Blüten- und Knolleninduktion werden in Kartoffelpflanzen (Solanum tuberosum) von nahezu identischen Signalwegen gesteuert. Da die Kartoffelpflanze als Ertragspflanze und der Knollenertrag weltweit immer mehr an Bedeutung gewinnt, ist die Identifikation ertrags- und qualitätssteigernder Faktoren von größtem Interesse. Im Rahmen des vorliegenden Antrags planen wir die Identifizierung und Charakterisierung der an der Blühinduktion und Knolleninduktion beteiligten Signaltransduktionswege auf molekularer Ebene. Blühinduktion und Knollenbildung stellen multifaktoriell gesteuerte Entwicklungsprozesse dar, die sowohl durch endogene, als auch durch exogene Parameter beeinflusst werden. Uns interessieren dabei u.a. Integrationsstellen, an denen diese Signalwege mit dem Metabolismus der Pflanze koordiniert werden. Das POTATO COUCH POTATO 1 (StPCP1) Protein ist ein Transkriptionsfaktor der IDD Familie. StPCP1 RNAi Pflanzen zeigen Veränderungen im Blühzeitpunkt und des Knollenertrags. Erste Ergebnisse aus quantitativen real-time PCR Experimenten deuten darauf hin, dass StPCP1 in die Regulation der Expression von Zuckertransportern involviert ist, was erklärt wie StPCP1 maßgeblich den Kohlenhydrathaushalt der Pflanze beeinflussen kann. Einige phloem-mobile Faktoren könnten die Funktion eines Botenstoffes erfüllen, der den Zuckerstatus der Sourceblätter an die Sinkorgane wie z.B. das Apikalmeristem und die Stolonspitzen weiterleitet. Wir planen, diese putativen phloem-mobilen Substanzen in Kartoffel zu untersuchen. Diese sind im Speziellen: Trehalose 6-Phosphat, miR156 und miR172 sowie deren Zielgene und -transkripte. Vorarbeiten weisen darauf hin, dass ähnlich wie es für Arabidopsis gezeigt werden konnte, der Zuckerstatus in den Blättern mit einer veränderten Expression bzw. Bildung dieser mutmaßlichen Signalmoleküle einhergeht. Wir werden weiterhin die regulatorischen Eigenschaften von StPCP1 und die Expression seiner Zielgene untersuchen. Das betrifft im Besonderen die direkte Regulation von Zuckertransportergenen (z.B. StSUT4) und die Identifizierung unbekannter Zielgene durch die Bindung der bekannten ID1 Bindedomäne. Gleichzeitig wollen wir bisher offene Fragen hinsichtlich der Interaktion bekannter Signalwege, die den Blühzeitpunkt und die Knollenbildung in Kartoffelpflanzen beeinflussen, beantworten, da im Speziellen der photoperiodische, der T6P- und der GA-Signalweg von StPCP1 gleichermaßen betroffen zu sein scheinen.
Weltweit wird mit Anstieg der Temperaturen und abnehmendem Wasserangebot gerechnet, was Depressionen in der Pflanzenproduktivität zur Folge hat. Im Feld treten beide Stressoren gleichzeitig auf, jedoch ist über ihren kombinierten Einfluss auf Pflanzen bisher wenig bekannt. Das Kornertragspotential von Weizen, einer relativ Hitze-empfindlichen Pflanze, wird durch drei Parameter bestimmt: Anzahl ährentragender Halme pro Pflanze bzw. pro Fläche, Kornzahl pro Ähre und Einzelkorngewicht. Diese Parameter werden zu den folgenden Wachstumsstadien spezifisch beeinflusst: Bestockung, Schossen, Blüte und Kornfüllung. Somit müssen verschiedene Phasen der Weizenentwicklung untersucht werden, um die entscheidenden Determinanten für die Kornertragsbildung unter Stress zu identifizieren. Bisher konzentrierten sich die meisten Studien auf die Kornfüllungsphase, Untersuchungen zu einzelnen und insbesondere kombinierten Effekten von Hitze- und Trockenstress während des vegetativen Wachstums und zur Blüte sind rar. Unsere vorausgegangene Studie zeigte, dass unter kontinuierlichem Hitzestress die Anzahl an ährentragenden Halmen pro Weizenpflanze stark zunahm. Dieses Potential zur Ertragsstabilisierung konnte nur teilweise ausgeschöpft werden, da der Kornansatz stark reduziert war. Die angelegten Körner zeigten jedoch eine gute Kornfüllung. Source-Limitierung trat nicht auf, aber die Sinkkapazität war reduziert (weniger und kleinere Körner) und vermutlich auch die Sinkaktivität. Dies erfordert weitere Untersuchungen der beteiligten Enzyme, insbesondere der Sauren Invertase, der Plasmalemma H+-ATPase, und der Stärke-Synthase. Im beantragten Projekt wird individueller oder kombinierter Hitze- und Trockenstress zu zwei Weizensorten entweder während des vegetativen Wachstums, zur Blüte oder während der Kornfüllung appliziert. Außerdem werden die Einflüsse von kurzzeitigem Trockenstress während des vegetativen Wachstums auf die Kornertragsentwicklung von während der Blüte gestressten Pflanzen untersucht, und die Fähigkeit der Weizenpflanzen sich nach Stress zu erholen wird ausgewertet. Source- und Sinkstärke werden durch die Untersuchung zahlreicher Parameter charakterisiert, entweder durch Messungen an lebenden Pflanzen oder durch Analysen verschiedener Pflanzenorgane, die in Ernten zum Stadium der Kornfüllung oder zur Vollreife gewonnen werden. Dieses Projekt adressiert die wichtige Frage: welches ist der limitierende Faktor für die Kornertragsbildung, wenn Pflanzen während verschiedener Wachstumsstadien Stress ausgesetzt sind. Diese Kenntnis trägt dazu bei, Merkmale der Resistenz gegen Hitze bzw. Dürre zu identifizieren und kann in Züchtungsprogrammen zur Erhöhung der Ertragsstabilität unter Stress genutzt werden. Die Wasser- und Nährstoffnutzungseffizienzen können verbessert werden, was dem Schutz begrenzter Ressourcen dient und eine nachhaltige Weizenproduktion fördert.
Das übergreifende Ziel von TopoPro besteht in der Qualifizierung turbulenzauflösender Vorhersagemethoden auf Basis von LES (Large-Eddy Simulation) zur verbesserten Standortanalyse und -bewertung für komplexe Topografien und der Vorbereitung der Industrialisierung dieser Methoden. Um eine zukünftige breite industrielle Nutzung zu ermöglichen, wird hierbei auf das PALM Modellsystem, einem der weltweit führenden Open Source LES-Codes für die Simulation der atmosphärischen Grenzschicht zurückgegriffen. Durch Einbettung des Anlagen-Simulationswerkzeuges FLOWer wird gegenüber den bisher üblichen sequenziellen Kopplungen eine genauere Berechnung von Anlagenleistung und -belastung im komplexen Gelände ermöglicht. Die Turbulenzeigenschaften im komplexen Gelände werden mit Hilfe einer neuen Drohnen-basierten Schwarmflugtechnik detaillierter als bisher möglich charakterisiert, wobei die Ergebnisse zur strömungsphysikalischen Analyse der atmosphärischen Grenzschicht und zur Validierung der turbulenzauflösenden Simulationen genutzt werden sollen. Der Fortschritt gegenüber dem aktuellen Stand der Technik bei der Standortanalyse soll durch PALM-Analysen kritischer, realer Projekte an komplexen Standorten und bewertender Gegenüberstellung zu Projektergebnissen demonstriert werden. Das Teilvorhaben hat das Ziel das PALM Modellsystem für die industrielle Anwendung vorzubereiten und zu optimieren und damit die Grundlage für eine verbesserten Standortbewertung und Ertragsprognose basierend auf moderner turbulenzauflösender Technik zu schaffen.