Epoxidharze finden vielfältige Anwendung in der industriellen Fertigung, und a. als duromere Matrixharze für FVK. Bisphenol A stellt dabei die Hauptchemikalie der Epoxidharzchemie dar; sie ist allerdings noch nicht biobasiert zugänglich. Zudem wurde die Verbindung als besonders besorgniserregend mit reproduktionstoxischen und endokrin schädigenden Eigenschaften eingestuft. Ein Verbot für Herstellung, Inverkehrbringen und Verwenden ist daher langfristig sehr wahrscheinlich und damit auch die Suche nach Bisphenol A-Substituten für die Reaktivharzindustrie alternativlos. Tannine (Polyphenole) sind in vielerlei Hinsicht gute Bisphenol A-Alternativen. Sie kommen in Landpflanzen, aber auch in Makroalgen vor, deren Feedstock-Potenzial in diesem Zusammenhang allerdings bei weitem nicht ausgeschöpft ist. AlgoForm setzt sich daher die Entwicklung eines duromeren Epoxidharzes auf Basis algenbasierter Phlorotannine zum Ziel. Das Harz soll ferner zur Herstellung faserverstärkter Kunststoffe im Resin Transfer Moulding zum Einsatz kommen, das Faserhalbzeug dabei auf Flachs beruhen. Die Matrix soll durch Wahl geeigneter Härter und Katalysatoren zusätzlich chemisch so gestaltet sein, dass sie nach Aushärtung als Vitrimer vorliegt, also als Duromer, welches in der Hitze aufgrund labiler kovalenter Bindungen trotzdem umgeformt werden kann. Auf diese Weise werden 'duromere Organobleche' zugänglich, die nicht nur eine ^der Herstellung nachgelagerte Umformung in die Endkontur erlauben, sondern der Prepregverarbeitung vergleichbare Möglichkeiten der FVK-Erzeugung: Da Vitrimere mit sich selbst wieder chemische Bindungen knüpfen können, kann das Schichten und das Ausrichten der FVK-Platten bzgl. einer konkreten Lasteinleitung ohne Zeitdruck bei Raumtemperatur erfolgen; die Konsolidierung findet dann erst unter Wärme und Druck statt. Dies ermöglicht in Summe die hochflexible Produktion hochperformanter Multimaterialsysteme aus nachhaltigen Rohstoffen.
Physicochemical and steric properties of organic chemicals on the one hand and physicochemical surface properties and structural properties of the sorbent on the other hand determine sorptive interactions at biogeochemical interfaces. In order to gain a mechanistic understanding of these interactions we want to combine macroscopic, micro-calorimetric, and spectroscopic methods. We hypothesise that sorption and distribution of a polar organic chemical at biogeochemical interfaces is either determined by the molecules hydrophobic R-groups (?R-determined?) or its functional groups (?F-determined?). To test our hypothesis we will study sorption of bisphenol A and fenhexamid (R-determined chemicals), and bentazon and naproxen (F-determined chemicals) in pure systems of minerals (kaolinite, illite, gibbsite, and quartz), in model substances for biofilms (polygalacturonic acid and dextran), in combined systems of mineral phases with organic layers, and in topsoils and subsoils. Interpretation and modelling of sorption isotherms and sorption kinetics derived from batch experiments together with results from diffusion experiments with polysugars of variable crosslinking will provide macroscopic insight into sorptive interactions. Information regarding the thermodynamics of sorption will by derived from micro-calorimetry. Spectroscopic (ATR FTIR, NMR) measurements deliver information on molecular interactions and structure.
Mikroplastik (MP, Plastikteile kleiner als 5 mm) werden als neu aufkommende Schadstoffe betrachtet und neuste Studien belegen die potentielle Gefahr von MP für die menschliche Gesundheit und die Umwelt. Die Forschung hat sich bisher mehrheitlich auf die Untersuchung von MP in der marinen Umgebung konzentriert. Allerdings konnte MP auch vermehrt Süßwasser und -sedimenten weltweit nachgewiesen werden. Als Primärpartikel oder Sekundärprodukte aus dem Abbau von Makroplastik kann MP entweder direkt toxisch wirken oder als Überträger von sorbierten Schadstoffen fungieren. Neuste Studien belegen außerdem, dass MP in die menschliche Nahrungskette eindringen kann. Weiterhin können die dem MP beigefügten endokrinen Disruptoren wie Bisphenol A (BPA) and Nonylphenol (NP) während der Transportprozesse an das Süßwasser abgegeben werden. Dabei können Flussbettsedimente potentielle Hotspots für die Akkumulation von MP und deren Additive darstellen.Das Hauptziel dieses Projektes ist, die Akkumulation und den Transport von MP in Süßwasser und -sedimenten näher zu untersuchen. Dabei soll den folgenden beiden grundsätzlichen Fragen nachgegangen werden:(i) Welche Prozesse kontrollieren Transport und Akkumulation von MP verschiedener Größe, Dichte und Zusammensetzung und wie bilden sich sogenannte Mikroplastik-Hotspots in der hyporheischen Zone?(ii) Wie können Transport und Akkumulation von MP sowie die Freisetzung von Additiven wie BPA und NP unter variablen Umweltbedingungen beschrieben und vorhergesagt werden? Zwei Arbeitspakete (WP) sollen helfen, diese Fragen zu beantworten:WP1 befasst sich mit den Auswirkungen der grundlegenden Eigenschaften von MP wie Größe, Form, Zusammensetzung, Dichte, Auftrieb auf deren Transport und untersucht systematisch, wie verschiedene Arten von MP in der hyporheischen Zone (hier Flussbettsedimente) unter diversen hydrodynamischen und morphologischen Bedingungen akkumulieren. Dafür sollen Versuche in künstlichen Abflusskanälen (artificial flumes) durchgeführt werden. In diesen Versuchen werden repräsentative hydrodynamische und morphologische Bedingungen geschaffen, um eine Spannbreite an primären und sekundären MP zu testen, ihr Transportverhalten zu beschrieben und die Freisetzung von Additiven näher zu untersuchen. MP wird mit verschiedensten Methoden charakterisiert, z.B. mit single particle ICP-MS zur Bestimmung der Größe oder FT-IR zur Bestimmung des vorherrschenden Polymers. Während der Flume-Experimente werden die Eigenschaften der Sedimente, des Porenwassers und der Biofilme, sowie die Konzentration an BPA und NP gemessen und später analysiert, um die Reaktivität der Akkumulationshotspots zu bestimmen.WP2 beinhaltet die Entwicklung und Anwendung eines Models, um MP-Transport sowie die Freisetzung von Additiven in der hyporheischen Zone vorherzusagen. Da Modelle, die momentan im Bereich Stofftransport verwendet werden nicht für MP ausgelegt sind, soll die Lattice-Boltzmann Methode als neuer Modellansatz verfolgt werden.
Epoxidharze finden vielfältige Anwendung in der industriellen Fertigung, und a. als duromere Matrixharze für FVK. Bisphenol A stellt dabei die Hauptchemikalie der Epoxidharzchemie dar; sie ist allerdings noch nicht biobasiert zugänglich. Zudem wurde die Verbindung als besonders besorgniserregend mit reproduktionstoxischen und endokrin schädigenden Eigenschaften eingestuft. Ein Verbot für Herstellung, Inverkehrbringen und Verwenden ist daher langfristig sehr wahrscheinlich und damit auch die Suche nach Bisphenol A-Substituten für die Reaktivharzindustrie alternativlos. Tannine (Polyphenole) sind in vielerlei Hinsicht gute Bisphenol A-Alternativen. Sie kommen in Landpflanzen, aber auch in Makroalgen vor, deren Feedstock-Potenzial in diesem Zusammenhang allerdings bei weitem nicht ausgeschöpft ist. AlgoForm setzt sich daher die Entwicklung eines duromeren Epoxidharzes auf Basis algenbasierter Phlorotannine zum Ziel. Das Harz soll ferner zur Herstellung faserverstärkter Kunststoffe im Resin Transfer Moulding zum Einsatz kommen, das Faserhalbzeug dabei auf Flachs beruhen. Die Matrix soll durch Wahl geeigneter Härter und Katalysatoren zusätzlich chemisch so gestaltet sein, dass sie nach Aushärtung als Vitrimer vorliegt, also als Duromer, welches in der Hitze aufgrund labiler kovalenter Bindungen trotzdem umgeformt werden kann. Auf diese Weise werden 'duromere Organobleche' zugänglich, die nicht nur eine ^der Herstellung nachgelagerte Umformung in die Endkontur erlauben, sondern der Prepregverarbeitung vergleichbare Möglichkeiten der FVK-Erzeugung: Da Vitrimere mit sich selbst wieder chemische Bindungen knüpfen können, kann das Schichten und das Ausrichten der FVK-Platten bzgl. einer konkreten Lasteinleitung ohne Zeitdruck bei Raumtemperatur erfolgen; die Konsolidierung findet dann erst unter Wärme und Druck statt. Dies ermöglicht in Summe die hochflexible Produktion hochperformanter Multimaterialsysteme aus nachhaltigen Rohstoffen.
Epoxidharze finden vielfältige Anwendung in der industriellen Fertigung, und a. als duromere Matrixharze für FVK. Bisphenol A stellt dabei die Hauptchemikalie der Epoxidharzchemie dar; sie ist allerdings noch nicht biobasiert zugänglich. Zudem wurde die Verbindung als besonders besorgniserregend mit reproduktionstoxischen und endokrin schädigenden Eigenschaften eingestuft. Ein Verbot für Herstellung, Inverkehrbringen und Verwenden ist daher langfristig sehr wahrscheinlich und damit auch die Suche nach Bisphenol A-Substituten für die Reaktivharzindustrie alternativlos. Tannine (Polyphenole) sind in vielerlei Hinsicht gute Bisphenol A-Alternativen. Sie kommen in Landpflanzen, aber auch in Makroalgen vor, deren Feedstock-Potenzial in diesem Zusammenhang allerdings bei weitem nicht ausgeschöpft ist. AlgoForm setzt sich daher die Entwicklung eines duromeren Epoxidharzes auf Basis algenbasierter Phlorotannine zum Ziel. Das Harz soll ferner zur Herstellung faserverstärkter Kunststoffe im Resin Transfer Moulding zum Einsatz kommen, das Faserhalbzeug dabei auf Flachs beruhen. Die Matrix soll durch Wahl geeigneter Härter und Katalysatoren zusätzlich chemisch so gestaltet sein, dass sie nach Aushärtung als Vitrimer vorliegt, also als Duromer, welches in der Hitze aufgrund labiler kovalenter Bindungen trotzdem umgeformt werden kann. Auf diese Weise werden 'duromere Organobleche' zugänglich, die nicht nur eine ^der Herstellung nachgelagerte Umformung in die Endkontur erlauben, sondern der Prepregverarbeitung vergleichbare Möglichkeiten der FVK-Erzeugung: Da Vitrimere mit sich selbst wieder chemische Bindungen knüpfen können, kann das Schichten und das Ausrichten der FVK-Platten bzgl. einer konkreten Lasteinleitung ohne Zeitdruck bei Raumtemperatur erfolgen; die Konsolidierung findet dann erst unter Wärme und Druck statt. Dies ermöglicht in Summe die hochflexible Produktion hochperformanter Multimaterialsysteme aus nachhaltigen Rohstoffen.
Eine wesentliche Grundlage für die Festlegung von Bodenwerten in der Bundes-Bodenschutz- und Altlastenverordnung (BBodSchV) sind Kenntnisse der Hintergrundbelastung von Schadstoffen in Böden. Für die Kennzeichnung der Hintergrund-belastung werden repräsentative, statistisch abgeleitete Werte für den allgemein verbreiteten Stoffgehalt in Böden (sogenannte Hintergrundwerte, HGW) herangezogen. Dringend benötigt werden bundesweite HGW für Gesamt- und Eluatgehalte von per- und polyfluorierten Chemikalien (PFAS) in landwirtschaftlich genutzten Böden. Darüber ist eine Untersuchung erforderlich, ob für folgenden und weitere chemische Verbindungen bodenrechtliche Regelungen erforderlich sind: Polybromierte Diphenylether (PBDE), Decabromdiphenylethan (BDPE-209), Hexabromcyclododecan (HBCDD), Tributylzinn-Verbindungen (TBT), Nonylphenole (NP), Diethylhexylphthalat (DEHP), Bisphenol A (BPA), Siloxane. Ziel des Forschungsprojekts ist eine chemische Analyse (Gesamt- und Eluatgehalte) des bundesweiten Vorkommens von PFAS in Böden sowie eine Priorisierung von weiteren o.g. organischen Verbindungen, für die in nachfolgenden Forschungsprojekten eine Ableitung von bundesweiten HGW angestrebt werden sollte. Gegenstand der Untersuchungen sind die im Forschungsprojekt FKZ 3720 72 288 0 (Vorläuferprojekt) bundesweit zu entnehmenden 600 Bodenproben von landwirtschaftlich genutzten Oberböden (400 Acker- und 200 Grünlandproben). Die Analyse der Gehalte von organischen Verbindungen in diesen Proben soll wie nachfolgend benannt vorgenommen werden: (1) Bestimmung der Gehalte von PFAS (Gesamt- und Eluatgehalte) in 600 aktuellen Bodenproben und (2) Bestimmung der Gehalte von PBDE, BDPE-209, HBCDD, TBT, NP, DEHP, BPA, Siloxane und weiteren ausgewählten Chemikalien in 50 aktuellen (aus den Jahren 2021-2024) und 50 Rückstellproben (aus den Jahren 2009-2012).
Die europäische Initiative HBM4EU hat zum Ziel, die Datenlage zum Human-Biomonitoring in der EU anzugleichen und die gesundheitlichen Folgen der Schadstoffbelastung besser zu verstehen - durch Zusammenführung bereits vorhandener Daten und Durchführung gemeinsamer Studien. So sollen Informationen zum sicheren Chemikalienmanagement gewonnen werden, um die Gesundheit der Europäer zu schützen. Im Rahmen der BMU/VCI Kooperation zur Förderung des Human Biomonitorings werden Analysemethoden neu entwickelt, um erstmalig Belastungsdaten zu Stoffen generieren zu können, die bisher nicht untersucht werden konnten. Ziel des Vorhabens ist es, die in der Initiative im Jahr 2018 und 2019 als prioritär benannten Stoffe (hier Bisphenol A/S/F, Benzo(a)pyren und Acrylamid) und Methoden, die in der BMU/VCI Kooperation entwickelt worden sind (hier Uvinul A und Diethylhexyladipat), in Humanproben der Umweltprobenbank des Bundes zu messen. Die Ergebnisse sollen Datenlücken für den europäischen Bereich, die in der Initiative HBM4EU benannt wurden, schließen und länderübergreifende Studien und Auswertungen sollen ermöglicht werden. Die Erstanwendung von BMU/VCI Methoden soll einen ersten Überblick über die Belastungssituation in Deutschland ermöglichen. Übergeordnetes Ziel des Vorhabens ist es, einen Beitrag zum Aufbau eines europäischen Systems des Human-Biomonitoring zu leisten, das langfristig der besseren Kontrolle und Unterstützung der Chemikalienregulierung in Europa dient.
Bisphenole können bereits in geringen Konzentrationen hormonell schädigend für die menschliche Gesundheit und Organismen in der Umwelt sein. Bisphenol A (BPA) wird häufig in der Umwelt gemessen, aber auch die Anwendung und Verbreitung weiterer Bisphenole nimmt zu. Die von dieser Stoffgruppe ausgehenden Risiken für die Umwelt sollen daher durch eine Beschränkung angemessen minimiert werden. Das Umweltbundesamt hat in Zusammenarbeit mit der Bundesstelle für Chemikalien einen Vorschlag zur Beschränkung von BPA und vier weiteren Bisphenolen mit hormonschädigenden Eigenschaften (Bisphenols of similiar concern, BosC) im Rahmen der EU-Chemikalienverordnung REACH eingereicht ( Annex XV restriction report ). Basis dieser Besorgnis (engl. concern) sind die endokrin (hormonell) wirksamen Eigenschaften dieser Stoffe in der Umwelt. Zukünftig sollen weitere Bisphenole automatisch mitreguliert werden, sobald Informationen deren endokrine Wirkung auf die Umwelt belegen. Unter die Beschränkung fallen Herstellung, Inverkehrbringen und Verwendung der Stoffe in der EU. Im Gegensatz zum Zulassungsverfahren unter REACH werden so auch Importe reguliert. Der Beschränkungsvorschlag basiert auf der Annahme, dass es für endokrine Disruptoren in der Umwelt keine sichere Konzentration gibt, die alle Organismen ausreichend schützt. Das Ziel dieser Beschränkung ist daher im gesamten Lebenszyklus die Freisetzung von Bisphenol A so weit wie möglich, mindestens aber um 95 Prozent, zu reduzieren. Der deutsche Beschränkungsvorschlag Der im Oktober 2022 bei der europäischen Chemikalienagentur (ECHA) eingereichte Vorschlag umfasst derzeit die Bisphenole BPA, BPB, BPS, BPF sowie BPAF und dessen Salze. In der EU darf BPA in einigen Produktgruppen wie Spielzeug, Baby-Trinkflaschen oder Thermopapier nicht oder kaum mehr eingesetzt werden. Dies hat dazu geführt, dass Bisphenole mit ähnlicher Funktionsweise, aber gleicher schädigender Wirkung für einige Verwendungszwecke als Ersatzstoff eingesetzt werden. So wird BPA in vielen Thermopapieren inzwischen durch BPS ersetzt. Um weitere sogenannte „bedauerliche Substitutionen“ zu verhindern, adressiert der Beschränkungsvorschlag daher im Ansatz die gesamte Stoffgruppe der Bisphenole, sofern diese endokrine Disruptoren sind. Sobald für ein Bisphenol hormonell wirksame und fortpflanzungsschädigende Eigenschaften auf Umweltorganismen durch wissenschaftliche Untersuchungen identifiziert werden, sollen diese über einen Erweiterungsmechanismus automatisch in die Beschränkung aufgenommen werden. Für die im Rahmen des Beschränkungsvorschlages nötige Beschreibung einer Besorgnis werden die WHO /IPCS-Kriterien für endokrine Disruptoren in der Umwelt herangezogen: Der Stoff weist eine endokrine Wirkungsweise auf Die Substanz ruft schädliche und populationsrelevante Wirkungen hervor (d.h. Wirkungen z.B. auf Überleben, Wachstum und Fortpflanzung von Organismen) Es muss ein biologisch plausibler Zusammenhang zwischen der endokrinen Wirkungsweise und den schädlichen Wirkungen bestehen. Der derzeitige Beschränkungsvorschlag sieht vor, die Summe hormonell schädigender Bisphenole in einem Erzeugnis oder in einer Mischung auf den Grenzwert von 10 ppm (0,001 Gewichtsprozent) zu limitieren. Übersteigen Produkte diesen Grenzwert gelten Ausnahmen, wenn der Kontakt zu Wasser ausgeschlossen werden kann oder ein Migrationslimit von 0,04 mg/L nicht überschritten wird. Die genannten Ausnahmen gelten nicht für Anwendungen, bei denen die Bisphenole als Additive eingesetzt werden. Ablauf des Beschränkungsverfahren Im Oktober 2020 und 2021 fanden jeweils Aufrufe zum Einreichen von Informationen (Call for Evidence) statt. Alle betroffenen Branchen- und Interessensvertreter konnten dabei relevante Informationen zur Anwendung von BPA und BosC zur Berücksichtigung in der Beschränkung einreichen. Der Beschränkungsvorschlag wurde in Form eines Dossiers nach den Anforderungen des Anhangs XV der REACH-Verordnung eingereicht. Nachdem die ECHA alle formalen Anforderungen an das Dossier bestätigt hat (conformity check), können im Rahmen einer sechsmonatigen öffentlichen Kommentierungsphase Unternehmen, Verbände, Organisationen, Privatpersonen und weitere Behörden ihre Kommentare und ggf. weitergehende Informationen zu der vorgeschlagenen Beschränkung abgeben. Diese werden von den beiden zuständigen wissenschaftlichen Ausschüssen der ECHA (Ausschuss für Risikobewertung – RAC, Ausschuss für sozioökonomische Analyse – SEAC) bei der Erarbeitung Ihrer Stellungnahmen zu dem Beschränkungsvorschlag berücksichtigt. Die Stellungnahmen der beiden Ausschüsse bilden die Grundlage der endgültigen Entscheidung der Europäischen Kommission über die Beschränkung. Der endgültige, rechtskräftige Beschränkungstext wird dann im Anhang XVII der REACH Verordnung veröffentlicht. Weitere Informationen zum Stand des Beschränkungsverfahrens finden Sie auf der Seite der ECHA . Schädliche Wirkungen in der Umwelt Einige Bisphenole sind nachweislich hormonell wirksam im Menschen und in der Umwelt. Sie werden als endokrine Disruptoren bezeichnet. BPA und BPB wurden bereits aufgrund ihrer Wirkung auf Umweltorganismen als besonders besorgniserregende Stoffe (SVHC) identifiziert. Belgien hat für BPS ein Dossier zur Identifizierung als SVHC aufgrund seiner endokrinen Wirkung im Menschen und in der Umwelt bei der ECHA eingereicht. Im Dezember 2022 hat der Ausschuss der Mitgliedsstaaten der ECHA BPS als SVHC identifiziert. Für BPF und BPAF bestätigte der Ausschuss der EU-Mitgliedsstaaten (Member State Commitee) ebenfalls die endokrine Eigenschaften in einem Verfahren nach Art. 77 der REACH-Verordnung . BPA war eine der ersten synthetischen Substanzen, von der bekannt wurde, dass sie das natürliche weibliche Sexualhormon Östrogen in der Wirkung nachahmen kann. In der Umwelt hat dies bei Fisch- und Amphibienarten nachweislich endokrin vermittelte Schäden zur Folge. Nachteilige Effekte auf Wachstum, Verhalten und Befruchtungserfolg sowie eine Verschiebung des Geschlechterverhältnisses zugunsten weiblicher Tiere können auftreten. BPA wirkt sich auf eine Vielzahl ökologisch wichtiger Arten in aquatischen und terrestrischen Ökosystemen aus. Die Exposition ist nicht auf bestimmte Umgebungen beschränkt, sondern ist allgegenwärtig. Bestimmte Fisch- und auch Weichtierarten haben sich als besonders empfindlich erwiesen. Da nur für einen kleinen Teil der vorhandenen Arten Informationen aus ökotoxikologischen Studien vorliegen, kann nicht ausgeschlossen werden, dass weitere Arten ebenso empfindlich oder sogar noch empfindlicher sind. Aus diesem Grund kann kein Grenzwert für BPA in der Umwelt bestimmt werden, unter welchem keine Gefährdung für Umweltorganismen vorliegt. BPA hat durch seine endokrinen Eigenschaften auch Auswirkungen auf die menschliche Gesundheit und ist daher fortpflanzungsschädigend und hormonell wirksam (Amtsblatt der EU, 2016; ECHA, 2017). Basierend auf verfügbaren Daten wurde im Rahmen der europäischen Human Biomonitoring Initiative ( HBM4EU ) der Schluss gezogen, dass die allgemeine Bevölkerung kontinuierlich BPA ausgesetzt ist. In 100 Prozent der untersuchten Urin- und Blutproben wurde BPA gefunden, während Bisphenol F und Bisphenol S in 50 Prozent der Proben festgestellt wurden (HBM4EU substance report: bisphenols, 2022). Eintragspfade von Bisphenolen in die Umwelt Obwohl BPA in einigen Produkten oder vereinzelt auf nationaler Ebene bereits reguliert ist, werden weiterhin umweltrelevante Konzentrationen von BPA in Umweltorganismen, Flüssen und Sedimenten gefunden. BPA ist der am meisten produzierte SVHC der Welt und es wird ein steigender Verbrauch in der EU erwartet. Zugleich werden auch andere Bisphenole in zahlreichen Sektoren eingesetzt und können BPA durch ihre verwandte Struktur und ähnlichen Eigenschaften ersetzen. Studien aus China und den USA, aber auch aus mehreren europäischen Ländern, berichten häufig über eine Ko- Exposition von BPA und anderen Bisphenolen (insbesondere BoSC). Obwohl beispielsweise BPB bisher in Europa nicht häufig in der Umwelt nachgewiesen wurde, deuten Untersuchungen auf ein vermehrtes Auftreten in Kläranlagen und Süßwasserökosystemen hin, wobei es auch Nachweise in abgelegenen Gebieten gibt (Annex XV restriction report, Annex B). Auf Grundlage des Vorsorgeprinzips sollte das Auftreten von hormonell schädlichen Bisphenolen in Gewässer und Biota vermieden werden. Bisphenole werden für ein sehr breites Spektrum an Anwendungen eingesetzt. BPA und andere Bisphenole werden als Zwischenprodukte bei der Herstellung von Polymeren oder Polymerharzen wie Polycarbonat und Epoxidharzen und -härtern verwendet. Polycarbonat-Kunststoff ist ein starkes und zähes Material, das bei hohen Temperaturen geformt werden kann. Zu den Produkten aus Polycarbonat gehören gängige Konsumgüter wie Autoteile, Sportgeräte, Gewächshäuser, Getränkeflaschen und Plastikgeschirr. Epoxidharze haben ebenfalls ein sehr breites Verwendungsmuster. Sie werden beispielsweise in Baumaterial, in Elektro- und Elektronikgeräten, in Windrädern, in Fußböden sowie im Transport- und Medizinsektor verwendet. Wasserleitungen und Lebensmitteldosen können mit Epoxidharz beschichtet sein, um die Haltbarkeit der Materialien zu verlängern. Hinzu kommt die Verwendung von Bisphenolen als Additiv, also als Zusatzstoff. Sie werden Farben, Klebstoffen, Textilien, Papier oder Pappe zugesetzt, um verschiedene Funktionen zu erfüllen. In Kunststoffen fungieren sie als Stabilisatoren, Polymerisationsinhibitoren oder Flammschutzmitteln. Der größte Anteil von BPA wird für Herstellung von Polycarbonat (PC) mit etwa 70-80 Prozent und die Herstellung von Epoxidharz mit etwa 15-30 Prozent eingesetzt. Ein verbleibender Anteil von weniger als 5 Prozent betrifft die Verwendung von BPA als Additiv und die Herstellung von Chemikalien (0,3 Prozent) (Annex XV restriction report, Annex H). Bisphenole können als Restgehalte in Materialien vorliegen, sich als unerwünschtes Nebenprodukt in Herstellungsverfahren bilden, durch Abbauprozesse entstehen oder in den Recyclingströmen von Papier und PVC enthalten sein. Sie werden bei Kontakt mit Wasser und durch normale Alterungs- und Abnutzungsprozesse der Materialien freigesetzt. Neben punktuellen Emissionsspitzen aus beispielweise Papierrecyclinganlagen findet daher ein kontinuierlicher Eintrag in Gewässer über Kläranlagen statt. Weitere Quellen in Europa sind Deponien und der Mensch, welcher BPA über Lebensmittelverpackungen und Hausstaub aufnimmt und ausscheidet. Seit Anfang 2020 darf BPA als Farbentwickler auf Thermopapier nicht mehr verwendet werden, so dass zukünftig wahrscheinlich BPA-Einträge aus dem Recycling von Papier in die Umwelt vermindert werden. Quellen Amtsblatt der Europäischen Union L 195, 20. Juli 2016 https://eur-lex.europa.eu/legal-content/DE/TXT/?uri=OJ:L:2016:195:TOC HBM4EU substance report: bisphenols Dr. Ian Keyte, Neil Patton, Dr. Robert Whiting, Robert Barouki, Elena Tarroja HBM4EU science and policy for a healthy future 2022 https://www.hbm4eu.eu/wp-content/uploads/2022/07/Bisphenols_Substance-report.pdf MSC unanimously agrees that Bisphenol A is an endocrine disruptor ECHA/PR/17/12 June 2017 https://echa.europa.eu/de/-/msc-unanimously-agrees-that-bisphenol-a-is-an-endocrine-disruptor Proposal for a restriction: Pre-publication of Annex XV report SUBSTANCE NAME(S): 4,4’-isopropylidenediphenol (Bisphenol A) and bisphenols of similar concern for the environment Version number: 0.1 Date: 7 October 2022 https://echa.europa.eu/de/restrictions-under-consideration/-/substance-rev/71401/term
Zusammen mit der Bundesstelle für Chemikalien hat das UBA bei der Europäischen Chemikalienagentur ECHA einen EU-weiten Beschränkungsvorschlag im Rahmen der REACH-Verordnung für Bisphenol A und weitere Bisphenole mit ähnlicher Umweltwirkung eingereicht. Dieser Beschränkungsvorschlag ist nun von der ECHA veröffentlicht worden. Die öffentliche Konsultation startet voraussichtlich im Dezember. Einige Bisphenole sind in der Umwelt nachweislich hormonell wirksam. Bisphenol A (BPA) als bekanntester Vertreter dieser Stoffgruppe und Bisphenol B (BPB) wurden bereits aufgrund ihrer endokrinen Wirkung auf Umweltorganismen als besonders besorgniserregende Stoffe (SVHC) unter REACH identifiziert. Im September hat Belgien für Bisphenol S (BPS) ein Dossier zur Identifizierung als SVHC bei der ECHA eingereicht. Auch für BPS sind aus Sicht der belgischen Behörden die Kriterien für endokrine Disruptoren in der Umwelt erfüllt. Für Bisphenol F (BPF) und Bisphenol AF (BPAF) und seine Salze gibt es deutliche Hinweise auf eine hormonelle Wirkung in der Umwelt. Der Ausschuss der EU-Mitgliedsstaaten der ECHA prüft gerade, ob für diese beiden Bisphenole die Datenlage ausreichend ist, um die Kriterien für endokrine Disruptoren in der Umwelt zu erfüllen. Endokrine Disruptoren (ED) sind Chemikalien oder Mischungen von Chemikalien, die die natürliche biochemische Wirkweise von Hormonen stören und dadurch schädliche Effekte (z.B. Störung von Wachstum und Entwicklung, negative Beeinflussung der Fortpflanzung oder erhöhte Anfälligkeit für spezielle Erkrankungen) in Organismen hervorrufen. Der Beschränkungsvorschlag des UBA umfasst daher aktuell diese fünf Bisphenole (BPA, BPB, BPS, BPF und BPAF) und hat das Ziel, die Emissionen dieser Stoffe in die Umwelt aus ihren verschiedenen Verwendungen zu minimieren. Zusätzlich enthält der Beschränkungsvorschlag einen Mechanismus zur Aufnahme weiterer Bisphenole sobald deren hormonelle Wirksamkeit in der Umwelt EU-weit bestätigt wird. Mit diesem Ansatz sollen die Risiken der gesamten Stoffgruppe in der Umwelt minimiert werden. Basis der Beschränkung ist die Annahme, dass für endokrin wirksame Stoffe in der Umwelt kein sicherer Grenzwert abgeleitet werden kann, der protektiv genug ist für alle potenziell betroffenen Spezies. Somit stellt jede Emission von endokrinen Disruptoren in die Umwelt ein Risiko dar, das dieser Beschränkungsvorschlag minimieren soll. Beschränkungen dienen dem EU-weiten Schutz der menschlichen Gesundheit und der Umwelt vor unzumutbaren Gefahren, die von Chemikalien ausgehen. Durch Beschränkungen werden in der Regel die Herstellung, die Vermarktung (einschließlich Einfuhr) und die Verwendung eines Stoffes beschränkt oder verboten. Zusätzlich können Bedingungen vorgegeben werden, wie etwa technische Maßnahmen oder Kennzeichnungen, um Risiken zu vermeiden oder zu minimieren. Der derzeitige Beschränkungsvorschlag für die Bisphenole sieht vor, dass hormonell schädigende Bisphenole in Erzeugnissen und Mischungen nicht über einem Grenzwert von 10 ppm (0,001 Gewichtsprozent) enthalten sein dürfen. Davon ausgenommen sind Fälle, in welchen diese Bisphenole kovalent in eine Matrix eingebunden vorliegen oder als Zwischenprodukt während der Herstellung von Polymeren auftreten, wenn der Kontakt zu Wasser solcher polymeren Verwendungen ausgeschlossen werden kann oder ein Migrationslimit von 0,04 mg/L nicht überschritten wird. Der Beschränkungsvorschlag wurde von den deutschen Behörden am 7. Oktober in Form eines Dossiers nach den Anforderungen des Anhangs XV der REACH-Verordnung bei der Europäischen Chemikalienagentur (ECHA) eingereicht. Wenn die ECHA die Erfüllung aller formalen Anforderungen an das Dossier bestätigt hat, können im Rahmen einer sechsmonatigen öffentlichen Kommentierungsphase Firmen, Verbände, Organisationen, Privatpersonen und weitere Behörden ihre Kommentare und ggf. weitergehende Informationen zu der vorgeschlagenen Beschränkung abgeben. Diese öffentliche Konsultation wird voraussichtlich am 21. Dezember 2022 beginnen. Alle Kommentare und zusätzlichen Informationen, die im Rahmen dieser öffentlichen Konsultation eingehen, werden von den beiden zuständigen wissenschaftlichen Ausschüssen der ECHA (Ausschuss für Risikobewertung – RAC, Ausschuss für sozioökonomische Analyse – SEAC) bei der Erarbeitung Ihrer Stellungnahmen zu dem Beschränkungsvorschlag berücksichtigt. Die Stellungnahmen der beiden Ausschüsse zu der vorgeschlagenen Beschränkung werden dann voraussichtlich im Dezember 2023 veröffentlicht und bilden die Grundlage der endgültigen Entscheidung der Europäischen Kommission über die Beschränkung. Der endgültige, rechtskräftige Beschränkungstext wird dann im Anhang XVII der REACH Verordnung veröffentlicht.
Origin | Count |
---|---|
Bund | 173 |
Kommune | 2 |
Land | 78 |
Zivilgesellschaft | 1 |
Type | Count |
---|---|
Chemische Verbindung | 28 |
Ereignis | 6 |
Förderprogramm | 73 |
Messwerte | 71 |
Text | 46 |
Umweltprüfung | 1 |
unbekannt | 26 |
License | Count |
---|---|
geschlossen | 103 |
offen | 145 |
unbekannt | 3 |
Language | Count |
---|---|
Deutsch | 211 |
Englisch | 60 |
Resource type | Count |
---|---|
Archiv | 69 |
Bild | 3 |
Datei | 11 |
Dokument | 29 |
Keine | 113 |
Webseite | 119 |
Topic | Count |
---|---|
Boden | 174 |
Lebewesen & Lebensräume | 209 |
Luft | 166 |
Mensch & Umwelt | 251 |
Wasser | 178 |
Weitere | 207 |