitadaption sind deshalb Mikroorganismen gewonnen worden, die bestimmte Farbstoffe abbauen koennen. Die biochemischen und genetischen Grundlagen dieser neuerworbenen Faehigkeit werden nun im Detail untersucht. Entsprechend photolytischem Abbau in der Natur. Frage nach Abbauweg und Metaboliten. Methoden: Modellverbindungen aus der Reihe der Stilbencarbonsaeuren und -sulfonsaeuren. Batchversuche und kontinuierliche Fermenter. Die-Away-Tests. Animpfung aus Wasser, Abwasser, Klaeranlagen. Isolierung von Reinkulturen mit Abbaufaehigkeit.

Mikrobiell katalysierte Elektrosynthese von Bernsteinsäure

Ziel ist die stoffliche Nutzung elektrischer Energie zur mikrobiellen Produktion des Kunststoffmonomers Bernsteinsäure. Hierbei wird der innovative Ansatz der mikrobiellen Elektrosynthese verfolgt. Elektrische Energie wird in den Mikroorganismus Actinobacillus succinogenes transferiert, der zugleich nachwachsende Rohstoffe zur Synthese der Katalysatoren und des Produkts nutzt. Die zusätzlichen Redoxäquivalente (NADH) durch die Aufnahme von Elektronen bewirken eine Veränderung der Stoffwechselproduktzusammensetzung in Richtung zur Bernsteinsäure. Das Konzept erlaubt die Umwandlung elektrischer Energie in komplexe Produkte unter Einsatz des selbstreplizierenden Ganzzellkatalysators unter sehr milden Reaktionsbedingungen (T kleiner als 40 Grad C, pH 7, wässriges Lösungsmittel). Zusätzlich sind die Anforderungen an die Elektroden und die Reinheit der flüssigen Phase bei einer mikrobiellen Elektrosynthese gering und somit der Prozess kostengünstig. Die Technologie der mikrobiellen Elektrosynthese konnte durch die Antragssteller bereits für die Produktion von Butanol etabliert und mehrfach publiziert werden. Im angestrebten Projekt soll ein neues, wirtschaftlich relevantes Bioproduktionsverfahren etabliert und der technologische Reifegrad des Verfahrens erhöht werden. Der Transfer der Power2X-Technologie wird zunächst ein kleinen Reaktionsgefäßen durchgeführt und im Anschluss auf einen technischen Bioreaktor überführt. Hierbei werden Betrachtungen zur Skalierbarkeit durchgeführt. Zielsetzung des TV 1 ist die technische Etablierung des neuen Reaktorsystems. Dies insbesondere durch Überarbeitung eines Bioreaktors für den Einsatz mit Elektroden unter besonderer Berücksichtigung von Korrosion im Reaktorraum. Neben den konstruktiven Ansätzen umfasst dies die Erschaffung und Charakterisierung neuer Elektodenoberflächen aus elektrisch leitfähigen, biokompatiblen Hydrogelen. Zugrundeliegende Stoffstrombilanzen werden in ein Modell überführt, um Signifikanzanalysen durchzuführen.

1 2 3 4 5140 141 142