API src

Found 39 results.

Related terms

Ecotoxicology of Organotin compounds

Das Projekt "Ecotoxicology of Organotin compounds" wird/wurde ausgeführt durch: Universität Frankfurt am Main, Institut für Ökologie, Evolution und Diversität, Abteilung Aquatische Ökotoxikologie.Organotin and especially butyltin compounds are used for a variety of applications, e.g. as biocides, stabilizers, catalysts and intermediates in chemical syntheses. Tributyltin (TBT) compounds exhibit the greatest toxicity of all organotins and have even been characterized as one of the most toxic groups of xenobiotics ever produced and deliberately introduced into the environment. TBT is not only used as an active biocidal compound in antifouling paints, which are designed to prevent marine and freshwater biota from settlement on ship hulls, harbour and offshore installations, but also as a biocide in wood preservatives, textiles, dispersion paints and agricultural pesticides. Additionally, it occurs as a by-product of mono- (MBT) and dibutyltin (DBT) compounds, which are used as UV stabilizer in many plastics and for other applications. Triphenyltin (TPT) compounds are also used as the active biocide in antifouling paints outside Europe and furthermore as an agricultural fungicide since the early 1960s to combat a range of fungal diseases in various crops, particularly potato blight, leaf spot and powdery mildew on sugar beet, peanuts and celery, other fungi on hop, brown rust on beans, grey moulds on onions, rice blast and coffee leaf rust. Although the use of TBT and TPT was regulated in many countries world-wide from restrictions for certain applications to a total ban, these compounds are still present in the environment. In the early 1970s the impact of TBT on nontarget organisms became apparent. Among the broad variety of malformations caused by TBT in aquatic animals, molluscs have been found to be an extremely sensitive group of invertebrates and no other pathological condition produced by TBT at relative low concentrations rivals that of the imposex phenomenon in prosobranch gastropods speaking in terms of sensitivity. TBT induces imposex in marine prosobranchs at concentrations as low as 0,5 ng TBT-Sn/L. Since 1993, for the littorinid snail Littorina littorea a second virilisation phenomenon, termed intersex, is known. In female specimens affected by intersex the pallial oviduct is transformed of towards a male morphology with a final supplanting of female organs by the corresponding male formations. Imposex and intersex are morphological alterations caused by a chronic exposure to ultra-trace concentrations of TBT. A biological effect monitoring offers the possibility to determine the degree of contamination with organotin compounds in the aquatic environment and especially in coastal waters without using any expensive analytical methods. Furthermore, the biological effect monitoring allows an assessment of the existing TBT pollution on the basis of biological effects. Such results are normally more relevant for the ecosystem than pure analytical data. usw.

Pflanzenzüchtungsforschung für die Bioökonomie 2022: Priming für eine verstärkte Abwehr als eine Strategie zur Optimierung der Resistenz und ein mögliches Zuchtziel (PrimedPlant-3), Teilprojekt A

Das Projekt "Pflanzenzüchtungsforschung für die Bioökonomie 2022: Priming für eine verstärkte Abwehr als eine Strategie zur Optimierung der Resistenz und ein mögliches Zuchtziel (PrimedPlant-3), Teilprojekt A" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung.

Pflanzenzüchtungsforschung für die Bioökonomie 2022: Priming für eine verstärkte Abwehr als eine Strategie zur Optimierung der Resistenz und ein mögliches Zuchtziel (PrimedPlant-3), Teilprojekt C

Das Projekt "Pflanzenzüchtungsforschung für die Bioökonomie 2022: Priming für eine verstärkte Abwehr als eine Strategie zur Optimierung der Resistenz und ein mögliches Zuchtziel (PrimedPlant-3), Teilprojekt C" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Julius Kühn-Institut, Bundesforschungsinstitut für Kulturpflanzen, Institut für Resistenzforschung und Stresstoleranz.

Pflanzenzüchtungsforschung für die Bioökonomie 2022: Priming für eine verstärkte Abwehr als eine Strategie zur Optimierung der Resistenz und ein mögliches Zuchtziel (PrimedPlant-3), Teilprojekt B

Das Projekt "Pflanzenzüchtungsforschung für die Bioökonomie 2022: Priming für eine verstärkte Abwehr als eine Strategie zur Optimierung der Resistenz und ein mögliches Zuchtziel (PrimedPlant-3), Teilprojekt B" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Julius Kühn-Institut Bundesforschungsinstitut für Kulturpflanzen (JKI) - Institut für Epidemiologie und Pathogendiagnostik.

Pflanzenzüchtungsforschung für die Bioökonomie 2022: Priming für eine verstärkte Abwehr als eine Strategie zur Optimierung der Resistenz und ein mögliches Zuchtziel (PrimedPlant-3)

Das Projekt "Pflanzenzüchtungsforschung für die Bioökonomie 2022: Priming für eine verstärkte Abwehr als eine Strategie zur Optimierung der Resistenz und ein mögliches Zuchtziel (PrimedPlant-3)" wird/wurde ausgeführt durch: Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung.

Einsatz resistenter Sorten zur Kontrolle von Cercospora beticola im integrierten Pflanzenschutz zur Sicherung der Ertragsstabilität bei Zuckerrüben für die Biogasproduktion

Das Projekt "Einsatz resistenter Sorten zur Kontrolle von Cercospora beticola im integrierten Pflanzenschutz zur Sicherung der Ertragsstabilität bei Zuckerrüben für die Biogasproduktion" wird/wurde gefördert durch: Bundesministerium für Ernährung und Landwirtschaft. Es wird/wurde ausgeführt durch: Verein der Zuckerindustrie e.V., Institut für Zuckerrübenforschung.

Spore dispersal patterns of the ascomycete fungus Ramularia collo-cygni and their influence on disease epidemics

Ramularia leaf spot is a major economic disease of barley caused by the dothidiomycete fungus Ramularia collo-cygni. The fungus has a complex life cycle which includes extensive late season spore release events and a seed-borne phase. Predicting disease epidemics during the growing season remains a difficult challenge. To better understand the interaction between spore movement and disease epidemics, spore samplers were set up in Germany (two sites over 4 years), Poland (seven sites over 2 years) and the UK (two sites over 9 years), where the disease has been observed. Spore concentrations were determined using a real time PCR assay, and meteorological data were obtained from co-located automatic stations. Spore release events were seen to peak in June on mainland Europe and July in the UK. The pattern of spore release was broadly similar across countries with earlier peaks in mainland Europe. A relationship was observed in the UK between July spore levels and disease in following winter barley crops. Rainfall and temperature were proposed as significant drivers of spore release in these months. The major environmental parameter associated with spore release across the two UK sites was crop surface wetness, although some site-specific interactions were noted for rainfall and wind movement. Regression analysis of spore patterns and disease epidemics indicates a relationship between spore levels 75â€Ì105 days pre harvest and final disease levels in UK winter barley crops. This relationship was not observed in spring barley. The implications on risk forecasts are discussed.

Ramularia leaf spot disease of barley is highly host genotype-dependent and suppressed by continuous drought stress in the field

Since the 1980s, Ramularia leaf spot (RLS) is an emerging barley disease worldwide. The control of RLS is increasingly aggravated by a recent decline in fungicide efficacy and a lack of RLS-resistant cultivars. Furthermore, climate change increases drought periods in Europe, enhances variable weather conditions, and thus will have an impact on severity of plant diseases. Hence, identification of RLS-resistant cultivars and understanding of disease progression under abiotic stress are important aims in integrated disease management under climate change. In the present study, we evaluated quantitative RLS resistance of 15 spring barley genotypes under drought, controlled irrigation and field conditions between 2016 and 2019 and monitored microclimatic conditions within the canopy. We identified genotypes that show robust quantitative resistance to RLS in different field environments. Our findings suggest that long-lasting drought periods create unfavourable conditions for the disease and supports that the extent and duration of leaf wetness is a key factor for RLS epidemics. © The Author(s) 2021

Ramularia leaf spot disease of barley is highly host genotype-dependent and suppressed by continuous drought stress in the field

Since the 1980s, Ramularia leaf spot (RLS) is an emerging barley disease worldwide. The control of RLS is increasingly aggravated by a recent decline in fungicide efficacy and a lack of RLS-resistant cultivars. Furthermore, climate change increases drought periods in Europe, enhances variable weather conditions, and thus will have an impact on severity of plant diseases. Hence, identification of RLS-resistant cultivars and understanding of disease progression under abiotic stress are important aims in integrated disease management under climate change. In the present study, we evaluated quantitative RLS resistance of 15 spring barley genotypes under drought, controlled irrigation and field conditions between 2016 and 2019 and monitored microclimatic conditions within the canopy. We identified genotypes that show robust quantitative resistance to RLS in different field environments. Our findings suggest that long-lasting drought periods create unfavourable conditions for the disease and supports that the extent and duration of leaf wetness is a key factor for RLS epidemics. © The Author(s) 2020

Pflanzenzüchtungsforschung: IdeMoDeResBar: Identifikation, Modifikation und Nutzung von Resistenzen gegen bedeutende Pathogene der Gerste, Teilprojekt A

Das Projekt "Pflanzenzüchtungsforschung: IdeMoDeResBar: Identifikation, Modifikation und Nutzung von Resistenzen gegen bedeutende Pathogene der Gerste, Teilprojekt A" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Saaten-Union Biotec GmbH.Das Hauptziel des Projektes IdeMoDeResBar ist die Aufrechterhaltung von Ertragsstabilität und Qualität der Gerste-Ernte, die durch verschiedene Schaderreger negativ beeinflusst werden kann. Dieses Ziel soll erreicht werden durch (i) die Identifikation und Isolierung bisher unbekannter Resistenzgene, welche die Ausprägung von Abwehrmechanismen gegen wichtige Pflanzenpathogene Pilze und Viren regulieren, (ii) durch die Erzeugung neuer Allele anhand von Geneditierung an zwei bereits charakterisierten Reistenzgenen sowie (iii) die Nutzung dieser Gene bzw. Allele in der praktischen Züchtung durch die Anwendung entsprechender molekularer Markertechnologien. Die einzelnen Projektteile werden von den unterschiedlichen Institutionen durchgeführt, die über eine ausgesprochene Expertise auf ihrem jeweiligen Fachgebiet verfügen. Das Projekt wird langfristig zu einem besseren Verständnis der zugrundeliegenden Resistenzmechanismen gegen Gelbmosaikviren, Zwergrost (Puccinia hordei), Rhynchosporium commune, dem Erreger der Blattfleckenkrankheit sowie Pyrenophora teres f. teres Drechsler, dem Erreger der Blattfleckenkrankheit beitragen. Auf dieser Grundlage können Maßnahmen entwickelt werden, die eine effektive Bekämpfung der entsprechenden Pathogene ermöglichen und so langfristig einen nachhaltigen Gerstenanbau gewährleisten und Ernteverluste minimieren.

1 2 3 4