Seit 2015 sind nach der VOB bzw. DIN 18300:2016-09 projektspezifisch zu definierende Homogenbereiche anstatt der bisher allgemein definierten Bodenklassen festzulegen. Für diese Homogenbereiche sind die gemäß DIN 18300:2016-09 vorgegebenen Eigenschaften und Kennwerte sowie deren Bandbreite anzugeben, die ggf. gezielte Feld- und Laboruntersuchungen erfordern. Homogenbereiche können i.d.R. erst mit den Planungen und den Angaben zu Verfahrenstechniken festgelegt werden. Da in vielen bestehenden Planungen/Bauvorhaben die „Bodenklassen nach DIN 18300:2012-09“ verwendet wurden und in Altprojekten tlw. noch verwendet werden, wird die Bodenklassenübersichtskarte nach DIN 18300:2012-09 für einen Übergangszeitraum weiter dargestellt. Für die Planung, Kalkulation und Abrechnung von Erdarbeiten wurden die anstehenden Sedimente und Gesteine nach den Allgemeinen Technischen Vertragsbedingungen für Bauleistungen (ATV) in der Vergabe- und Vertragsordnung für Bauleistungen (VOB) in so genannte Bodenklassen eingeteilt. Für Erd- und Felsarbeiten gemäß DIN 18300:2012-09 galten die in dieser DIN enthaltenen Bodenklasseneinstufungen. Bodenklasse 1: Oberboden Bodenklasse 2: Fließende Bodenarten Bodenklasse 3: Leicht lösbare Bodenarten Bodenklasse 4: Mittelschwer lösbare Bodenarten Bodenklasse 5: Schwer lösbare Bodenarten Bodenklasse 6: Leicht lösbarer Fels und vergleichbare Bodenarten Bodenklasse 7: Schwer lösbarer Fels Für Vorplanungszwecke wurden vom LBEG flächendeckend Karten der Bodenklassen für Erdarbeiten nach DIN 18300:2012-09 im Maßstab 1:50.000 bis in 2 m Tiefe (ab GOK) aus der in Niedersachsen flächendeckend vorhandenen Bodenkarte von Niedersachsen 1:50.000 (BK50) abgeleitet. Die in der BK50 dargestellten Flächeneinheiten beruhen auf einem für die Fläche typischen Bodenprofil. Den darin enthaltenen Bodenarten wurden entsprechende Bodengruppen nach DIN 18196, Bodenklassifikation für bautechnische Zwecke, zugeordnet. Die Bodengruppen und Festgesteine wurden nach den Zuordnungskriterien der DIN 18300:2012-09 den entsprechenden Bodenklassen zugeteilt. Dargestellt werden die jeweils höchste Bodenklasse in den Tiefenprofilen: 0 m bis 1 m, sowie 1 m bis 2 m und die vorherrschenden Bodenklassen (Gewichtung nach der Mächtigkeit, max. 3 Klassen bei gleicher Gewichtung) in den Tiefenprofilen: 0 m bis 1 m, 1 m bis 2 m, sowie 0 m bis 2 m. Die tatsächlichen Verhältnisse können von der maßstabsbedingt homogenisierten Kartendarstellung abweichen. So sind beispielsweise – in den Auesedimenten der Elbe, Leine und Weser (Bodenklasse 2 und 4) – lokal geringmächtige Blocklagen bekannt, die den Bodenklassen 5 oder 6 zuzuordnen wären. Es wird darauf hingewiesen, dass die "Bodenklassenübersichtskarte für Erdarbeiten nach DIN 18300:2012-09 1:50 000" eine geotechnische Erkundung des Baugrundes nach DIN EN 1997 2:2010-10 mit ergänzenden Regelungen DIN 4020:2010-12 und nationalem Anhang DIN EN 1997 2/NA:2010-12 nicht ersetzen kann.
The pattern of plant nutrient uptake in a soil profile is the result of complex processes occurring at the cellular or sub-cellular levels but affecting the whole-plant behaviour in function of the plant environment that varies strongly in time and space. The plant nutrient acquisition depends on root architecture and growth, on soil properties and heterogeneity, and on the 3-D distribution of nutrients and water. Equally important is how these parameters interact, as for instance how the nutrient distribution and soil properties and heterogeneity impact root growth or how nutrient and water limitation affect assimilate allocation. Mathematical modelling using a spatial resolution that resolves the spatial structure of the root structure and the nutrient and water distribution is therefore needed to quantitatively account for these complex and interacting processes and to predict plant nutrient uptake behaviour under environmental constraints. The main goal of the project is to build a modelling platform able to describe 3-D flow and transport processes in the soil to individual roots of an entire root system (WP1). Model parameters will be derived from specific experiments performed at the plant scale in the research group (WP3) and stored in a specific data warehouse (WP2). The impact of different parameters, which describe root growth and nutrient uptake at the single root scale, on nutrient uptake at the soil profile scale, will be investigated based on scenario analyses (WP4). Data on water and nutrient uptake and root growth from plant and field scale experiments will be compared with model predictions to validate the model. Simulations with the 3-D root scale model will be used to validate hypotheses and parameterizations of larger scale 1-D models that do not describe processes at the scale of individual roots (WP5 and SP10).
Die BK50 stellt die Ergebnisse der bodenkundlichen Landesaufnahme für den Maßstab 1:50.000 dar. Zu den abgegrenzten Bodengesellschaften (Leit- und Begleitbodenformen) werden Bodentyp und Substrattyp benannt. Die detaillierte Horizontabfolge der Leitbodenformen wird mit charakteristischen Bodenparametern beschrieben wie z.B.: Horizontsymbolen, Substraten, Bodenarten, Grobbodenanteilen, Carbonatstufen, Humusstufen und bodenhydrologischen Kennwerten.
Der Datensatz beinhaltet Daten vom LBGR über die Mittleren Elementgehalte im Untergrund Brandenburg und wird über je einen Darstellungs- und Downloaddienst bereitgestellt. Für einige ausgewählte umweltrelevante Elemente werden Karten der mittleren Gehalte (Medianwerte / P50) im Untergrund (UG) dargestellt. Grundlage sind die analytischen Daten zu ca. 2000 nach Bodenkundlicher Kartieranleitung (KA 5) aufgenommenen und unregelmäßig über das Landesterritorium verteilten Bodenprofilen - königswasserlösliche Gehalte in Trockensubstanz Feinboden (kleiner 2 mm) für Arsen (As), Cadmium (Cd), Chrom (Cr), Kupfer (Cu), Nickel (Ni), Blei (Pb), Zink (Zn); Totalgehalte für Quecksilber (Hg). Die dargestellten Inhalte wurden für den Maßstab 1 : 300.000 erstellt und sind für Darstellungen in Maßstäben größer 1 : 100.000 nicht geeignet. Die Karte basiert auf den Legendeneinheiten der Bodenübersichtskarte, die den Gehaltsklassen entsprechend der Mediane für die dominierende der beteiligten Flächenbodenformen zugeordnet wurden. Die Gehaltsklassen der jeweils für UG einheitlichen Kartenlegenden richten sich nach der Spannweite sämtlicher Werte für das betreffende Element.
Die Bodenfunktionenkarten wurden nach dem Sächsischen Bodenbewertungsinstrument Stand 05/2022 erstellt. Erstmalig wurden alle für die Bewertung eingesetzten 1.200 Leitprofile der Bodenkarte 1 : 50.000 (BK50) einer Laboruntersuchung unterzogen. Die Bodenkarte 1 : 50.000 basiert auf den 54 Einzelblättern des Freistaates Sachsen. Sukzessive werden neue Kenntnisstände zum Boden und Bodenschutz in die Bewertungen der Bodenfunktionen eingearbeitet. Diese Informationen werden mit Updates veröffentlicht.
Seit 2015 sind nach der VOB bzw. DIN 18300:2016-09 projektspezifisch zu definierende Homogenbereiche anstatt der bisher allgemein definierten Bodenklassen festzulegen. Für diese Homogenbereiche sind die gemäß DIN 18300:2016-09 vorgegebenen Eigenschaften und Kennwerte sowie deren Bandbreite anzugeben, die ggf. gezielte Feld- und Laboruntersuchungen erfordern. Homogenbereiche können i.d.R. erst mit den Planungen und den Angaben zu Verfahrenstechniken festgelegt werden. Da in vielen bestehenden Planungen/Bauvorhaben die „Bodenklassen nach DIN 18300:2012-09“ verwendet wurden und in Altprojekten tlw. noch verwendet werden, wird die Bodenklassenübersichtskarte nach DIN 18300:2012-09 für einen Übergangszeitraum weiter dargestellt. Für die Planung, Kalkulation und Abrechnung von Erdarbeiten wurden die anstehenden Sedimente und Gesteine nach den Allgemeinen Technischen Vertragsbedingungen für Bauleistungen (ATV) in der Vergabe- und Vertragsordnung für Bauleistungen (VOB) in so genannte Bodenklassen eingeteilt. Für Erd- und Felsarbeiten gemäß DIN 18300:2012-09 galten die in dieser DIN enthaltenen Bodenklasseneinstufungen. Bodenklasse 1: Oberboden Bodenklasse 2: Fließende Bodenarten Bodenklasse 3: Leicht lösbare Bodenarten Bodenklasse 4: Mittelschwer lösbare Bodenarten Bodenklasse 5: Schwer lösbare Bodenarten Bodenklasse 6: Leicht lösbarer Fels und vergleichbare Bodenarten Bodenklasse 7: Schwer lösbarer Fels Für Vorplanungszwecke wurden vom LBEG flächendeckend Karten der Bodenklassen für Erdarbeiten nach DIN 18300:2012-09 im Maßstab 1:50.000 bis in 2 m Tiefe (ab GOK) aus der in Niedersachsen flächendeckend vorhandenen Bodenkarte von Niedersachsen 1:50.000 (BK50) abgeleitet. Die in der BK50 dargestellten Flächeneinheiten beruhen auf einem für die Fläche typischen Bodenprofil. Den darin enthaltenen Bodenarten wurden entsprechende Bodengruppen nach DIN 18196, Bodenklassifikation für bautechnische Zwecke, zugeordnet. Die Bodengruppen und Festgesteine wurden nach den Zuordnungskriterien der DIN 18300:2012-09 den entsprechenden Bodenklassen zugeteilt. Dargestellt werden die jeweils höchste Bodenklasse in den Tiefenprofilen: 0 m bis 1 m, sowie 1 m bis 2 m und die vorherrschenden Bodenklassen (Gewichtung nach der Mächtigkeit, max. 3 Klassen bei gleicher Gewichtung) in den Tiefenprofilen: 0 m bis 1 m, 1 m bis 2 m, sowie 0 m bis 2 m. Die tatsächlichen Verhältnisse können von der maßstabsbedingt homogenisierten Kartendarstellung abweichen. So sind beispielsweise – in den Auesedimenten der Elbe, Leine und Weser (Bodenklasse 2 und 4) – lokal geringmächtige Blocklagen bekannt, die den Bodenklassen 5 oder 6 zuzuordnen wären. Es wird darauf hingewiesen, dass die "Bodenklassenübersichtskarte für Erdarbeiten nach DIN 18300:2012-09 1:50 000" eine geotechnische Erkundung des Baugrundes nach DIN EN 1997 2:2010-10 mit ergänzenden Regelungen DIN 4020:2010-12 und nationalem Anhang DIN EN 1997 2/NA:2010-12 nicht ersetzen kann.
Der Kartendienst (WMS-Gruppe) stellt die Geodaten aus dem Bereich Boden des Saarlandes bereit.:Der Kartendienst (WMS-Gruppe) stellt die Geodaten aus dem Bereich Boden des Saarlandes bereit (Maßstabsbeschränkung).
Flächenhafte Darstellung der kartierten Bodensubstrate von Braunkohlentagebaukippen (32 Tagebaue). Kartierergebnisse nach der technischen Rekultivierung (Planierung) seit 1956 fortlaufend. Bodensystematische Ansprache nach Bodenkundlicher Kartieranleitung, 5. Auflage (KA5).
Permafrost-Moore sind Hotspots organischer Kohlenstoff-Vorräte. Das Auftauen von Permafrostböden fördert die Mineralisation des bodenorganischen Kohlenstoffs (SOC). Es besteht jedoch große Unsicherheit hinsichtlich der SOC-Verluste bzw. der SOC-Akkumulation in aufgetauten Permafrost-Mooren. Bislang wurde die SOC-Bilanz auftauendender Permafrost-Moore in nur sehr wenigen Regionen untersucht. Aus bisherigen Studien ist bekannt, dass die SOC-Bilanz sehr variable ist und Prognosen für auftauende Permafrost-Moore unsicher sind. Permafrost-Moore der Finnmark, der nördlichsten Provinz Norwegens, tauen derzeit schnell auf. SOC-Verluste und rezente SOC-Zuwächse wurden in den Permafrost-Mooren dieser Region bisher nicht quantifiziert. Wir werden in dieser Region Standorte untersuchen, die durch Thermokarst tief und durch aktive Schichtvertiefung oberflächennah aufgetaut sind. Bei der oberflächennahen Schichtvertiefung durch partielles Auftauen und Entwässerung entstehen oxidative Bedingungen, die den mikrobiellen SOC-Abbau fördern. Thermokarst mit anoxischen Bedingungen bildet sich, wenn das gesamte Bodenprofil auftaut, absinkt und mit Wasser gefüllt wird. Verschiedene Ansätze werden zur Quantifizierung der SOC-Verluste durch Auftauen verfolgt. Wir werden in-situ SOC-Mineralisationsraten verschiedener Torfschichten durch Messung von CO2-Emissionen und deren 14C-Signaturen quantifizieren. Diese Ergebnisse liefern Belege für die SOC-Mobilisierung beider Auftauregime in Permafrost-Mooren. Wir erwarten, dass Moore, die oberflächennah aufgetaut sind, aktuell höhere SOC-Verluste aufweisen als Thermokarst. Darüber hinaus werden Bodenkerne aus beiden Auftauregimen entnommen, i) um die Entwicklung der Torfakkumulation durch pflanzliche Makrofossilien und 14C-Datierung zu charakterisieren, ii) um SOC-Vorräte zu quantifizieren, iii) um Humifizierungsgrade der organischen Substanz zu charakterisieren und iv) um das Mineralisationspotenzial für SOC und gelösten organischen Kohlenstoff (DOC) zu bestimmen. Wir erwarten i) geringere SOC-Vorräte, ii) höhere Humifizierungsgrade, iii) geringere SOC- und DOC-Mineralisierungspotenziale und eine geringere mikrobielle Kohlenstoffnutzungs-Effizienz in Thermokarstmooren aufgrund der vorangegangenen SOC-Mineralisierung im Vergleich zu intakten Permafrost-Mooren. Schließlich werden rezente SOC-Akkumulationsraten durch 210Pb-Datierung bestimmt. Wir gehen davon aus, dass sich in Thermokarstmooren in jüngster Zeit SOC angereichert hat, die vorhergehende SOC-Verluste durch Auftauen teilweise kompensieren. Wir werden verschiedene Thermokarstmoore untersuchen, um zu überprüfen, ob die SOC-Akkumulationsrate nach dem Auftauen mit dem Grad der Bodenabsenkung zusammenhängt. Die Bilanzierung der SOC-Verluste und der SOC-Akkumulation sowie der Mineralisationspotenziale in den verschiedenen Auftauregimen kann einen wertvollen Beitrag zur Verbesserung von Prognosen zur zukünftigen Entwicklung von SOC-Vorräten in Permafrost-Regionen leisten.
Im nordöstlichen Harzvorland soll im Bereich der Einzugsgebiete von Ilse und Holtemme, d.h. an der Wasserscheide zwischen Weser und Elbe, die Reliefentwicklung vom Beginn der Saale-Eiszeit bis zum Ende der Weichsel-Eiszeit im Zusammenwirken fluvialer, glazifluvialer, glaziär und periglaziärer Prozesse untersucht werden. Die Besonderheiten des Untersuchungsgebietes und der Fragestellungen im einzelnen ergeben sich aus seiner Lage im Grenzbereich der Maximalausdehnung des saalezeitlichen Inlandeises und im Aufschüttungsgebiet ausgedehnter pleistozäner Verlandschwemmfächer des Harzes. Überdies wird im Untersuchungsgebiet die obere Grenze der Lössbedeckung erreicht, woraus sich Fragen nach der Ausprägung und Genese dieser Grenze, nach der Beziehung des Lösses zu den periglaziären Schuttdecken und nach der Gliederung dieser Deckschichten ableiten. Grundlage der Untersuchungen ist die geomorphologische Kartierung, die durch die digitale Reliefanalyse von DGM mit dem Programmen SARA und SADO wesentlich unterstützt werden soll. Die eigentliche Kartierung soll im Bereich der Lösgrenze durch die Detailanalyse von Catena-artig angeordneten Bodenprofile ergänzt werden.
| Origin | Count |
|---|---|
| Bund | 427 |
| Kommune | 3 |
| Land | 203 |
| Wissenschaft | 17 |
| Type | Count |
|---|---|
| Daten und Messstellen | 12 |
| Ereignis | 1 |
| Förderprogramm | 309 |
| Text | 28 |
| Umweltprüfung | 1 |
| unbekannt | 179 |
| License | Count |
|---|---|
| geschlossen | 46 |
| offen | 466 |
| unbekannt | 18 |
| Language | Count |
|---|---|
| Deutsch | 478 |
| Englisch | 95 |
| Resource type | Count |
|---|---|
| Archiv | 70 |
| Bild | 4 |
| Datei | 66 |
| Dokument | 96 |
| Keine | 270 |
| Multimedia | 1 |
| Unbekannt | 3 |
| Webdienst | 100 |
| Webseite | 228 |
| Topic | Count |
|---|---|
| Boden | 530 |
| Lebewesen und Lebensräume | 437 |
| Luft | 334 |
| Mensch und Umwelt | 529 |
| Wasser | 378 |
| Weitere | 530 |