API src

Found 1649 results.

Related terms

Standardisiertes Monitoring von Wachstumsreaktionen wichtiger Waldbaumarten auf klimatische Extremereignisse, Teilvorhaben 4: Klima-Wachstumsbeziehungen, Wasserspeicher ungesättigte Zone und Grundwassereinfluss

Hauptziel von TV4 ist die Untersuchung verschiedener Hauptbaumarten in Bezug auf ihre Reaktion auf klimatische Extremereignisse. Dazu werden in Kooperation mit der RWTH Aachen durch dendrochronologische Messungen langfristige Klima-Wachstumsbeziehungen ermittelt und mit hochfrequenten physiologischen Messungen am Baum sowie Messungen der Wasserspeicheränderungen im Untergrund kombiniert. Zur Erklärung der beobachteten Reaktionsmuster werden verschiedene Standortfaktoren und Umweltparameter herangezogen. Dabei werden Klima, Boden und Topographie genauso berücksichtigt wie die Bestandshistorie, Bestandes-Charakteristika und Managementfaktoren. Schwerpunkte bei der Analyse der Reaktionen der verschiedenen Baumarten werden in TV4 auch insbesondere in der Untersuchung des Einflusses der unterirdischen Wasserspeicher, ihrer räumlichen Variabilität und Dynamik liegen. Ein Arbeitspaket befasst sich hier mit dem Einfluss des Grundwasserflurabstandes auf Wachstum und Stressreaktionen der Baumarten. Dazu eignet sich das Untersuchungsgebiet im Müritz Nationalpark besonders, da hier auf geringen Distanzen sehr unterschiedliche Flurabstände auftreten. Zusätzlich ermöglicht das experimentelle Design auch den Vergleich verschiedener grundwasserferner Standorte um den Effekt des Baumbestandes, d.h. Reinbestand gegenüber Mischbestand genauer zu untersuchen. Unterstützend wird die Tiefenverteilung der Wurzelwasseraufnahme aus der Dynamik der Bodenfeuchtedaten ermittelt. An Standorten mit intensiver Instrumentierung zur Bodenfeuchte und Saugspannung werden die räumlichen Verteilungen der Bodenfeuchte (lateral und vertikal) im Kontext der Waldbestände ausgewertet. Diese dynamischen räumlichen Muster werden den hochaufgelösten Wachstums- und Stressreaktionen der Bäume gegenübergestellt. Die direkte Gegenüberstellung sowie die lokalen meteorologischen Beobachtungen ermöglichen dann die Ermittlung von kombinierten hydropedo- und hydrometeorologischen Schwellenwerten der Stressreaktion.

Reduktion der Treibhausgas-Emissionen in konservierenden Ackerbausystemen durch das Ausstreuen von Zwischenfrüchten und Untersaaten mit einem Unmanned Aerial Vehicle (UAV) und die teilschlagspezifische Saatbettbereitung, Teilprojekt B

Niedersächsischer Bodenfeuchteinformationsdienst - Tagesaktueller Wassergehalt der Böden in Niedersachsen in % der nutzbaren Feldkapazität (%nFK) (WFS Dienst)

Der Niedersächsische Bodenfeuchteinformationsdienst (NIBOFID) des LBEG zeigt den tagesaktuellen Wassergehalt für alle Böden in Niedersachsen. Darüber hinaus lässt sich der Verlauf des Bodenwassergehalts für die letzten 10 Tage abrufen. Die Bodenfeuchte wird in % der nutzbaren Feldkapazität (%nFK) angegeben. Die nFK beschreibt die Wassermenge, die ein Boden maximal pflanzenverfügbar speichern kann. Die Werte des Bodenfeuchtemonitors sind berechnet und nicht gemessen. Die Berechnung erfolgt mit dem Bodenwasserhaushaltsmodell BOWAB und wird täglich mit Klimakennwerten (Niederschlag, Temperatur, Wind, Globalstrahlung und relative Luftfeuchte) des Vortages durchgeführt. Es werden für die jeweilige Landnutzung (Acker, Grünland, Laubwald, Nadelwald, Sonstiges) und den Boden spezifisch Parametern abgeleitet. BOWAB nutzt die hochaufgelösten Bodendaten der Bodenkarte 1:50.000 (BK50) von Niedersachsen und leitetet bodenwasserhaushaltliche Kennwerte, wie nFK, FK etc. ab. Die Berechnung erfolgt für die Flächen der BK50. Der Einfluss des Grundwassers wird in Form von kapillarem Aufstieg und durch den Grundwasserstand aus der BK50 berücksichtigt. Eine Bodenfeuchte von 100 %nFK zeigt an, dass der Bodenwasserspeicher gefüllt ist. Bei Werten oberhalb von 100 % entsteht Sickerwasser oder es steht Grundwasser innerhalb der betrachteten Bodenschicht. Werte kleiner als 100 %nFK zeigen an, dass die Pflanzen Bodenwasser entnommen haben und der Boden allmählich austrocknet. Ab Bodenfeuchtewerten unterhalb von 40 - 50 %nFK reagieren Pflanzen auf die Trockenheit und verringern ihre Verdunstung. Bei Werten von < 30 % nFK kann von Trockenstress ausgegangen werden. Im Kartenbild ist die Bodenfeuchte für den Boden von 0 – 60 cm Tiefe dargestellt, der dem Hauptwurzelraum bei den meisten Böden und Nutzungsformen entspricht. Standortbezogene Informationen liefert ein Maptip. Durch das Klicken auf einen Standort wird der aktuelle Bodenwassergehalt für den Hauptwurzelraum in %nFK angezeigt. Zusätzlich können auf der Detailseite weiterführende Informationen abgerufen werden. Als Grafik wird der Verlauf der mittleren Bodenfeuchte für die vergangenen 10 Tage für die Tiefenbereiche 0 - 30 cm (Oberboden), 0 - 60 cm (Hauptwurzelraum) und, sofern der Boden mächtiger ist, 0 - 90 cm (gesamte Betrachtungstiefe) dargestellt. Zudem wird die Sickerwassermenge unterhalb von 90 cm Tiefe für den betrachteten Standort angegeben. Falls Sie noch genauere Informationen zum Wassergehalt für Ihren Boden mit einer bestimmten Anbaukultur (Weizen, Mais, Grünland) benötigen, nutzen Sie gerne die Fachanwendung „Bodenwasserhaushalt“ im NIBIS® Kartenserver. Sie bietet die Möglichkeit den Verlauf der Bodenfeuchte für einzelne oder mehrere Flächen über einen längeren Zeitraum mit verschiedenen Fruchtfolgen (z.B. 1 Jahr oder länger) zu ermitteln.

Datenbank der Bodenübersichtskarte der Bundesrepublik Deutschland 1:250.000

Die neue Datenbank der Bodenübersichtskarte 1:250.000 (BÜK250) in der Version 1.0 hat ihren Ursprung in der vorläufigen Sachdatenbank der BÜK200 (Version 0.8), die in Kooperation mit den Staatlichen Geologischen Diensten der Länder erarbeitet wurde. Sie enthält die bodenkundlichen Informationen der 2171 Legendeneinheiten der BÜK250, die über das Datenfeld GEN_ID mit den Flächen des Grafikdatensatzes der BÜK250 verbunden werden können. Sämtliche Profil- und Horizontdaten der Leit- und Begleitböden sind diesen Legendeneinheiten zugeordnet. Dementsprechend erfolgen thematische Auswertungen über die Datenfelder der entsprechenden Datenbanktabellen PROFIL und HORIZONT. Die Tabelle LEGENDENEINHEIT beinhaltet u. a. die textlichen Beschreibungen der BÜK250-Legendeneinheiten. Über zwei zusätzliche Tabellen (GL_EINHEIT, GL_BAG_FLAECHENTYP) ist die Zuordnung der Legendeneinheiten zu Generallegendeneinheiten und zu hierarchisch gegliederten Flächentypen des Bodenausgangsgesteins möglich.

openSenseMap: Sensor Box HE Janusz-Korczak-Oberschule senseBox1

Das ist eine senseBox der Humboldt Explorers. Weitere Informationen unter: www.humboldt-explorers.de

Wasserhaushalt Hamburg

Rasterkarten zum Wasserhaushalt, bzw. zur Grundwasserneubildung, berechnet mit mGROWA (FZ Jülich, 2021). Im Webdienst werden 6 Layer gezeigt: - Grundwasserneubildung des hydrolog. Jahres 2019 [Min] - Grundwasserneubildung des hydrolog. Jahres 2008 [Max] - mittlere jährliche Grundwasserneubildung (1991 - 2019) - mittlere jährliche Grundwasserneubildung (1961 - 1990, Klimareferenzperiode) - Direktabfluss Mittlere Rate (1991-2020) - Tatsächliche Verdunstung Mittlere Rate (1991-2020) Beschreibung: Etwa ein Viertel des Niederschlags gelangt in Hamburg über den Boden ins Grundwasser und bildet damit einen erheblichen Anteil unserer täglichen Wasserversorgung und ist ökologische Grundlage für die Vegetation und den Boden als Wasserspeicher. Der übrige Niederschlag wird im Wesentlichen durch Verdunstung und Abfluss ins Sielnetz und in die Gewässer bestimmt. Aktuell werden pro Jahr bei durchschnittlichen Niederschlägen (etwa 770 mm pro Jahr) 136 Millionen Kubikmeter (m³) Grundwasser auf Hamburger Gebiet neu gebildet. Im Trockenjahr 2019 waren es nur 75 Millionen m³, was sich in stark fallenden Grundwasserständen, fehlender Bodenfeuchte und sich durch teilweises Trockenfallen von Gewässern für Tier und Pflanze als Trockenstress auswirkte. Auf die Beobachtung der Entwicklung der Grundwasserneubildung kommt deshalb in Zeiten des Klimawandels besondere Bedeutung zu. Neben klimatischen Veränderungen ist deshalb ein ausgefeiltes Flächen- und Ressourcenmanagement nötig, um der wachsenden urbanen Versiegelung und dem steigenden Wasserverbrauch mit Strategien und Maßnahmen hin zu einem naturnahen Wasserhaushalt entgegenzuwirken. Datengrundlagen und Methodik: Grundlage für die Berechnung und Darstellung von flächen- und zeitlich differenzierten Rasterkarten der verschiedenen Wasserhaushaltskomponenten ist das rasterzellenbasierte Wasserhaushaltsmodell mGROWA des Forschungszentrums Jülich. In mGROWA wurden zunächst standortbezogen auf Basis der jeweiligen Niederschlagsmengen und klimatischen Einflussgrößen die tatsächliche Verdunstung und der Gesamtabfluss in täglicher Auflösung mit einer Zellengröße von 25 x 25 m berechnet. Die berechneten Tageswerte wurden nachfolgend auf langjährig, jährliche und monatliche Zeiträume aggregiert. Danach wurde der Gesamtabfluss auf Basis der Standorteigenschaften in verschiedene Abflusskomponenten aufgeteilt. In der Datenzusammenstellung sind neben den Rasterkarten der potentiellen und tatsächlichen Verdunstung, des Gesamtabflusses und der Standorteigenschaften die Rasterkarten der Abflusskomponenten urbaner Direktabfluss, Sickerwasserrate, Zwischen- und Dränageabflüsse, sowie letztendlich die Grundwasserneubildung enthalten. Im Folgenden dargestellt werden auszugsweise die Karten zum mittleren langjährigen Mittel 1961-1990 (Klimareferenzperiode) und 1991-2019, das Nassjahr 2008 mit sehr großer und das Trockenjahr 2019 mit sehr geringer Neubildung.

openSenseMap: Sensor Box HE Janusz-Korczak-Oberschule senseBox8

Das ist eine senseBox der Humboldt Explorers. Weitere Informationen unter: www.humboldt-explorers.de

Würzburger Klimabaeume - Bodenfeuchte

Im Rahmen des Smart City Projektes arbeiten Stadt Würzburg, Landkreis Würzburg und die Smart and Public GmbH an einem "Proof of Concept", in dem Sensoren unter ausgewählten, aber an unterschiedlichen Stellen in unterschiedlichen Böden gepflanzen Bäumen angebracht werden. Die Daten werden über Lorawan zusammengeführt und weiterverarbeitet. Nach einer "Betaphase" soll dem Gartenamt ein Dashboard zur Verfügung stehen, über das die Erstellung von "Gießplänen" vereinfacht wird.Erstmals wurden im November 2022 Daten gesammelt, da die Sensoren in den ersten Monaten noch (durch das Vergraben selbst) Fehlmessungen vornehmen könnten, ist vor Februar 2023 nicht mit aussagekräftigen Zahlen zu rechnen.Infos findet man u.a. in einer im Dezember 2022 erschienenen PodCast Folge: https://www.wuerzburg.de/unternehmen/smart-city/aktuelle-meldungen/538305.Neue-Podcast-Folge-zu-unserem-aktuellen-Projekt-der-Klimabaeume.html

openSenseMap: Sensor Box HE Janusz-Korczak-Oberschule senseBox6

Das ist eine senseBox der Humboldt Explorers. Weitere Informationen unter: www.humboldt-explorers.de

openSenseMap: Sensor Box HE Hermann-Gmeiner-Schule senseBox5

Das ist eine senseBox der Humboldt Explorers. Weitere Informationen unter: www.humboldt-explorers.de

1 2 3 4 5163 164 165