API src

Found 772 results.

WMS True Orthophoto (NLP) Stand 2021

Das Geländemodell mit einer Bodenauflösung von 0.4 x 0.4 m wurde aus den Daten der Laserscan-Befliegung im Frühjahr 2015 abgeleitet. Genauer: das Geländemodell ist eine Interpolation der Laserstrahlen, die nicht von der Vegetation (Blätter, Äste, Stämme) reflektiert wurden, sondern vom Boden. Die hier gewählte Falschfarben-Kombination (nahes Infrarot an Position des grünen sichtbares Lichts) ermöglicht besser als eine Echtfarbendarstellung eine bessere visuelle Unterscheidung von Baumarten und eine frühe Erkennung von Wasserstress bei Bäumen. True Orthophoto haben den großen Vorteil, dass sie Baumkronen nicht - wie auf den üblichen Orthophotos - verkippt darstellen. Bei der vergleichenden Betrachtung von mehreren Zeitschnitten liegen die Baumkronenspitzen daher exakt an derselben Position. Das ermöglicht die automatische Analyse von Einzelbäumen, was für das detaillierte Monitoring der Walddynamik erforderlich ist. Stand 2021

WMS True Orthophoto (NLP) Stand 2020

Das Geländemodell mit einer Bodenauflösung von 0.4 x 0.4 m wurde aus den Daten der Laserscan-Befliegung im Frühjahr 2015 abgeleitet. Genauer: das Geländemodell ist eine Interpolation der Laserstrahlen, die nicht von der Vegetation (Blätter, Äste, Stämme) reflektiert wurden, sondern vom Boden. Die hier gewählte Falschfarben-Kombination (nahes Infrarot an Position des grünen sichtbares Lichts) ermöglicht besser als eine Echtfarbendarstellung eine bessere visuelle Unterscheidung von Baumarten und eine frühe Erkennung von Wasserstress bei Bäumen. True Orthophoto haben den großen Vorteil, dass sie Baumkronen nicht - wie auf den üblichen Orthophotos - verkippt darstellen. Bei der vergleichenden Betrachtung von mehreren Zeitschnitten liegen die Baumkronenspitzen daher exakt an derselben Position. Das ermöglicht die automatische Analyse von Einzelbäumen, was für das detaillierte Monitoring der Walddynamik erforderlich ist. Stand 2020

Natürliche Bodenfruchtbarkeit

Die natürliche Bodenfruchtbarkeit bildet die Grundlage für die land- und forstwirtschaftliche Nutzung unserer Böden sowie für die Etablierung standortangepasster Vegetation. Das Bodenbewertungsinstrument Sachsen (2022) dient als methodische Grundlage für die Bewertung auf Basis der Bodenkarte Dresden (2024). Haupteingangsparameter ist die Menge des pflanzenverfügbaren Wassers (nFKWe) unter zusätzlicher Berücksichtigung von Hangneigung, Grundwassereinfluss, Bodentyp und kapillarer Aufstiegsrate.

Besondere Standorteigenschaften

Böden mit besonderen Standorteigenschaften können eine spezialisierte Vegetation oder bestimmte Lebensräume hervorbringen. Dies betrifft insbesondere sehr nasse, trockene, nährstoffarme, basenreiche, skelettreiche oder flachgründige Böden. Für dieses Thema wurden aufgrund der Datenlage vorläufig nur besonders nasse und besonders trockene Standorte berücksichtigt

Waldfunktionen des Landes Brandenburg: WF 7200 Naturwald

Naturwälder sind Waldflächen, die nach repräsentativen, standörtlichen und vegetationskundlichen Kriterien ausgewählt werden und ihrer natürlichen Entwicklung überlassen bleiben. Die wissenschaftliche Beobachtung ihrer Entwicklung dient der Erforschung von Waldlebensgemeinschaften, ihrer Böden, ihrer Vegetation, Waldstruktur und Fauna sowie der Ableitung und Veranschaulichung von Erkenntnissen für die Waldbaupraxis.

INSPIRE-WFS SL Hydro - Physische Gewässer ATKIS Basis-DLM - Feuchtgebiet - OGC API Features

Dieser Dienst stellt für das INSPIRE-Thema Gewässernetz (Hydro-Physische Gewässer) aus ATKIS Basis-DLM umgesetzte Daten bereit. Das Thema Gewässernetz ist in Anhang I der INSPIRE-Richtlinie ist dieses Thema wie folgt definiert: „Elemente des Gewässernetzes, einschließlich Meeresgebieten und allen sonstigen Wasserkörpern und hiermit verbundenen Teilsystemen, darunter Einzugsgebiete und Teileinzugsgebiete. Gegebenenfalls gemäß den Definitionen der Richtlinie 2000/60/EG des Europäischen Parlaments und des Rates vom 23. Oktober 2000 zur Schaffung eines Ordnungsrahmens für Maßnahmen der Gemeinschaft im Bereich der Wasserpolitik (2) und in Form von Netzen.“ Zusätzlich findet man im Steckbrief Hydrografie GDI-DE(www.geoportal.de) folgende ergänzende Definition zum Thema. „Die Datenspezifikation zum Thema Hydrografie legt den Schwerpunkt auf die Darstellung und Beschreibung von Stehgewässern und Fließgewässern bzw. Seen, Flüssen und anderen Gewässern. Je nach Anwendungsfall gibt es thematische und geographische Einschränkungen bzw. eine unterschiedliche Semantik: Geographisch betrachtet sind alle Binnengewässer bzw. oberirdischen Wasserkörper im Binnenland angesprochen. Topographisch gesehen umfasst der Begriff „Gewässernetz“ die Gesamtheit aller von der Quelle bis zur Mündung zueinander fließenden Gewässer.„:Ein schlecht entwässertes oder periodisch überschwemmtes Gebiet, in dem der Boden mit Wasser gesättigt ist und Vegetation gedeiht.

INSPIRE Download Service (predefined ATOM) für Datensatz Staatswald Bestände Saarland

Beschreibung des INSPIRE Download Service (predefined Atom): Waldbestände des SaarForst Landesbetriebes (Staatswald) Die Aussengrenzen (Besitzgrenzen) des Staatswaldes wurden an die ALK angeglichen und sind damit katasterscharf. Die Innengrenzen (Abgrenzungen der Waldbestände eines Eigentümers untereinander) sind anhand der DGK5 und der digitalen Orthofotos mit 40 cm Bodenauflösung digitalisiert. Neben zahlreichen datenbankinternen Attributen ist folgendes Attribut entscheidend: Bestandsname ; landesweit besitzerübergreifend eindeutiger Schlüssel. Felder und ihre Bedeutung: BESTAND: Bestand; ALTSTR: Altersstruktur BALTER: Alter mittel; BALTERMI: Bestandsalter bis; BALTERMA: Bestandsalter von; BEFE: Befundeinheit; BESTLAGE: Lage der Teilfläche; BESTSTR: Bestandesstruktur; ENTWST: Entwicklungsstufe; BESTNAM: Bestandesname; UFLAECHE: Unterfläche; BEFAHRB: Befahrbarkeit in %; DAT: Datum; FLAECHE: Fläche in ha; SEEH: Seehöhe; ARTV_BA: Artenvielfalt der Baumarten; ARTV_BV: Artenvielfalt der Bodenvegetation; BEHVEG1: Behindernde Vegetation 1; BEHVEG2: Behindernde Vegetation 2; BETR_KL: Betriebsklasse; BEST_TYP: Bestandestyp; C: Sonderfeld; D: Driglichkeit; EINZELB: Schützenswerte Einzelbäume; EXPMA: Exposition bis; EXPMI: Exposition von; EXPOS: Exposition; FEINER: Erschließung in %; FORM: Baumform; GATTER: Gatter in %; GELFOMA: Geländeform bis; GELFOMI: Geländeform von; H_PFLZ: Pflegezustand; HOEHLE: Höhlenreichtum; HORIZ: Horizontale Strukturvielfalt; KALK: Kalkung; KONTRNUA: Kontrollnutzungsart; NEIG: Neigung; TOTHOLZ: Totholz stehend; ENTSTEH: Tothol liegend; VERTI: Vertikale Strukturvielfalt; WUCHSB: Wuchsbezirk; WUCHSG: Wuchsgebiet; BESCHRIFT: ; HBA: Dominierende Baumartengruppen; BU: Ateil Buche in %; BL: Anteil Fläche temp. ohne Baumbewuchs in %; DOU: Anteil Douglasie in %; ELB: Anteil Edellaubbäume in %; KI: Anteil Kiefer in %; EI: Anteil Eiche in %; FI: Anteil Fichte in %; LAE: Anteil Lärche in %; SALH: Summe der Laubhölzer in %; SLB: Anteil sonstiger Laubbäume in %; SANH: Summe der Nadelbäume in %; SNB:Anteil sonstiger Nadelbäume in %; UFL: Bestand; SHAPE_Area: Flächengröße ha; - Der/die Link(s) für das Herunterladen der Datensätze wird/werden dynamisch aus GetFeature Anfragen an einen WFS 1.1.0+ generiert

AZV Project West Greenland

Das Projekt "AZV Project West Greenland" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft / Deutscher Akademischer Austausch Dienst. Es wird/wurde ausgeführt durch: Universität Münster, Institut für Ökologie der Pflanzen.The AZV (Altitudinal Zonation of Vegetation) Project was initiated in the year 2002. On the basis of a detailed regional study in continental West Greenland the knowledge about altitudinal vegetation zonation in the Arctic is aimed to be enhanced. The main objectives of the project are: a) considering the regional study: characterize mountain vegetation with regard to flora, vegetation types, vegetation pattern and habitat conditions, investigate the differentiation of these vegetation characteristics along the altitudinal gradient, develop concepts about altitudinal indicator values of species and plant communities, extract suitable characteristics for the distinction and delimitation of vegetation belts, assess altitudinal borderlines of vegetation belts in the study area. b) considering generalizations: test the validity of the altitudinal zonation hypothesis of the Circumpolar Arctic Vegetation Map ( CAVM Team 2003), find important determinants of altitudinal vegetation zonation in the Arctic, develop a first small scale vegetation map of entire continental West Greenland. Field work consists of vegetational surveys according to the Braun-Blanquet approach, transect studies, soil analyses, long-time-measurements of temperature on the soil surface and vegetation mapping in three different altitudinal vegetation belts (up to 1070 m a.s.l.).

Bodenversiegelung und Bodenbedeckung Hamburg

Versiegelungskarte und Bodenbedeckung: Mit der Beschreibung des Ausmaßes der Bodenversiegelung kann sowohl ein quantitativer Überblick über die Ausdehnung städtischer Siedlungsräume gegeben als auch qualitative Einflüsse z.B. auf das Stadtklima und die Grundwasserneubildung abgebildet werden. Bodenversiegelung hat viele negative Auswirkungen auf Mensch und Umwelt. Versiegelte Flächen sind nicht in der Lage, Starkregenereignisse durch Versickerung abzumildern, sie tragen stark zur Entstehung von Hitzeinseln im städtischen Bereich bei und beeinträchtigen durch die gestörten Austauschvorgänge zwischen Erdreich und Atmosphäre die natürlichen Bodenfunktionen.   Seit 1984 wird die Entwicklung der Bodenversiegelung in Hamburg verfolgt. Bisher wurde dafür die Biotopkartierung genutzt. Anhand der dort für ganz Hamburg erfassten Biotoptypen konnte der Versiegelungsgrad geschätzt werden und wurde im 5-Jahresrythmus fortgeschrieben (letzter Bearbeitungsstand 2021). Mit Beginn des Jahres 2020 wird für Hamburg die Bodenbedeckung anhand eines trainierten KI-Modells vorhergesagt. Die erfassten Bodenbedeckungsklassen sind "niedrige Vegetation", "hohe Vegetation", "Gewässer" und "offener Boden" als unversiegelte Flächen, sowie "versiegelte Oberflächen" und "Gebäude" als versiegelte Flächen. Für die Versiegelungskarte wurden Raster mit einer Auflösung von 10, 25 und 50 m über Hamburg gelegt und für jede Rasterzelle der Anteil der versiegelten Flächen in Prozent bestimmt. Um eine bessere Übersicht zu gewährleisten wurde die Darstellung auf 10 Klassen beschränkt. Flächen mit Versiegelungsanteilen von 0 bis 10 % sind in die Versiegelungsklasse "1" und entsprechend fortlaufend bis Klasse "10" eingeteilt. Gewässer sind gesondert dargestellt und als Versiegelungsklasse "0" mit dem Versiegelungsgrad "Gewässer" eingeordnet. Unter "versiegelt" ist in den Daten zusätzlich der prozentuale Anteil der Versiegelung für jede Fläche angegeben. Dieser Datensatz aus Versiegelungskarte in drei verschiedenen Auflösungen und der Bodenbedeckungskarte steht derzeit für das Jahr 2020 zur Verfügung und soll stetig aktualisiert werden, wenn die erforderlichen Eingangsdaten vorliegen.

Dynamik und Anpassung der Naturwälder an den Klimawandel

Das Projekt "Dynamik und Anpassung der Naturwälder an den Klimawandel" wird/wurde ausgeführt durch: Hochschule Weihenstephan-Triesdorf, Zentrum für Forschung und Wissenstransfer, Institut für Ökologie und Landschaft.Das Projekt ermittelt Ausmaß, Stärke und ökologische Wirkungen der dürre- und hitzebedingten Waldschäden in Wäldern ohne forstliche Bewirtschaftung und vergleicht sie mit benachbarten Wirtschaftswäldern. Es wird geprüft, ob und unter welchen Voraussetzungen sich Wälder selbstgesteuert an den Klimawandel anpassen und leitet daraus Empfehlungen für die Einbindung natürlicher Prozesse in Anpassungsstrategien für Wirtschaftswälder ab. Wälder mit natürlicher Waldentwicklung bilden ein wichtiges Referenzsystem für den Waldnaturschutz und den naturnahen Waldbau. Diese unbewirtschafteten Naturwälder bestehen zum Teil schon seit Jahrzehnten in Form von z.B.Naturwaldreservaten und Kernzonen von Nationalparks. Die Entwicklung der Waldschäden der Trockenjahre 2018 und 2019 und die damit verbundene Veränderung von Störungsregimen und Lückendynamik zeigt, dass ihnen darüber hinaus in der Erkennung der Klimafolgen und der Anpassung der Wälder an den Klimawandel eine Schlüsselrolle zukommt. DANK lotet dieses Potenzial einschließlich der Transfermöglichkeiten in Wirtschaftswälder aus und erarbeitet daraus Empfehlungen für das Risikomanagement und Klimaanpassungsstrategien. Um dieses Ziel zu erreichen, werden entlang eines für Süd- und Mitteldeutschland repräsentativen Klimagradienten in zwei Nationalparks (Hainich und Berchtesgaden), 14 Naturwaldreservaten (NWR) und angrenzenden Wirtschaftswäldern die lang- und kurzfristigen Wirkungen des Klimawandels untersucht hinsichtlich: 1. Mortalität der Bäume, Lückendynamik und Waldstruktur, 2. Reaktionen in Radialwachstum und Wassernutzungseffizienz der Bäume, 3. Dynamik der Bodenvegetation einschließlich der Verjüngung, 4. Veränderungen in der Vogel- und Insektenfauna sowie der Funga. Aus der kombinierten Betrachtung lang- und kurzfristiger Ökosystemreaktionen werden praktische Handlungsempfehlungen für die Bewältigung von Schadereignissen sowie wissenschaftliche Grundlagen für die Entwicklung von Klimaanpassungsstrategien erarbeitet.

1 2 3 4 576 77 78