API src

Found 72 results.

Gewitteraktivität im alpinen Raum

Innerhalb des letzten Jahrzehnts gewannen Daten von Blitzortungssystemen (kurz: Blitzdaten) zunehmend an Bedeutung in der Meteorologie. Die Gründe sind: a) Es besteht eine hohe Korrelation zwischen Blitzraten und anderen physikalischen Eigenschaften des konvektiven Systems, b) Blitze sind die einzige Datenquelle, welche kontinuierlich erfassbar ist. Damit eignen sie sich ausgezeichnet zur Verwendung in Nowcasting - Bereich, c) bevorzugte Gebiete der Entstehung, der Zugbahn und der Auflösung von Gewittern können aus einem klimatologischen Satz von Blitzdaten abgeleitet werden. Die Untersuchung von orographisch induzierten Niederschlag unter Einbeziehung hochreichender Konvektion ist eines der primären wissenschaftlichen Ziele vom Mesoscale Alpine Programme (MAP). Dieser Projektantrag bezieht sich auf diese Fragestellung. Die Blitzdaten werden herangezogen a) zur Untersuchung der Korrelation zwischen Blitzdaten und anderen mikrophysikalischen Eigenschaften einer Gewitterwolke, b) zur Überprüfung der Verwendbarkeit von Blitzdaten für den Nowcasting-Bereich solcher Ereignisse und c) um einen möglichen Zusammenhang zwischen Blitzdaten und Orographie, orographisch beeinflussten Niederschlag und Föhn zu finden. Die Ziele a) - c) wurden bereits über flachen Terrain und den tropischen Ozeanen untersucht. Die gemeinsame internationale Bemühung die mikrophysikalischen, dynamischen und thermodynamischen Eigenschaften von konvektiven Systemen mit hochentwickelten Messsystemen zu untersuchen, wird zu einem tiefergehenden Verständnis der Prozesse auch im alpinen Gelände führen. Es ist jedoch zu berücksichtigen, daß die meisten Studien dieser Art in Mitteleuropa unter der Tatsache litten, dass die Blitzortungssysteme für nationale Zwecke entwickelt wurden. Es kann als weiteres Projektziel angeführt werden, daß für eine sogenannte Special Observing Period (SOP) im Rahmen des MAP Projektes, die in den einzelnen Ländern des Alpenraumes bereits vorhandenen Ortungssensoren zu einem großräumigen Ortungssystem, das den gesamten Alpenraum abdeckt, zusammengeschlossen werden. Eine direkte Zusammenführung der einzelnen nationalen Daten ist nicht möglich, da einerseits verschiedene Technologien bei den Sensoren verwendet werden und andererseits gerade der Alpenraum von den keinem der existierenden Systeme annähernd überdeckt wird.

Integrierte hochkapazitive Festkörper-Li-Ionen-Batterie, Teilvorhaben: Anodenherstellung, Konzeption und Verwertungskonzept

Integrierte hochkapazitive Festkörper-Li-Ionen-Batterie, Teilvorhaben: Charakterisierung von Festkörper-Li-Ionen-Batterien

Untersuchung der Bedingungen zum Auftreten von Blitzen während vulkanischer Eruptionen

Vulkanische Eruptionen faszinieren die Menschen seit jeher, insbesondere wenn sie mit spektakulären Blitzen in Eruptionswolken einhergehen. Dieses Phänomen wurde erstmals durch Plinius den Jüngeren bei der 79 AD Eruption des Vesuvs beschrieben und heutzutage gibt es zahlreiche ausgezeichnete Fotos von Blitzen während vulkanischer Eruptionen. Das verstärkte wissenschaftliche Interesse beruht darauf, dass Blitze relativ einfach mittels Antennen zu registrieren sind und so u.U. als Mitigationswerkzeug und zur Abschätzung der Eruptionsgröße genutzt werden könnten. Zudem legen die Miller-Ureys Experimente nahe, dass Blitze in Vulkaneruptionen die Transformation der aus vulkanischen Gasen bestehenden primordialen Atmosphäre in komplexe organische Verbindungen begünstigt haben können.Bisher sind dedizierte Modelle zur Erklärung der Blitze in vulkanischen Eruptionen jedoch nach wie vor selten. Verschiedene elektrostatische Prozesse wie Triboelektrifikation und bruchinduzierte Ladungstrennung wurden zwar schon genauer untersucht, aber in vielen Modellen wird die Eruptionswolke hinsichtlich der Blitzentstehung immer noch mit einer dreckigen Gewitterwolke verglichen, obwohl die Gemeinsamkeiten beider Wolken eher klein sind. Mittels dieses Antrags soll die Entstehung von Blitzen in Eruptionswolken durch eine neuartige Kombination von Geländemessungen, Laborexperimenten und begleitenden numerischen Modellen untersucht werden. Bei den Geländemessungen kommen Doppler Radar, Hochgeschwindigkeitsvideos, Messungen des elektrischen Feldes sowie seismische und akustische Messungen zum Einsatz, um die auftretenden Blitze eindeutig physikalischen Bedingungen in der Eruptionswolke zuzuordnen. Diese Messungen sollen am Vulkan Sakurajima in Japan durchgeführt werden, der für seine häufigen vulkanischen Eruptionen sowie das Auftreten von Blitzen bekannt ist. Die Geländedaten dokumentieren die prä-eruptiven Bedingungen, die Eruptionsgeschwindigkeiten vor und während der Blitze, die Positionen der Blitze und dazugehörige elektrische Felder, sowie Korngrößenverteilungen der Asche. Diese Daten werden durch detaillierte Laborversuche in sog. Shock tubes ergänzt, in denen sowohl natürlich als auch synthetisch hergestellte Asche verwendet wird. Untersucht werden u.a. die elektrischen Eigenschaften der Asche und der Zusammenhang zwischen den Versuchsbedingungen und dem Auftreten von Blitzen. Letztlich werden wir ein bestehendes Eruptionssäulenmodell um die Berücksichtigung der elektrischen Eigenschaften der Aschepartikel erweitern. Hiermit sollen unsere Modellvorstellungen zur Entstehung von Blitzen untersucht werden, insbesondere warum einige Eruptionen keine Blitze aufweisen während sich andere durch heftige Blitztätigkeit auszeichnen. Unsere Gelände- und Labordaten zusammen mit den numerischen Modellen werden die Bedingungen zum Auftreten vulkanischer Blitze klar eingrenzen und somit wird sich auch abschätzen lassen, inwieweit Blitze als Warnsystem genutzt werden können.

Quantifizierung der Auswirkungen von Blitzschlägen auf die Dynamik und Kohlenstoffspeicherung von Wäldern mithilfe eines dynamischen globalen Vegetationsmodells

Blitze stellen einen bedeutenden, jedoch oft unbeachteten Störfaktor in Waldökosystemen dar, deren potenzielle Auswirkungen derzeit unterschätzt werden. Jüngste Forschungen in einem tropischen Wald in Panama haben ergeben, dass jeder Blitzschlag durchschnittlich zum Tod von 3,5 Bäumen führt und dass Blitze für über 40% der Mortalität großer Bäume verantwortlich sind. Angesichts einer erwarteten Zunahme der Blitzaktivitäten in einem wärmeren Klima wird die durch Blitze verursachte Baummortalität die Walddynamik in Zukunft voraussichtlich noch stärker beeinflussen. Aktuelle dynamische globale Vegetationsmodelle berücksichtigen jedoch keine Blitzschäden an Bäumen. Dies könnte zu erheblichen Verzerrungen bei der simulierten Waldstruktur, Zusammensetzung, Kohlenstoffspeicherung und Ökosystemdienstleistungen unter heutigen und zukünftigen Umweltbedingungen führen. Dieses Projekt zielt darauf ab, diese Forschungslücke zu schließen, indem blitzbedingte Baummortalität in das etablierte dynamische globale Vegetationsmodell LPJ-GUESS implementiert wird. Ich werde die blitzbedingte Mortalität basierend auf der lokalen Blitzhäufigkeit, Baumdurchmessern und Baumdichte berechnen und dabei berücksichtigen, dass die Mortalität pro Einschlag für große, eng beieinanderstehende Bäume am höchsten ist. Nach erfolgreicher lokaler Evaluierung werde ich globale Simulationen durchführen, um Einblicke darüber zu gewinnen, wie Blitze Waldökosysteme in verschiedenen Regionen prägen und um die Bedeutung von blitzbedingter Baummortalität im Vergleich zu anderen Absterbeursachen abzuschätzen. Darüber hinaus werde ich zukünftige Simulationen durchführen, die von Projektionen des Klimawandels sowie Änderungen in der Blitzhäufigkeit angetrieben werden, um das Fortbestehen der Waldkohlenstoffsenke unter globalen Umweltveränderungen zu untersuchen. Schließlich wird die Darstellung von Blitzen in LPJ-GUESS es mir auch ermöglichen, deren indirekten Auswirkungen auf die Vegetation zu untersuchen, indem sie andere Störungen wie Waldbrände, Insektenausbrüche oder Windwürfe begünstigen. Das übergeordnete Ziel des Projekts besteht darin, die Bedeutung von blitzbedingter Baummortalität in Waldökosystemen zu bewerten und die ökologischen Risiken und Auswirkungen, die mit einer zunehmenden Blitzhäufigkeit einhergehen, abzuschätzen. Letztendlich wird die Integration blitzbedingter Mortalität in LPJ-GUESS zu verlässlicheren Simulationen der Kohlenstoffspeicherung von Wäldern führen und somit wertvolle Erkenntnisse für fundierte Entscheidungen in Bezug auf Landnutzungsstrategien zum Klimaschutz, Naturschutz und Anpassung liefern.

Auf dem Weg zu einem besseren DMS-Oxidationsmechanismus (ADOniS)

Wechselwirkungen zwischen dem Ozean und der Troposphäre sind für viele Prozesse in beiden Systemen wichtig. Ein Schlüsselprozess stellt der Austausch von Spurengasen zwischen der Atmosphäre und dem Ozean dar. Die Emission von Dimethylsulfid (DMS) stellt die größte natürliche Quelle für reduzierten Schwefel in die Atmosphäre dar. Dort kann DMS zu Schwefeldioxid, Schwefelsäure oder Methansulfonsäure oxidiert werden. Diese Verbindungen sind wichtige Vorläufersubstanzen für sekundäre Aerosole, die den natürlichen Strahlungshaushalt und die Wolkenbildung beeinflussen können. Die chemische Prozessierung, d.h. die sekundäre Bildung und Oxidation von DMS-Oxidationsprodukten, ist jedoch noch immer schlecht verstanden. Daher ist die Implementierung in aktuelle Multiphasenchemiemechanismen und Klimamodellen begrenzt, wodurch die aktuellen Vorhersagen noch sehr unsicher sind. Um die bestehenden Lücken in unserem Verständnis der DMS-Multiphasenchemie weiter zu schließen, zielt das Projekt ADOniS darauf ab, (i) fortgeschrittene Laboruntersuchungen zur Gas- und Flüssigphasenchemie von DMS-Oxidationsprodukten durchzuführen, (ii) ein fortgeschrittenes Multiphasen-DMS-Chemiemodul zu entwickeln und (iii) Prozess- und 3D-Modelluntersuchungen durchzuführen. Die vorgeschlagenen detaillierten Laboruntersuchungen konzentrieren sich auf die OH-Oxidation von Gasphasenprodukten der ersten Generation, Hydroperoxymethylthioformat (HPMTF) und Dimethylsulfoxid (DMSO), sowie auf die Bildung von DMS-Oxidationsprodukten der zweiten Generation. Die detaillierten mechanistischen Untersuchungen werden mit einem Freistrahl-Strömungsreaktor durchgeführt. Weitere kinetische und mechanistische Untersuchungen werden sich auf die Chemie von DMS-Oxidationsprodukten in der wässrigen Phase konzentrieren. OH Radikalreaktionen von HPMTF-Surrogaten werden mit Hilfe eines Laser Flash Photolysis - Long Path Absorption (LFP-LPA) Systems untersucht. Weiterhin wird die Oxidation von MSA/MS- durch OH(aq) und die Oxidation von MSIA/MSI- durch O3(aq) in wässriger Phase untersucht. Ferner soll die Aufnahme von wichtigen DMS-Oxidationsprodukten an verschiedenen Aerosolpartikeln durch Kammerstudien untersucht werden. Die Bildung von DMS-Oxidationsprodukten in der Gasphase und deren Aufnahme auf injizierten Aerosolpartikeln wird mit einem CI-APi-TOF Massenspektrometer gemessen. Basierend auf den Ergebnissen der Laborstudien wird ein fortschrittliches DMS-Reaktionsmodul entwickelt und anschließend im Multiphasenchemiemodell SPACCIM für detaillierte Prozessstudien eingesetzt. Die gewonnenen Erkenntnisse über die wichtigsten DMS-Oxidationswege werden dann die Grundlage für eine aktualisierte Behandlung DMS in globalen Klimachemiemodellen (CCMs), hier ECHAM-HAMMOZ, bilden. Schließlich werden Simulationen mit ECHAM-HAMMOZ die Auswirkungen des verbesserten DMS-Mechanismus auf die globale atmosphärische DMS-Chemie untersuchen und die Auswirkungen auf das Klima und die zukünftige Sensitivität bewerten.

Sat-BEWL - Satellitengestützte Beobachtung der Entkopplung von Wirtschaftsaktivität und Luftverschmutzung

Integrierte hochkapazitive Festkörper-Li-Ionen-Batterie

Entwicklung eines Verfahrens zur Erzeugung künstlicher Blitzschäden sowie der Entwicklung von Verfahren und Methoden zur Detektion, Lokalisierung und Bewertung von Blitzschäden, Teilvorhaben: Restlebensdaueranalyse nach Initialschäden mittels globalem Strukturüberwachungssystem

7 Schmalband-Atmospherics a.t.B.-Registrierung (keine Blitze) der horizontal und vertikal polarisierten Luftmassenbewegungen; Atmospherics a.t.B.-Wirkungsgroesse auf biologische und medizinische Systeme

Die Meteorologie kennt zur Darstellung biotroper Wettervorgaenge nur die Trivialparameter Temperatur und Feuchte der freien Atmosphaere (Toelzer Schema), die jedoch in umbauten Raeumen wie z.B. Wohnungen auch bei Vollklimatisierung und elektrischer Abschirmung nicht wirken und ausserdem die erwiesene Wettervorfuehligkeit nicht erklaeren koennen. Der derzeit einzige bekannte Parameter, der aufgrund der Wellenlaenge in alle umbauten Raeume eindringen kann sind die Atmospherics (Sferics) der natuerlichen elektromagnetischen Impulsstrahlung der Atmosphaere (AIS) im Einzugsbereich bis maximal 500 km, aber nicht die Gewitterblitze. Es wurden bis heute rund 7 860 000 Sferics-Messzyklen registriert und bearbeitet und dies gestattet folgende Aussage: Wesentlichst ist, dass die biotrope Wirkung dieser Sferics-Frequenzbaender (oder Wechselfelder) nur dann vorhanden ist, wenn die Huellkurve dieser Impulse der Zeitbasis biologischer Systeme entspricht. Als Zeitbasis zu verstehen ist z.B. die Refraktaerzeit der Synapsen, die Reaktionsgeschwindigkeit der Ionen des elektrostatischen Grundtonus der Extrazellulaerfluessigkeit oder das Membranverhalten der Astrozyten. So einfach, wie allgemein ueber das Problem referiert wird, ist es wahrlich nicht.

1 2 3 4 5 6 7 8