Die Bodenbearbeitung ist ein wesentlicher Bestandteil der Nutzung von Ackerflächen. Die Bearbeitung dient u. a. der Lockerung des Bodens, der Beseitigung von Unkräutern und Ungräsern sowie der Mineralisation von Nährstoffen, insbesondere Stickstoff. Die Art und Weise der Bodenbearbeitung nimmt direkt Einfluss auf den Umfang der Bodenerosion durch Wasser und Wind sowie den Struktur- bzw. Gefügezustand des Bodens. Im Mittelpunkt der Facharbeit (im Einzelnen durch Projekte untersetzt) der Sächsischen Landesanstalt für Landwirtschaft steht die Entwicklung und Umsetzung boden- und gewässerschonender sowie ökonomisch tragfähiger Bodenbearbeitungsverfahren. Einen Schwerpunkt bildet hierbei die erosionsmindernde bzw. -verhindernde konservierende Bodenbearbeitung bzw. Direktsaat. Zur umfassenden und dauerhaften Anwendung der konservierenden Bodenbearbeitung werden acker- und pflanzenbauliche Managementstrategien entwickelt.
Nitrogen deposition in tropical areas is projected to increase rapidly in the next decades due to increase in N fertilizer use, fossil fuel consumption and biomass burning. As tropical forest ecosystems cover about 17 percent of the land surface and are responsible for about 40 percent of net primary production, even small changes in N (and consequently C) cycling can have global consequences. Until now studies an consequences of enhanced N input in tropical forest ecosystems have been very limited and even very rarely addressed its deleterious effects to the environment. There is undoubtedly a huge discrepancy between the expected increase in N deposition in the tropics and the present knowledge an how tropical forest ecosystems will react to this extra input of reactive N. Our research aims at quantifying the changes in processes of N retention (plant growth, biotic and abiotic N immobilization in the soil) and losses (gaseous N losses, nitrification, denitrification, leaching of different forms of dissolved N). Implementation of policy and management tools, like the international trading of carbon credits under the Kyoto Protocol, need researches that allow us to better understand the consequences of environmental change (N deposition) an forest productivity. Our research will have important implications for predicting future responses of forest C cycle to changes in N deposition, and for the role of N deposition in tropical forests to affect potential feedback mechanisms of CO2 fertilization and climate change.
Die im Zeitraum 1979 bis 1985 in Juelich, Ahrensburg, Deuselbach und Le Conquet durchgefuehrten Messungen des Nitrat-Gehaltes in Niederschlaegen ergaben charakteristische jahreszeitliche Veraenderungen im 15N/14N-Verhaeltnis des Nitrats (hoehere 15N/14N-Werte im Herbst und Winter als im Fruehling und Sommer mit einer jahreszeitlichen Amplitude von 4-5 Promille). Eine aehnliche jahreszeitliche Variation des 15N/14N-Verhaeltnisses ergab sich auch in partikulaerem Nitrat, das im Zeitraum 1978 bis 1985 in Juelich durch Abscheidung mit normalen Filtrationsgeraeten und mit High-Volume-Impaktoren gesammelt wurde. Dagegen zeigte gasfoermige Salpetersaeure ein nahezu konstantes 15N/14N-Verhaeltnis. Folgende Deutungen der jahreszeitlichen Variation des 15N/14N-Verhaeltnisses im Nitrat sind moeglich: (a) unterschiedliche Beteiligung natuerlicher und anthropogener Quellen von NOx an der Nitrat-Bildung waehrend der Jahreszeiten; (b) temperaturabhaengige Isotopenaustauschgleichgewichte; (c) unterschiedliche reaktionskinetische Isotopieeffekte bei der Bildung von gasfoermigem und partikulaerem Nitrat sowie unterschiedliche Anteile beider Species im gemessenen Nitrat waehrend der Jahreszeiten. Zur weiteren Interpretation des Effektes muessen 15N/14N-Messungen an NOx aus unterschiedlichen Quellen und deren jahreszeitliche Variation sowie Messungen der Isotopieeffekte bei verschiedenen Umwandlungsmechanismen im NOx/HNO3-Zyklus durchgefuehrt werden.
Der in der Landwirtschaft eingesetzte Stickstoffdünger bildet einen zentralen Baustein, um ein stabiles Pflanzenwachstum zu garantieren. Für die landwirtschaftlichen Betriebe bedeutet dies die Sicherung der Erträge und der Wirtschaftlichkeit. Dem entgegen stehen die bekannten negativen Auswirkungen der Stickstoffmengen, welche nicht durch die Pflanze aufgenommen werden, sondern entweder ausgewaschen werden und die Nitratwerte in Gewässern erhöhen oder in Form von Ammoniak oder Lachgas ausgasen und den Klimawandel begünstigen. Im Vorhaben LiqInject wird ein Gerät entwickelt und zur Serienreife geführt, welches durch ein geeignetes Ausbringverfahren - die Ablage des Düngers in einem tiefen und abgeschlossenen Depot - die negativen Auswirkungen minimiert und durch die Erhöhung der Effizienz gleichzeitig eine Reduktion der eingesetzten Düngermenge ermöglicht. Zudem wird die Durchwurzelung der Pflanzen angeregt und damit die Trockenresistenz des Bestands gestärkt. Zum Erreichen des Projektziels sind insgesamt vier Arbeitspakete geplant: AP 1- Die Etablierung eines Parzellenversuchsgeräts als Vorarbeit zur Durchführung der pflanzenbaulichen Versuche zum wissenschaftlichen Nachweis der angesprochenen Vorteile in der landwirtschaftlichen Praxis in AP 4. Die nach dem aktuellen Stand der Vorarbeiten bestehenden technischen Lösungen werden optimiert und unter AP 2 zu einem serienreifen Produkt weiterentwickelt. Die dazu nötige Applikationstechnik wird im AP3 konzipiert und aufgebaut. Als Ergebnis liefert die Durchführung des Projekts ein für Landwirte und Lohnunternehmer zur Verfügung stehendes Gerät zur Depotdüngung mit flüssigen Substraten, welches bei minimalen negativen Auswirkungen gleichzeitig eine gesteigerte Effizienz, Ertragsstabilität und Wirtschaftlichkeit bietet.
Der in der Landwirtschaft eingesetzte Stickstoffdünger bildet einen zentralen Baustein, um ein stabiles Pflanzenwachstum zu garantieren. Für die landwirtschaftlichen Betriebe bedeutet dies die Sicherung der Erträge und der Wirtschaftlichkeit. Dem entgegen stehen die bekannten negativen Auswirkungen der Stickstoffmengen, welche nicht durch die Pflanze aufgenommen werden, sondern entweder ausgewaschen werden und die Nitratwerte in Gewässern erhöhen oder in Form von Ammoniak oder Lachgas ausgasen und den Klimawandel begünstigen. Im Vorhaben LiqInject wird ein Gerät entwickelt und zur Serienreife geführt, welches durch ein geeignetes Ausbringverfahren - die Ablage des Düngers in einem tiefen und abgeschlossenen Depot - die negativen Auswirkungen minimiert und durch die Erhöhung der Effizienz gleichzeitig eine Reduktion der eingesetzten Düngermenge ermöglicht. Zudem wird die Durchwurzelung der Pflanzen angeregt und damit die Trockenresistenz des Bestands gestärkt. Zum Erreichen des Projektziels sind insgesamt vier Arbeitspakete geplant: AP 1- Die Etablierung eines Parzellenversuchsgeräts als Vorarbeit zur Durchführung der pflanzenbaulichen Versuche zum wissenschaftlichen Nachweis der angesprochenen Vorteile in der landwirtschaftlichen Praxis in AP 4. Die nach dem aktuellen Stand der Vorarbeiten bestehenden technischen Lösungen werden optimiert und unter AP 2 zu einem serienreifen Produkt weiterentwickelt. Die dazu nötige Applikationstechnik wird im AP3 konzipiert und aufgebaut. Als Ergebnis liefert die Durchführung des Projekts ein für Landwirte und Lohnunternehmer zur Verfügung stehendes Gerät zur Depotdüngung mit flüssigen Substraten, welches bei minimalen negativen Auswirkungen gleichzeitig eine gesteigerte Effizienz, Ertragsstabilität und Wirtschaftlichkeit bietet.
1. Untersuchung des Einflusses des Ausgangsgesteins und der Bodenart, des Humusgehaltes, der Witterungsverhaeltnisse sowie der mineralischen N-Duengung auf die Mineralisation der organischen Substanz des Bodens. 2. Pruefung der Verlagerung und des Austrags von Nitrat-Stickstoff. 3. Untersuchung der Zusammenhaenge zwischen Stickstoffangebot im Boden und der N-Aufnahme durch die Rebe. - Die o.g. Zielsetzungen sollen in einem 3-faktoriellen Versuch mit folgenden Faktoren geprueft werden: Faktor A: Bodenausgangsgesteine: 1. Buntsandstein, 2. Muschelkalk, 3. Gipskeuper. Faktor B: 1. ca. 1 v.H. Humus, 2. ca. 2 v.H. Humus. Faktor C: 1. 0 kg N/ha, 2. 120 kg N/ha. - Die Versuchskombinationen werden in 6 Wiederholungen angelegt. Jeweils 3 WH werden bereits ab dem Anlagejahr mit jeweils einer Pfropfrebe bepflanzt. Die Bepflanzung der uebrigen 3 WH erfolgt nach 3-jaehriger Versuchszeit. Der Rauminhalt der Container betraegt 0,6 m3.
Bisherige Ansätze zu Modellierung von Lachgasemissionen haben noch zu keinen zufriedenstellenden Ergebnissen geführt bzw. die Validierung von Modellen steht noch aus, da u.a. die Bestimmung der Gasdiffusion im Oberboden sowie der Gasübergang in Atmosphäre schwierig bestimmbar ist. Wir stellen für diesen Schritt einen empirischen Modellansatz zur Vorhersage von Lachgasemissionen aus oberflächennahen N2O-Gehalten des Bodens vor, der im Rahmen des Projektes zu einer allgemeinen Anwendbarkeit weiterentwickelt werden soll. Hierbei werden über empirische Transferfaktoren, die in Abhängigkeit von Bodenart, Wassergehalt und Temperatur ermittelt werden, die Emissionen aus Gasgehalten im Boden berechnet. Zur einfachen Bestimmung des N2O-Gehaltes im Oberboden steht ein in unserem Hause entwickeltes neuartiges Bodenprobenahmegerät zur Verfügung. Die Einfachheit der Probenahme und gleichzeitige Erfassung von Gas im Boden sowie den steuernden Größen Nmin und DOC, erlaubt zudem ein Monitoring der Spurengasemissionen auf regionaler Ebene sowie die Validierung bestehender Modelle.
| Origin | Count |
|---|---|
| Bund | 392 |
| Land | 21 |
| Type | Count |
|---|---|
| Förderprogramm | 382 |
| Text | 27 |
| unbekannt | 4 |
| License | Count |
|---|---|
| geschlossen | 23 |
| offen | 389 |
| unbekannt | 1 |
| Language | Count |
|---|---|
| Deutsch | 381 |
| Englisch | 101 |
| Resource type | Count |
|---|---|
| Bild | 2 |
| Dokument | 6 |
| Keine | 315 |
| Webdienst | 1 |
| Webseite | 93 |
| Topic | Count |
|---|---|
| Boden | 379 |
| Lebewesen und Lebensräume | 407 |
| Luft | 267 |
| Mensch und Umwelt | 413 |
| Wasser | 287 |
| Weitere | 410 |