API src

Found 995 results.

Related terms

Bodenschutz und Altlasten

Aktuelles Bild: Janis Kreiselmeier, Thünen-Institut Boden – wertvolles Gut Der Boden gehört neben Luft und Wasser zu den natürlichen Lebensgrundlagen. Böden werden anhand ihrer Eigenschaften und Materialien in etwa 50 verschiedene Bodentypen klassifiziert. Weitere Informationen Bild: SenMVKU Die Berliner Bodenschutzkonzeption Die neue Berliner Bodenschutzkonzeption wurde auf der gesetzlichen Grundlage des Berliner Bodenschutzgesetzes aufgestellt. Der Senat hat die Berliner Bodenschutzkonzeption auf seiner Sitzung am 25. Juni 2024 beschlossen. Weitere Informationen Bild: Geoportal Berlin Das Berliner Entsiegelungsprogramm Die Senatsverwaltung für Mobilität, Verkehr, Klimaschutz und Umwelt entwickelt gemeinsam mit der gruppe F Freiraum für alle GmbH ein gesamtstädtisches Entsiegelungsprogramm für das Land Berlin. Weitere Informationen Bild: SenStadt Gefährdungen und Belastung Boden ist ein empfindliches Gut und unterliegt zahlreichen Gefährdungen und Belastungen z. B. durch Schadstoffeintrag, Verdichtung oder Versiegelung. Weitere Informationen Bild: Planungsgruppe Cassens + Siewert Vorsorgender Bodenschutz Vorsorgender Bodenschutz gegen stoffliche Belastungen heißt, die Belastungen des Bodens durch den Boden schädigende Substanzen im Voraus zu verhindern. Solche Belastungen können durch Unfälle oder unsachgemäßen Umgang mit den Stoffen und Abfällen entstehen. Weitere Informationen Bild: Tauw GmbH, Berlin Nachsorgender Bodenschutz / Altlasten Bodenverunreinigungen gefährden das Grundwasser und damit die Trinkwasserversorgung. Weitere Informationen Bild: SenMVKU Bewertungskriterien für die Beurteilung von Grundwasserverunreinigungen im Land Berlin (Berliner Liste 2025) Für die Beurteilung stofflicher Belastungen von Grundwasser im Land Berlin hat die Senatsverwaltung für Mobilität, Verkehr, Klimaschutz und Umwelt die Bewertungskriterien für die Beurteilung von Grundwasserverunreinigungen im Land Berlin (Berliner Liste 2005) überarbeitet und aktualisiert. Weitere Informationen Bild: Jezper - Depositphotos Fragen und Antworten Was muss ich als Grundstückskäufer, als Bauherr beachten? Wie kann ich als Gartenbesitzer zum Bodenschutz beitragen? Was mache ich, wenn ich Bodenverunreinigungen entdecke? Weitere Informationen Bild: Muuraa / depositphotos.com Gesetzliche Grundlagen, Zuständigkeiten im Bodenschutz Wer macht was im Bodenschutz? Wann sind die Bezirke, wann ist die Hauptverwaltung zuständig? Auf welcher gesetzlichen Grundlage wird der Boden geschützt? Weitere Informationen Der Senat hat in seiner Sitzung am 25. Juni 2024 die Berliner Bodenschutzkonzeption beschlossen. Mit der Änderung der Verordnung über die Sachverständigen und Untersuchungsstellen im Mai 2024 sind Erleichterungen bei der Zulassung von Untersuchungsstellen und bei den Anforderungen der Sachverständigen erreicht worden. Bislang ist es so, dass Untersuchungsstellen, die im Bereich des Bundes-Bodenschutzgesetzes tätig werden wollen, ein Zulassungs-/Notifizierungsverfahren durchlaufen müssen. Dieses Verfahren fällt für Untersuchungsstellen künftig weg, was zu einer erheblichen Arbeitserleichterung bei den Untersuchungsstellen führen wird. Eine Qualitätsprüfung der Untersuchungsstellen ist durch die ohnehin erforderliche Akkreditierung dennoch gewährleistet. Ferner werden erleichternde Anforderungen an die Zulassung von Sachverständigen eingeführt: nun können auch Sachverständige zur Zulassungsprüfung berücksichtigt werden, die eine „Technische Ausbildung im Bereich Umwelt“ vorweisen können oder auch „Quereinsteiger/-innen mit vergleichbaren Qualifikationen“, sofern sie eine 10-jährige praktische Tätigkeit auf dem jeweiligen Sachgebiet, für das sie zugelassen werden möchten, vorweisen können. Aktualisierung der Bewertungskriterien für die Beurteilung von Grundwasserverunreinigungen im Land Berlin ( Berliner Liste 2025 ) Newsletter Entsiegelungspotenziale Newsletter Nr. 7 zum Projekt Entsiegelungspotenziale ist online Aktualisierung der Arbeitshilfe Orientierende Kostenschätzung für Entsiegelungsmaßnahmen (Stand: Januar 2025) Aktualisierung der Eingabedatei zur Ermittlung orientierender Kostenansätze für Entsiegelungsmaßnahmen (Stand: Januar 2025) Veröffentlichung des neu erarbeiteten Datensatzes zur Bodenpunktdatenbank (BPDB) im Geoportal Berlin zu digitalen Bodenprofildaten im Bestand des Landes Berlin mit Sachstand Dezember 2024. Aktualisierung der Entsiegelungspotenziale im Umweltatlas Berlin und Geoportal Berlin mit Sachstand 2024 Aktualisierung Bodenkarten im Umweltatlas Berlin und Geoportal Berlin mit Sachstand 2020 Möglichkeit der Förderung von Entsiegelung und Wiederherstellung der Bodenfunktionen im Rahmen des Berliner Programms für Nachhaltige Entwicklung (BENE 2) Rechtsvorschriften zum Download Zuständigkeiten im Bodenschutz in Berlin

Entsiegelungspotenziale 2025

Die Inanspruchnahme von Böden durch Überbauung und Versiegelung führt zum Verlust der Bodenfunktionen mit dauerhaft negativen Folgen für die Leistungsfähigkeit des Naturhaushaltes. Böden weisen vielfältige und schützenswerte Funktionen auf: Als Lebensraum für Pflanzen und Tiere, als Speicher und Filter für das Grundwasser, als Puffer gegenüber Schadstoffen, als Basis für die Landwirtschaft und gesundes Wohnen sowie als Archiv der Natur- und Kulturgeschichte (§ 2 BBodSchG). Diese grundlegenden Funktionen des Bodens sind durch eine adäquate Berücksichtigung der Bodenschutzbelange in der Planung für die Zukunft zu sichern. Die Bedeutung des Bodens erlangt zunehmende gesellschaftliche und umweltpolitische Beachtung insbesondere mit Blick auf die Anpassung an die Folgen des Klimawandels, die Kohlenstoff- und Wasserspeicherfähigkeit des Bodens und die Biodiversität. Dies mündet in bundesweite Maßnahmen und Regelungen zur Reduzierung der Flächenneuinanspruchnahme und der Versiegelung und in die Notwendigkeit eines nachhaltigen Flächenmanagement in Städten und Gemeinden. „Die Siedlungs- und Verkehrsfläche (SuV) in Deutschland ist im vierjährigen Mittel der Jahre 2019 bis 2022 durchschnittlich um rund 52 Hektar pro Tag gewachsen. Der tägliche Anstieg nahm damit gegenüber dem Vorjahresindikatorwert ab (55 Hektar pro Tag in den Jahren 2018 bis 2021).“ (Destatis, 2024a, 2024b, 2024c, vgl. UBA, 2024). International und national greifen ambitionierte Zielsetzungen und Maßnahmen die Reduzierung der Flächenneuinanspruchnahme auf. Sowohl das globale Nachhaltigkeitsziel 15 der Vereinten Nationen als auch die daran angelehnte Deutsche Nachhaltigkeitsstrategie greifen den Schutz und die nachhaltige Nutzung der Ressource Boden auf und weisen die Degradationsneutralität als wichtiges Ziel aus (UN, 2015; Bundesregierung, 2021). Mit der Deutschen Nachhaltigkeitsstrategie 2016 hat die Bundesregierung das 30 Hektar-Ziel des Jahres 2020 auf das Jahr 2030 auf „unter 30 Hektar pro Tag“ festgeschrieben (Bundesregierung, 2017; Destatis, 2018). In der Weiterentwicklung der Nachhaltigkeitsstrategie der Bundesregierung 2021 wird ergänzend bis zum Jahr 2050 eine Flächenkreislaufwirtschaft angestrebt, das heißt, es sollen netto keine weiteren Flächen für Siedlungs- und Verkehrszwecke beansprucht werden (Bundesregierung, 2021). Der Unterschied zwischen Flächenneuinanspruchnahme und Versiegelung: Unter Flächenneuinanspruchnahme wird die Netto-Zunahme der Siedlungs- und Verkehrsfläche verstanden. Der Indikator „Anstieg der Siedlungs- und Verkehrsfläche“ bezieht sich auf die Umwandlung land- und forstwirtschaftlich genutzter Fläche in Siedlungs- und Verkehrsfläche und umfasst damit auch nicht versiegelte Areale wie Stadtparks, Hofflächen, Verkehrsbegleitgrün, Friedhöfe, Kleingärten etc. Insbesondere in urbanen Räumen ist der Indikator oft unzureichend, um den tatsächlichen Zustand der Böden sowie den nachhaltigen Umgang mit dieser Ressource bewerten zu können. Die Flächenversiegelung einer Stadt kann auch bei gleichbleibender Flächenneuinanspruchnahme ansteigen (z. B. durch Innenentwicklung und bauliche Nachverdichtung). Der Grad der Versiegelung und seine Entwicklung gibt daher i.d.R. den. detaillierteren Aufschluss über die Inanspruchnahme der natürlichen Ressource Boden im urbanen Raum (LABO, 2020). Einer von 16 Kernindikatoren, an denen die nachhaltige Entwicklung im Land Berlin gemessen wird, ist daher die Flächenversiegelung (AfS Berlin-Brandenburg, 2021). Dieser Indikator ermöglicht im Land Berlin, auf der Grundlage gesetzlich verankerter Regelungsmöglichkeiten, die Einbeziehung der begrenzten Ressource Boden in das Spannungsfeld von Bau- und Planungsprozessen und die Stärkung des Schutzes und der Wiederherstellung wertvoller Bodenfunktionen. Das Anliegen der Senatsverwaltung für Mobilität, Verkehr, Klimaschutz und Umwelt und der Senatsverwaltung für Stadtentwicklung, Bauen und Wohnen besteht somit darin, Instrumente für ein aktives, praxisorientiertes Flächenmanagement zur Verfügung zu stellen. Diese erleichtern es insbesondere den Bodenschutzbehörden, ihre Aufgaben als Träger öffentlicher Belange z. B. im Rahmen der Bauleitplanung wahrzunehmen sowie im Rahmen von Umweltprüfungen eine qualifizierte Integration bodenschutzfachlicher Aspekte im Prüfungsprozess vornehmen zu können. Ein regelmäßig in der Planungspraxis auftretendes Problem besteht darin, dass sich die bei einer baulichen Entwicklung eines Gebietes notwendigen Versiegelungen materiell kaum ausgleichen lassen. Der fachlich beste Ausgleich besteht prinzipiell in der Entsiegelung anderer Flächen. Das Auffinden versiegelter Flächen, die tatsächlich entsiegelt werden können, gestaltet sich in Berlin aufgrund der eingeschränkten Verfügbarkeit der meisten Flächen als schwierig und lässt sich im Rahmen der Umweltprüfung mangels eines adäquaten Flächenangebots vielfach nicht realisieren. Entsiegelungsvorschläge haben jedoch meist dann eine Realisierungschance, wenn Entsiegelungsflächen bereits bekannt sind und als geeignet geprüft in einem Verzeichnis vorliegen. In einem ersten Schritt wurde mit der Umweltatlaskarte Planungshinweise zum Bodenschutz ein wichtiges planerisches Instrument für die bodenschutzfachliche Bewertung erarbeitet. Die Wichtung der unterschiedlichen Funktionen und Empfindlichkeiten der Berliner Böden ermöglicht eine differenzierte Bewertung im Rahmen der Bauleitplanung. So wird z. B. für Böden, die aus bodenschutzfachlicher Sicht als besonders wertvoll eingestuft wurden, die Suche von Standortalternativen für bauplanungsrelevante Vorhaben empfohlen (vgl. SenStadt, 2020). Um eine verbesserte Verfügbarkeit von Entsiegelungsflächen zu erreichen, wurde in einem zweiten Schritt das Projekt „Entsiegelungspotenziale in Berlin“ ins Leben gerufen. Das Projekt hat die Erfassung und Bewertung von Flächen mit Entsiegelungspotenzial zum Inhalt und soll dazu dienen, Flächen im Land Berlin aufzufinden, die in absehbarer Zukunft dauerhaft entsiegelt werden können. Soweit möglich, sollen die Funktionsfähigkeit des Bodens wiederhergestellt und naturschutzfachlich wertvolle Lebensräume für Pflanzen und Tiere entwickelt werden. Außerdem soll es gelingen, eine räumliche Entkopplung zwischen den Orten der Beeinträchtigung und der Aufwertung durch eine gesamtstädtische Erfassung und einheitliche Systematik bei der Bewertung der erfassten Flächen zu unterstützen. Hierfür kommt im Einzelfall das Instrument der Eingriffsregelung (nach Baurecht und Naturschutzrecht) in Betracht. Die erfassten Flächen dienen grundsätzlich als Flächenangebot für die Kompensation von Eingriffen in den Boden und bei dauerhaftem Verlust von Bodenfunktionen sowie für Entsiegelungsmaßnahmen im Rahmen von Fördermaßnahmen. Im Rahmen mehrerer Projektphasen werden seit 2010 Recherchen in allen Berliner Bezirken, in den vier Berliner Forstämtern, in den Senatsverwaltungen für Stadtentwicklung, Bauen und Wohnen (SenStadt) und Bildung, Jugend und Familie (SenBJF) sowie bei privaten Eigentümern durchgeführt. Die letzte Aktualisierung erfolgte im August 2025. Die bei diesen Recherchen gewonnenen Daten werden in einer Datenbank zusammengeführt. Im Rahmen des in der Entwicklung befindlichen Berliner Entsiegelungsprogramms wird perspektivisch eine Zusammenführung vorhandener Potenzialerfassungen angestrebt. Hierbei sind partizipative Möglichkeiten zur Einbringung bisher unbekannter Entsiegelungspotenziale durch verschiedenste Akteure in der Stadt denkbar. Um die Umsetzung von Entsiegelungsmaßnahmen zu unterstützen, wurde zudem eine Arbeitshilfe zur Ableitung vereinfachter Kostenansätze für die zu erwartenden Rückbaukosten erstellt (inklusive Excel-Eingabedatei für vereinfachte Kostenschätzung von Entsiegelungsmaßnahmen). Außerdem wird die Arbeitshilfe zur Wiederherstellung von Bodenfunktionen nach einer Entsiegelung online bereitgestellt. Darüber hinaus wird in Form regelmäßiger Newsletter über aktuelle Geschehnisse zum Thema Entsiegelung berichtet. In 2021 wurde eine Dokumentation einer Entsiegelungsmaßnahme veröffentlicht, die überblickshaft den Projektablauf, die Finanzierung sowie die Beteiligten aufzeigt. Im Jahr 2025 soll mit einem Bericht über die Entsiegelung der ehemaligen Bezirksgärtnerei Marienfelde eine weitere Dokumentation eines aktuellen Entsiegelungsprojekts veröffentlicht werden. Für den Newsletter, die Dokumentation, sowie die genannten Arbeitshilfen siehe Entsiegelungspotenziale in Berlin – Berlin.de .

Bodenkundliche Kennwerte 2020

01.06.1 Bodenarten Beschreibung Die Bodenart eines Bodens wird durch die Korngrößenzusammensetzung ihrer mineralischen Bestandteile bestimmt. Dabei werden der Grobboden (Korndurchmesser > 2 mm) und der Feinboden (Korndurchmesser  2 mm sind. Der Anteil des Grobbodens wirkt sich auf die Wasserdurchlässigkeit, den Luft- und Nährstoffhaushalt und das Bindungsvermögen für Nähr- und Schadstoffe aus. Je höher der Anteil des Grobbodens ist, desto durchlässiger ist ein Boden aufgrund der großen Poren, während Bindungsvermögen und Nährstoffsituation von der Art des Feinbodens abhängen. Torfart Torfe entstehen im wassergesättigten Milieu durch Ansammlung unvollständig zersetzten Pflanzenmaterials. Sie zeichnen sich durch ein hohes Wasserspeichervermögen und eine sehr hohe Kationenaustauschkapazität aus. Entsprechend der Art der Pflanzenreste und der Entstehungsbedingungen werden unterschiedliche Torfarten differenziert. Niedermoortorfe sind basen- und nährstoffreich, teilweise sogar carbonatreich. Übergangsmoortorfe weisen Pflanzenreste sowohl von nährstoffarmen als auch von nährstoffreichen Standorten auf. Methode Die Bodenarten des Feinbodens, des Grobbodens und der Torfarten jeweils differenziert nach Ober- (0 – 10 cm Tiefe) und Unterboden (90 – 100 cm Tiefe) wurden für jede Bodengesellschaft bestimmt. Die Angaben wurden im Wesentlichen den Profilschnitten von Grenzius (1987) entnommen. Einige Werte sind gutachterlich ergänzt worden. Die kartierten Bodenarten des Feinbodens sind in Tab. 1 zusammengefasst. Da die Bodenarten im Ober- und Unterboden aufgrund des Ausgangsmaterials der Bodenbildung, der Bodenentwicklung und der Nutzung z. T. unterschiedlich sind, werden diese differenziert betrachtet. Außerdem werden innerhalb einer Bodengesellschaft häufig auftretende Bodenarten als Hauptbodenart und selten vorkommende Bodenarten als Nebenbodenart unterschieden. Durch Kombination der Bodenarten des Oberbodens mit den Bodenarten des Unterbodens wurden 14 Bodenartengruppen des Feinbodens (< 2 mm) gebildet, welche die Legendeneinheiten der Karte darstellen. Die Zuordnung von Bodenartengruppen erfolgte lediglich deshalb, um eine lesbare Karte mit einer überschaubaren Anzahl von Legendeneinheiten zu erzeugen. Für genauere Angaben oder weitere Berechnungen liegen differenziertere Daten vor. Es treten Bodengesellschaften auf, die sowohl im Oberboden als auch im Unterboden aus den gleichen Bodenarten bestehen. Die Mehrzahl der Bodengesellschaften unterscheidet sich jedoch hinsichtlich der Bodenarten im Ober- und Unterboden. Die Bodengesellschaften einer Bodenartengruppe können sich jedoch innerhalb dieser Gruppe hinsichtlich Torf- bzw. Steingehalt (Bodenskelett, Grobboden > 2 mm) des Ober- und Unterbodens unterscheiden, weshalb diese durch zusätzliche Signaturen dargestellt wurden. Die in den Böden Berlins vorkommenden Grobbodenarten sind in Tab. 2 zusammengestellt. Zwischen dem Vorkommen im Ober- bzw. Unterboden wird unterschieden. Die in Berlin vorkommenden Torfarten sind in Tab. 3 zusammengestellt. Zur Darstellung der ökologischen Eigenschaften und Ermittlung der Kennwerte wird unterschieden, ob Torf im Ober- und/oder im Unterboden vorkommt. Beschreibung Die nutzbare Feldkapazität (nFK) ist die Wassermenge in l/m² bzw. mm, die der Boden festzuhalten vermag und die für Pflanzen nutzbar ist. Dieser Teil des Wassers wird in den Porenräumen des Bodens gegen die Schwerkraft festgehalten und steht den Pflanzen zur Verfügung. Die nFK ist von der Bodenart, dem Humusgehalt, der Lagerungsdichte und dem Steingehalt abhängig. Feinkörnige Böden können über längere Zeiträume wesentlich mehr Wasser speichern als grobkörnige, sodass bei Letzteren das Niederschlagswasser rascher versickert und nicht für die Wasserversorgung der Pflanzen zur Verfügung steht. Hohe Humusgehalte und Torfanteile begünstigen die Wasserspeicherung. Methode Die nFK-Werte der Bodengesellschaften wurden nach der Vorgehensweise der Bodenkundlichen Kartieranleitung KA6 (2024) in Abhängigkeit von der Fein- und Grobbodenart (Tab. 1 und 2), dem Grobbodenanteil (Tab. 2) und dem Humusgehalt (Tab. 3) bestimmt. Dabei wird in eine Flachwurzelzone (0 – 30 cm) und eine Tiefwurzelzone (0 – 150 cm) unterschieden. Zusätzlich wurde die minimale nFK für die Flach- und Tiefwurzelzone aus der Bodenart der Bodengesellschaft, die die niedrigste nFK aufweist, berechnet. Als Karte dargestellt ist hier der durchschnittliche nFK-Wert der Flachwurzelzone. Diese berechnet sich nach nachfolgenden Gleichungen: GL.1: nFK Flachwurzelzone = nFK Oberboden * 0.1 + nFK Unterboden * 0.2 Gl. 2: nFk Oberboden = nFk Hb * 0.7 + nFk Nb * 0.3) * (1 – Sg Oberboden /100) + H real * 0.1 Gl. 3: nFk Unterboden = nFk Hb * 0.7 + nFk Nb * 0.3) *( 1 – Sg Unterboden /100) + H real * H dm – 0.1) mit nFk Oberboden = nFK des Oberbodens je dm in Abhängigkeit der Bodenart, Torfanteil und Grobbodenanteil nach KA6 in mm/dm mit nFk Unterboden = nFK des Unterbodens je dm in Abhängigkeit der Bodenart, Torfanteil und Grobbodenanteil nach KA6 in mm/dm mit nFk Hb = nFK der Hauptbodenart je dm in Abhängigkeit der Bodenart nach KA6 in mm/dm mit nFk Nb = nFK der Nebenbodenart je dm in Abhängigkeit der Bodenart nach KA6 in mm/dm mit Sg Oberboden = maximaler Grobbodenanteil in Vol.-% im Oberboden in Abhängigkeit der Grobbodenart nach KA6 mit Sg Unterboden = maximaler Grobbodenanteil in Vol.-% im Unterboden in Abhängigkeit der Grobbodenart nach KA6 mit H real = nFK-Zuschlag in Abhängigeit vom Humusgehalt des Bodens nach KA6 in Vol.-% mit H dm = Mächtigkeit der Humusschicht in dm Die Ergebnisse werden in sechs Stufen nach Grenzius (1987) zusammengefasst (Tab. 4), da in der 6. Bodenkundlichen Kartieranleitung KA6 (2024) keine Stufung in Bezug auf die Flach- und Tiefwurzelzone aufgeführt ist. Beschreibung Die Beurteilung des Wasserhaushalts über die nutzbare Feldkapazität im effektiven Wurzelraum (nFK We ) ergibt eine differenzierte Betrachtung des pflanzenverfügbaren Wassers für den jeweiligen Standort. Dabei werden entsprechend der Bodenart und der Nutzung die unterschiedlichen Durchwurzelungstiefen und Wurzelräume berücksichtigt. So haben Wald- und Baumstandorte einen wesentlich größeren Wurzelraum als zum Beispiel Ackernutzungen. In Sandböden ist der effektive Wurzelraum geringer als in Lehmböden, sodass das Niederschlagswasser in Lehmböden länger gespeichert werden kann als in Sandböden. Hinsichtlich des Wasser- und Nährstoffhaushalts ist es für die Pflanzenwurzeln in lehmigen Substraten daher lohnend, sich einen etwas größeren Wurzelraum zu erschließen als in sandigen Substraten. Bei den moorigen Böden reicht der effektive Wurzelraum nur bis zu den grundwasserbeeinflussten Horizonten, sodass meist nur die obersten 20 – 30 cm als Wurzelraum dienen. Ursache für den geringen Wurzelraum ist der Luftmangel in den ständig wassergesättigten Horizonten. Die Pflanzenwurzeln, mit Ausnahme einiger Spezialisten, beschränken sich daher auf die oberen Horizonte, die sowohl ausreichend Luft als auch Wasser führen. Die zusätzliche Wasserversorgung der Pflanzen aus dem kapillaren Aufstieg des Grundwassers, die die nFK We bei geringen Flurabständen in der Vegetationszeit entscheidend beeinflusst, wurde hier bei der Ermittlung nicht berücksichtigt. Methode Die Grundlage für die Berechnung des nFKWe stellen die in Abhängigkeit von der Bodenart, dem Humusgehalt und des Grobbodenanteils berechnete nFK-Werte je dm für den Ober- und den Unterboden dar. Die Berechnung der nFK erfolgt basierend auf der Bodenkundlichen Kartieranleitung KA6 (2024). Zur Umrechnung von der nFK auf die nFK We werden die nFK-Werte aus Ober- und Unterboden entsprechend der Mächtigkeit des effektiven Wurzelraums aufsummiert. Der effektive Wurzelraum wird für Berliner Standorte in Abhängigkeit unterschiedlicher Nutzungen nach Plath/Dreetz (1988) aus Tabelle 1 entnommen. Die nFK We berechnet sich nach nachfolgender Gleichung: Gl. 1: nFK We [mm] = nFK Oberboden [mm/dm] * 0.1 [dm] + nFK Unterboden [mm/dm] * (We [dm] – 0.1 [dm]) mit nFK Oberboden = nFK des Oberbodens je dm in Abhängigkeit der Bodenart, Torfanteil und Grobbodenanteil nach KA6 mit nFK Unterboden = nFK des Unterbodens je dm in Abhängigkeit der Bodenart, Torfanteil und Grobbodenanteil nach KA6 mit We = Mächtigkeit effektiver Wurzelraum nach Platz/Dreetz (1988) in Abhängigkeit der Nutzung in dm Die Ergebnisse werden analog zur nutzbaren Feldkapazität für Flachwurzler und Tiefwurzler in sechs Stufen zusammengefasst (Tab. 2). Beschreibung Humus bezeichnet die Gesamtheit der organischen Substanz von abgestorbenen Pflanzen und Tieren im Boden und setzt sich unter anderem aus Streu und Huminstoffen zusammen. Das hohe Sorptionsvermögen der Huminstoffe, der hohe Anteil pflanzenverfügbarer Nährstoffe und die günstigen Eigenschaften für den Wasserhaushalt wirken prägend für viele Bodenfunktionen. Die Humusgehalte mineralischer Böden sind bestimmt durch die Bodengenese, den Wassergehalt und die Nutzung. Durch Nutzungen wie Gartenbau mit Einarbeitung von Kompost oder intensiver Grünlandwirtschaft wird die Humusanreicherung begünstigt, während bei anderen Nutzungen ein deutlich geringerer Gehalt an organischer Substanz zu erwarten ist (vgl. Tab. 1). Nasse Vegetationsstandorte, z.B. Auenböden und Moore haben eine hohe Biomasseproduktion, aber einen geringen Humusabbau. Die angereicherte organische Substanz liegt in Form von Torfen mit unterschiedlichem Zersetzungsgrad vor. Die An- und Niedermoore besitzen in Abhängigkeit von der Nutzung und dem Zersetzungsgrad der Torfe einen Gehalt an org. Substanz von 15 – 80 %. Voraussetzung für hohe Gehalte an organischer Substanz ist eine stetige Vernässung bis in den Oberboden, die eine Mineralisierung hemmt oder unterbindet, sowie eine naturnahe Nutzung, wie zum Beispiel extensive Wiesennutzung. Die Humusmenge stellt die Menge an abgestorbener organischer Substanz dar, die an einem Standort für eine definierte Bodenfläche in Abhängigkeit vom Bodentyp und der Flächennutzung vorliegt. Die Humusmenge ist vor allem ein Zeiger für den Stickstoffvorrat und den leicht mobilisierbaren Stickstoffanteil. Aber auch andere wichtige Nährstoffe wie Kalium, Calcium, Magnesium und Phosphor werden durch die Zersetzung und Humifizierung der organischen Substanz freigesetzt und für die Pflanzen verfügbar gemacht. Neben der Bereitstellung und der Speicherung von Nährstoffen ermöglicht der Humus auch eine Erhöhung der Wasser- und Schadstoffspeicherkapazität. Die Humusmenge eines Bodens ergibt sich aus dem Humusgehalt und der Mächtigkeit der humosen Horizonte und hängt vom Bodentyp und der Nutzung ab. So weisen z.B. feuchte, moorige Standorte mit einer hohen Biomasseproduktion und einer geringen Zersetzung eine hohe Humusmenge und sandige, trockene Böden mit geringer Vegetationsdecke eine niedrige Humusmenge auf. Methode Die durchschnittlichen aus der Nutzung zu erwartenden Humusgehalte der Mineralböden in Abhängigkeit von Bodentyp und Nutzung wurden durch Untersuchungen von Grenzius (1987) und Bodenuntersuchungen im Rahmen des Schwermetalluntersuchungsprogramms (1986, 1987) hergeleitet. Diese Daten wurden zunächst von Fahrenhorst et al. (1990) ausgewertet und die durchschnittlichen Humusgehalte für den charakteristischen Bodentyp der verschiedenen Bodengesellschaften unter unterschiedlichen Nutzungen ermittelt. Eine Erweiterung der Datenbasis unter Verwendung verschiedener Einzelkartierungen erfolgte 1993 (Aey 1993). Überarbeitet wurden die Eingangsdaten von Kaufmann-Boll et al. (2023) auf Basis der Untersuchungen im Rahmen des NatKoS- und des UEP-Projekts. Dabei erfolgte eine relative Erhöhung der bestehenden Werte bei den durch das NatKoS-Projekt besonders gut repräsentierten Nutzungen und Fallgestaltungen. Eine rein nutzungsabhängige grobe Orientierung ist in Tab. 1 zusammengestellt. Die Humusgehalte von Torfen, die sich auf nassen Standorten bilden, werden bei den Mineralböden nicht berücksichtigt, sie gehen gesondert mit ihren Gehalten und mit ihren Mächtigkeiten in die Ermittlung der Humusmenge ein. Die Humusmenge wurde aus dem Humusgehalt der Humusschicht unter Berücksichtigung des Torfanteils [Masse-%] und der effektiven Lagerungsdichte sowie der Mächtigkeit der organischen Horizonte ermittelt. Die ermittelten Humusmengen für die unterschiedlichen Standorte werden entsprechend Tab. 2 in sechs Stufen unterteilt. Beschreibung Die abgestorbene organische Substanz (Humus) im Boden besteht etwa zu 50 % aus organischem Kohlenstoff und ist für den Nährstoff- und Wasserhaushalt des Bodens von elementarer Bedeutung. Durch die Anreicherung, Speicherung und Freisetzung von organischer Substanz, und damit von organischem Kohlenstoff, spielen Böden eine zentrale Rolle im globalen Kohlenstoffkreislauf. Böden sind der größte terrestrische Kohlenstoffspeicher und somit neben den Ozeanen die größten Kohlenstoffspeicher der Erde (IPCC 2000). Große Auswirkungen auf die Kohlenstoffdynamik im Boden hat die Landnutzung. Böden in urbanen Gebieten unterliegen einem besonders hohen Nutzungsdruck und sind sehr stark anthropogen geprägt. Dadurch kommt es auf der einen Seite, beispielsweise durch gärtnerische Nutzung, zu höheren organischen Kohlenstoffgehalten als in natürlichen Systemen. Auf der anderen Seite wird durch die teilweise komplette Zerstörung der natürlichen Bodenfunktionen der Abbau bzw. die Mineralisierung des Humus und somit die Freisetzung von Kohlendioxid (CO 2 ) in die Atmosphäre verstärkt. Dies ist vor allem langfristig von besonderer klimatischer Bedeutung, da die Anreicherung von Humus und damit die klimawirksame Kohlenstoffbindung in Böden sehr lange Zeiträume in Anspruch nimmt. Böden haben als sogenannte Kohlenstoffsenken eine besondere Bedeutung im globalen Kohlenstoffkreislauf. Auch in urbanen Gebieten sind solche Kohlenstoffsenken zu finden. Dabei spielen vor allem hydromorphe Böden wie Moore eine besondere Bedeutung. Moore speichern potentiell bis zu zehnmal so viel Kohlenstoff wie andere Ökosysteme (Batjes 1996). Durch den veränderten Wasserhaushalt in Folge von Meliorationsmaßnahmen, wie Grundwasserabsenkungen landwirtschaftlich genutzter Flächen, emittieren viele Moore heute CO 2 und CH 4 (Methan). Daher ist Moorschutz für den lokalen, regionalen und globalen Klimaschutz von großer Bedeutung. Die Bedeutung der Moorböden – in Berlin nur der Nieder- und Übergangsmoorböden – wird daran deutlich, dass sie bei einem Flächenanteil von nur rund 7 % etwa 65 % des gesamten in den Böden Berlins gespeicherten organischen Kohlenstoffs enthalten. Aber auch Kleingärten und Standorte mit einer langen Bodenentwicklung, wie Friedhöfe, alte Waldbestände und Parkanlagen, sind wertvolle Kohlenstoffsenken, da sie als langfristige Kohlenstoffspeicher dienen. Durch die Funktion als Kohlenstoffsenke haben Böden eine wichtige Klimaschutzfunktion, die auch bei Planungs- und Genehmigungsverfahren Beachtung finden sollte (Dahlmann et al. 2012). Demnach ist es sinnvoll, kohlenstoffreiche Böden möglichst von negativ beeinflussender Nutzung, wie dem Überbauen von bisher unversiegelten Flächen, freizuhalten und die Rekultivierung von vorhandenen Strukturen, gerade von Mooren, zu fördern. Daher wird das Puffervermögen im organischen Kohlenstoffhaushalt auch bei der Bewertung der Puffer- und Filterfunktion (vgl. Karte 01.12.3 ) berücksichtigt. Die Berechnungen auf der Grundlage dieser Karte ergeben, dass in den Böden Berlins insgesamt 7,03 Millionen Tonnen Kohlenstoff gespeichert sind. Dies entspricht einem Äquivalent von 25,8 Millionen Tonnen CO 2 . Die Gesamt-CO 2 -Emissionen in Berlin betrugen ca. 14,6 Millionen Tonnen im Jahr 2020 (Amt für Statistik Berlin-Brandenburg 2022). Somit speichert der Boden mehr Kohlenstoff als in Berlin im gesamten Jahr 2020 durch den Primärenergieverbrauch ausgestoßen wurde. Methode Die Berechnung der organischen Kohlenstoffvorräte für Berlin wurde auf Grundlage der in der Berliner Bodendatenbank enthaltenen Humusmengen [kg/m 2 ] vorgenommen (vgl. Karte 01.06.5 Humusmenge ). Aufbauend auf den Ergebnissen des Forschungsvorhabens “Berliner Moorböden im Klimawandel” (Klingenfuß et al. 2015) wurde die Berechnung der organischen Kohlenstoffvorräte aus den Humusmengen 2015 zunächst in Anlehnung an die Bodenkundliche Kartieranleitung KA5 (2005) berechnet und in der vorliegenden Überarbeitung in Anlehnung an die Bodenkundliche Kartieranleitung KA6 (2024) auf den Umrechnungsfaktor 2 vereinheitlicht. Der Umrechnungsfaktor gilt bei Bodengesellschaften mit und ohne Torf. Um die organischen Kohlenstoffvorräte für ganz Berlin zu berechnen, wurden die Kohlenstoffmengen mit den Flächengrößen der Blöcke multipliziert. Die ermittelten organischen Kohlenstoffvorräte der Böden sind als Schätzung zu betrachten und methodisch bedingt z. T. relativ ungenau, da die in der Blockstruktur dargestellten Humusmengen auf einer Bodengesellschaftskarte basieren, die teilweise nur Konzeptcharakter hat (vgl. Karte 01.01 ). Zudem sind die Humusgehalte und die Mächtigkeiten der mineralischen humushaltigen Horizonte und der Torfauflagen sowie der Lagerungsdichten zum Teil abgeschätzt. Durch die Einarbeitung der Ergebnisse des Forschungsvorhabens “Berliner Moorböden im Klimawandel” (Klingenfuß et al. 2015) im Jahr 2014 und der Ergebnisse des NatKoS- und UEP-Projekts im Rahmen des NatKEV-Projekts im Jahr 2022/23 (Kaufmann-Boll et al. 2023) wurden Daten zur Lage, Ausdehnung, Torfmächtigkeit, Lagerungsdichte und zum Verhältnis Humusmenge / Kohlenstoffmenge von Mooren erheblich verbessert. Trotzdem kann die Karte 01.06.6 Organischer Kohlenstoffvorrat nur näherungsweise die Realität abbilden. Die ermittelten organischen Kohlenstoffvorräte werden entsprechend der Tab. 1 in sechs Stufen unterteilt. Beschreibung Der pH-Wert (negativer dekadischer Logarithmus der Wasserstoffionenkonzentration) beeinflusst die chemischen, physikalischen und biologischen Eigenschaften des Bodens (Bodenreaktion). Er wirkt sich auf die Verfügbarkeit von Nähr- und Schadstoffen aus und gibt Auskunft über die Fähigkeit des Bodens, Säuren oder Basen zu neutralisieren. Er ist bedeutend für die Filter- und Pufferpotentiale der Böden. Bei niedrigen pH-Werten können im Boden keine Säuren neutralisiert werden, die Schwermetallverbindungen gehen zunehmend in Lösung und die verfügbaren Nährstoffe sind weitgehend ausgewaschen. Methode Die pH-Werte wurden für die Bodengesellschaften unter Berücksichtigung der Flächennutzung aus vorhandenen Unterlagen abgeleitet. Die Angaben wurden im Wesentlichen den Profilschnitten von Grenzius (1987) entnommen. Einige Werte sind gutachterlich ergänzt worden, meist unter Verwendung einer Vielzahl verschiedener bodenkundlicher Gutachten. Lagen keine Messwerte vor, wurden die Werte unter Verwendung von Daten vergleichbarer Nutzungen oder vergleichbarer Bodengesellschaften abgeschätzt. Zusätzlich zu den repräsentativen Werten (typische pH-Werte) für den Ober- und Unterboden wurden noch die jeweiligen Maximal- und Minimalwerte bestimmt. In der Karte wurde nur der pH-Wert für den Oberboden dargestellt; dieser hat für die Funktionsbewertung der Böden (vgl. Karten 01.12 ) eine höhere Bedeutung als der pH-Wert des Unterbodens und weist auch eine größere, meist nutzungsbedingte Differenzierung auf. Die Stufung der pH-Werte erfolgte nach der Bodenkundlichen Kartieranleitung KA6 (2024) in den Stufen 1 bis 13 von äußerst alkalisch bis äußerst sauer (vgl. Tab. 1). Über die Stufung kann die Bodenreaktion entsprechend ihrer Alkalinität oder Azidität differenziert werden. Beschreibung Die austauschbaren Kationen eines Bodens werden üblicherweise in saure und basische Kationen unterteilt. Zu ersteren gehören neben den Wasserstoff-Ionen (H + -Ionen) auch solche, die beim Austritt in die Bodenlösung eine Hydrolyse hervorrufen und damit H+-Ionen freisetzen, wie vor allem Aluminium Ionen (Al3 + ). Ihre Summe wird H-Wert genannt. Die basischen Kationen sind in erster Linie Calcium-Ionen (Ca 2+ ), Kalium-Ionen (K + ), Magnesium-Ionen (Mg 2+ ) und Natrium-Ionen (Na+), in Kulturböden (nach einer Düngung) auch Ammonium-Ionen NH 4 + (wobei Calcium-Ionen (Ca 2+ ) meist mit mehr als 80 % dominieren). Die Summe der basisch wirkenden Kationen bildet den S-Wert. Ihre Konzentration kann in cmol c /kg, die Menge in molc/m² angegeben werden. Der %-Anteil des S-Werts an den Austauschkationen insgesamt wird als Basensättigung bezeichnet. Der S-Wert beschreibt somit die Menge der vom Boden zur Verfügung gestellten und für die Pflanzenernährung relevanten Kationen und ist somit ein wichtiges Maß der Bodenfruchtbarkeit. Methode Die Menge der basisch wirkenden austauschbaren Ionen (S-Wert) für den Oberboden (hier: 0 – 30 cm Tiefe) wird durch Multiplikation der effektiven Kationenaustauschkapazität (KAK eff ) mit der Basensättigung (BS) unter Einbeziehung der Lagerungsdichte und des Grobbodenanteils berechnet. Die Berechnung der effektiven Kationenaustauschkapazität wird in der Karte 01.06.9 dargestellt. Die Basensättigung kann vom pH-Wert (in Calciumchlorid, CaCl 2 gemessen) abgeleitet werden. Zur Ermittlung wird der für den Standort typische pH-Wert des Oberbodens (vgl. Karte 01.06.7 ) herangezogen und nach Tab. 1 die Basensättigung bestimmt. Zwischen den pH-Stufen dieser Tabelle wird linear interpoliert. Die Stufung des S-Wertes erfolgt in den Stufen 1 – 10 (extrem gering bis sehr hoch) nach Tab. 2. Die Einteilung der geringen Werte erfolgt in sehr engen Stufen, um die für die Bewertung der Funktion „Lebensraum für naturnahe und seltene Pflanzengesellschaften“ ( vgl. Karte 01.12.1 ) notwendige feine Abstufung nährstoffarmer Böden zu erkennen. Beschreibung Die effektive Kationenaustauschkapazität (KAK eff ) stellt die Menge der an Bodenkolloide gebundenen Kationen unter Berücksichtigung der stark vom pH-Wert abhängigen Ladung der organischen Substanz dar. Dabei sind die austauschbaren Kationen an Tonminerale und Humuskolloide gebunden. In neutralen bis schwach sauren Böden dominieren Calcium (Ca 2+ ), Magnesium (Mg 2+ ), Kalium (K+) und Natrium (Na + ) den Sorptionskomplex, in sauren Böden, z. B. Kiefer- und Heidestandorten Aluminium (Al 3+ ), Wasserstoff (H + ) und Eisen (Fe 2+ / 3+ ). Das Bindungsvermögen der organischen Substanz ist deutlich höher als das der Tonminerale. Die Stärke der Bindung an die organische Substanz ist vom pH-Wert abhängig, während die Bindung an die Tonminerale unabhängig vom pH-Wert ist. So sinkt mit abnehmendem pH-Wert das Bindungsvermögen des Humus. Ton- und humusreiche Böden mit neutraler Bodenreaktion können daher wesentlich mehr Nähr- und Schadstoffe binden und eine Auswaschung dieser Stoffe in das Grundwasser verhindern als sandige humusarme Standorte. Die effektive Kationenaustauschkapazität ist daher geeignet, die Nähr- und Schadstoffbindungspotentiale von Böden zu beschreiben. Methode Die KAK eff der Bodengesellschaften wird aus der Hauptbodenart der Oberböden und Unterböden abgeleitet (Tab. 1). Für den Oberboden wird eine Tiefe von 0 – 30 cm angenommen, für den Unterboden 30 – 150 cm. Zu der ermittelten KAK der Hauptbodenart wird die Austauschkapazität des Humus (Tab. 3), korrigiert um einen pH-Wert abhängigen Faktor (Tab. 2) addiert. Da in Abhängigkeit von Bodengenese und Nutzung sowohl die Humusgehalte als auch die Mächtigkeit der Humusschicht unterschiedlich sind und diese ebenfalls zur Berechnung der KAK herangezogen werden, werden für jede Bodengesellschaft unterschiedliche nutzungsspezifische Werte ermittelt. Die ermittelten Werte wurden zur Darstellung in der Karte entsprechend der Bodenkundlichen Kartieranleitung KA6 (2024) in sechs Stufen von sehr gering bis sehr hoch unterteilt (Tab. 4). Beschreibung Die gesättigte Wasserdurchlässigkeit (gesättigte Wasserleitfähigkeit, kf-Wert) kennzeichnet die Durchlässigkeit bzw. Permeabilität von vollständig wassergesättigten Böden. Sie hängt von der Bodenart und der Lagerungsdichte des Bodens ab. Lockere Böden mit hohen Sandgehalten haben daher eine wesentlich höhere Durchlässigkeit als tonreiche Böden, beispielsweise aus Geschiebemergel. Die gesättigte Wasserdurchlässigkeit ist wichtig für die Beurteilung von Staunässe, Filtereigenschaften, Erosionsanfälligkeit und Drainagewirksamkeit von Böden. Die Einheit der gesättigten Wasserdurchlässigkeit wird in cm/d oder m/s angegeben. In der Regel liegen bei den terrestrischen Böden aber ungesättigte Wasserverhältnisse vor, wobei nur ein Teil der Poren mit Wasser gefüllt ist. Bei ungesättigten Verhältnissen ist die Wasserbewegung deutlich geringer. Außerdem wird ein großer Teil des vorhandenen Wassers von den Pflanzen aufgenommen und steht für eine Verlagerung nicht mehr zur Verfügung. Da eine Messung der ungesättigten Wasserleitfähigkeit (ku) sehr aufwendig und kompliziert ist, und deshalb keine ableitbaren Daten in der Bodenkundlichen Kartieranleitung KA5 (2005) vorliegen, wird in der wissenschaftlichen Praxis auf die abgesicherten Werte der gesättigten Wasserleitfähigkeit als grobes Maß zurückgegriffen. Der Einfluss des Grobbodens wurde nicht berücksichtigt. Methode Der kf-Wert wurde für die Hauptbodenart des Ober- (0 – 10 cm Tiefe) und Unterbodens (90 – 100 cm Tiefe) nach Tab. 1 abgelesen. Der kf-Wert für Ober- und Unterboden ist der harmonische Mittelwert aus kf-Ober- und kf-Unterboden. Den in der Tabelle in Abhängigkeit von der Bodenart aufgeführten kf Werten ist eine effektive Lagerungsdichte von Ld3 zugrunde gelegt, was im Mittel den Berliner Böden entspricht. Die Ergebnisse der gesättigten Wasserdurchlässigkeit wurden für die Darstellung in der Karte in sechs Stufen von sehr gering bis äußerst hoch (1 – 6) nach Tab. 2 zusammengefasst.

Nutzbare_Feldkapazitaet100cm_50000

Nutzbare Feldkapazität des Bodens im 1. Meter (BFD50) - Die Bodenflächendaten 1:50 000 für Hessen (BFD50, 2. Ausbaustufe) beschreiben flächenhaft die Böden, ihre Eigenschaften und Bodenfunktionen im regionalen Maßstab. In der Karte ist die nutzbare Feldkapazität im 1. Meter klassifiziert dargestellt.

Bodenkarte 1:50.000 (BK50)

Die BK50 stellt die Ergebnisse der bodenkundlichen Landesaufnahme für den Maßstab 1:50.000 dar. Zu den abgegrenzten Bodengesellschaften (Leit- und Begleitbodenformen) werden Bodentyp und Substrattyp benannt. Die detaillierte Horizontabfolge der Leitbodenformen wird mit charakteristischen Bodenparametern beschrieben wie z.B.: Horizontsymbolen, Substraten, Bodenarten, Grobbodenanteilen, Carbonatstufen, Humusstufen und bodenhydrologischen Kennwerten.

Bodenhauptgruppen_SIV_50000

Bodenhauptgruppen der Bodeneinheiten zu den Bodenflächendaten 1 : 50.000 (BFD50) im Bereich von Siedlung, Industrie und Verkehr sowie Sonderstandorte und Gewässer - Die Bodenflächendaten 1:50 000 für Hessen (BFD50, 2. Ausbaustufe) beschreiben flächenhaft die Böden, ihre Eigenschaften und Bodenfunktionen im regionalen Maßstab. In der Darstellung wird nach Nutzungskategorien unterschieden. WICHTIG: Die Aussagekraft im Bereich von Siedlung, Industrie und Verkehr reduziert sich auf den Hinweis auf eine potenziell natürliche Verbreitung der Bodeneinheit.

BFD5L_M242

Bodenfunktionsbewertung für Raum- und Bauleitplanung gemäß Bodenflächendaten Hessen 1:5000 für landwirtschaftliche Nutzflächen (BFD5L) - Die Methode "Bodenfunktion: Gesamtbewertung für die Raum- und Bauleitplanung" beruht auf der Aggregierung der Methoden "Bodenfunktion: Lebensraum für Pflanzen, Kriterium Standorttypisierung für die Biotopentwicklung", "Bodenfunktion: Lebensraum für Pflanzen, Kriterium Ertragspotenzial", "Bodenfunktion: Funktion des Bodens im Wasserhaushalt, Kriterium FK" sowie "Bodenfunktion: Funktion des Bodens als Abbau-, Ausgleichs- u. Aufbaumedium, Kriterium Nitratrückhalt" und ordnet den daraus resultierenden verschiedenen Stufen die Klassen des Gesamt-Bodenfunktionserfüllungsgrades von 1 bis 5 zu. Eine Ausnahme bilden die verschiedenen Ausschluss- und Fehlerflächen, für die keine Bodenfunktionsbewertung ermittlet werden kann. Diese werden in der Klasse "0" (nicht bewertet) zusammengefasst.

Karte der Archivböden von Schleswig-Holstein

Abbildung der Flächen, mit Auftreten von Böden mit besonders ausgeprägten Archivfunktionen. Die Karte stellt den vollständigen Auszug aus dem Archivbodenkataster des Geologischen Dienstes dar. Die Auswahl erfolgte nach folgenden Kriterien: * Bodenentwicklungen, in denen sich Prozesse und Phasen der Naturgeschichte in besonderer Art und Weise widerspiegeln * Bodenentwicklungen, die in ihrem landschaftlichen Zusammenhang und Wirkungsgefüge durch eine besondere Stoffverlagerung gekennzeichnet sind * Bodenentwicklungen, die Phasen, Ereignisse und Vorgänge der Kulturgeschichte repräsentieren. Die Abgrenzung der Flächen erfolgte in der Regel auf der Grundlage von konkreten Punktaufnahmen, Flächenabgrenzungen in Bodenkarten oder Geologischen Karten sowie Daten zum Relief.

Boden

Böden sind im wahrsten Sinne des Wortes die Grundlage für unser Leben. Und noch mehr als das: Sie sind Zeitzeugen von Natur- und Kulturgeschichte. Lesen Sie im Themenbereich „Boden“, was das Berliner Erdreich über den Werdegang der Stadt verrät und erfahren Sie, worauf Sie stehen und gehen. Bild: Umweltatlas Berlin Bodengesellschaften Welche Bodentypen gibt es in Berlin und aus welchem Ausgangsmaterial bestehen die Böden, auf denen wir uns durch Berlin bewegen? Werfen Sie einen Blick in das Thema „Bodengesellschaften“. Hier lernen Sie mehr zur Verteilung und Häufigkeit der unterschiedlichen Bodengesellschaften. Weitere Informationen Bild: Umweltatlas Berlin Bodenkundliche Kennwerte Was unterscheidet einen Boden mit hoher Wertigkeit von einem Boden mit geringer Wertigkeit? Erfahren Sie im Thema „Bodenkundliche Kennwerte“, welche Aspekte dabei eine Rolle spielen und was sie über die Böden der Stadt verraten. Weitere Informationen Bild: Umweltatlas Berlin Bodenfunktionskriterien Einen Boden bewertet man nicht nur anhand seiner Beschaffenheit, von Interesse sind auch die Kriterien zur Bewertung seiner Funktionen für den Naturhaushalt und den Klimaschutz. Welche verschiedenen Eigenschaften den Boden ausmachen und wie sie zu bewerten sind, erfahren Sie hier. Weitere Informationen Bild: Umweltatlas Berlin Bodenfunktionen Der Boden erfüllt für Menschen, Tiere, Pflanzen und Organismen viele Funktionen. Unter „Bodenfunktionen“ erfahren Sie, welche – von den Möglichkeiten den Boden zu nutzen bis zu natürlichen Funktion wie dem Grundwasserschutz. Sechs Karten zeigen, wie diese Eigenschaften in Berlin ausgeprägt sind. Weitere Informationen Bild: Umweltatlas Berlin Planungshinweise Bodenschutz Um den Bedarf an neuem Wohnraum und Infrastruktur zu bedienen und gleichzeitig die Böden zu schützen, helfen die „Planungshinweise zum Bodenschutz“. Eine Karte zeigt, wo Berlin besonders schützenswerte Böden aufweist. Dazu werden Planungsanforderungen und Maßnahmen für den Bodenschutz dargestellt. Weitere Informationen Bild: Umweltatlas Berlin Versiegelung Ob Häuser, Straßen oder Industriegebiete – durch Baumaßnahmen werden immer wieder Böden versiegelt. Sie werden betoniert, asphaltiert, gepflastert oder bebaut. Um Natur und Mikroklima zu schonen, soll der Flächenverbrauch gering gehalten werden. Hier finden Sie alle Versiegelungsdaten für Berlin. Weitere Informationen Bild: Umweltatlas Berlin Entsiegelungspotenziale Für eine ausgeglichenere Flächenbilanz, sollten bei Neuversiegelungen versiegelte Flächen, wo es möglich ist, entsiegelt werden, um sie zu renaturieren und die natürlichen Bodenfunktionen wiederherzustellen. Welche Flächen in Frage kommen und wo sich diese befinden, erfahren Sie hier. Weitere Informationen Bild: Umweltatlas Berlin Moore Hätten Sie es gewusst? Die größte zusammenhängende Moorfläche in Berlin, mit einer Fläche von fast 200 Hektar, sind die Gosener Wiesen in Treptow-Köpenick. Weitere Fakten rund um diese besonderen Biotope sowie Hintergründe, warum Moore so wichtig für das Klima sind, lesen Sie hier. Weitere Informationen Bild: Umweltatlas Berlin Geologische Skizze Ihre Form hat die Berliner Landschaft im Eiszeitalter erhalten. Auch der Untergrund setzt sich aus Ablagerungen aus dieser Zeit und anderen Erdzeitaltern zusammen. Mehr über die geologischen Einheiten der Stadt entnehmen Sie der „Geologischen Skizze“. Weitere Informationen Bild: Umweltatlas Berlin Geologische Karte Das Berliner Stadtgebiet wurde erstmals zwischen 1875 und 1883 geologisch kartiert. Die Daten sind stellenweise aktuell wie nie: Sie zeigen Landschaftszusammenhänge, die im Stadtbild zum Teil schon seit Jahrzehnten nicht mehr sichtbar sind. Erfahren Sie hier mehr zum Thema. Weitere Informationen Bild: Umweltatlas Berlin Ingenieurgeologische Karte Wussten Sie, dass Teile Berlins auf Dünensand fußen? Und, dass der Untergrund der Stadt unterschiedliche Baugrundeigenschaften hat? Diese und weitere Fakten gibt die „Ingenieurgeologische Karte“ preis. Weitere Informationen Bild: Umweltatlas Berlin Ehemalige Rieselfelder Kaum zu glauben: Rund 10.000 Hektar Land in und um Berlin dienten im Jahr 1928 als Rieselfelder, also als Flächen zur Abwasserverrieselung. Mehr zum Wirkprinzip der Felder, ihrer Geschichte und was sich heute auf den ehemaligen Nutzflächen befindet, lesen Sie im Kapitel „Ehemalige Rieselfelder“. Weitere Informationen

Bodenbewertung - Wasserrückhaltevermögen (FKWe), regionalspezifisch bewertet

Die Bodenfunktion „Bestandteil des Wasserhaushaltes“ ist eine Teilfunktion der natürlichen Bodenfunktion „Bestandteil des Naturhaushalts, insbesondere mit seinen Wasser- und Nährstoffkreisläufen“ (BBodSchG, § 2, Abs. 2, Punkt 1.b). Ein Bewertungskriterium hierfür sind die allgemeinen Wasserhaushaltsverhältnisse mit dem Kennwert „Feldkapazität“, die die Menge an Wasser kennzeichnet, die im Boden entgegen der Schwerkraft zurückgehalten werden kann. Je höher das Wasserrückhaltevermögen bzw. die Feldkapazität ist, desto mehr und länger wird das Wasser dem Kreislauf Atmosphäre – Boden – Gewässer entzogen und steht bodenbezogenen Prozessen wie z. B. der Versorgung der Pflanzen mit Wasser und Nährstoffen oder Zersetzung organischer Substanz zur Verfügung. Die konkreten Werte für das Wasserrückhaltevermögen bzw. die Feldkapazität werden in fünf Stufen von sehr gering bis sehr hoch klassifiziert. Je höher das Wasserrückhaltevermögen ist, desto höher ist auch die Erfüllung der Bodenfunktion „Bestandteil des Wasserhaushaltes“. Die regionale Klassifikation gibt die dem Naturraum entsprechende Bedeutung dieser Bodenfunktionen wieder. Dies stellt bei kleinräumigen Planungen, z. B. auf Gemeindeebene oder Detail- oder Ausführungsplanungen häufig eine fachlich angemessene Grundlage dar. Um möglichst viele Nutzer zu erreichen und verschiedene Zwecke abdecken zu können, stellt das LLUR das Kartenwerk in fünf verschiedenen Maßstabsebenen bereit: 1 : 2.000 für die konkrete Landbewirtschaftung oder Bauausführung vor Ort oder für eine hochaufgelöste Planung, 1 : 25.000 für Planungen auf Gemeindeebene, 1 : 100.000 für Planungen in größeren Regionen, 1 : 250.000 für eine landesweit differenzierte Planung, 1 : 1000.000 für eine landesweite bis bundesweite Planung.

1 2 3 4 598 99 100