This dataset presents total organic carbon (TOC, wt%) contents in sediments at 19 stations in the Kiel Bight taken during the research cruises BE03/2016 (08.03.2016), BE10/2016 (19.10.2016), BE10/2018 (23.10.2018), BE03/2019 (15.03.2019), L23-13 (13.09.2023 - 15.09.2023), Sagitta24-1 (16.09.2024), Sagitta24-2 (23.09.2024), L25-2b (09.02.2025 - 17.02.2025) and EMB374 (04.09.2025 - 13.09.2025). Sediment cores (<50cm) were recovered using a Multicorer (MUC), Minicorer (MIC) or Rumohrlot (RL). The TOC analysis was performed using an Element Analyzer (Euro EA 3000). The data are used in combination with porewater and water column data to describe the sulfur geochemistry and cycling across different sites in the Kiel Bight and to identify the controlling factors governing the accumulation of hydrogen sulfide at the seafloor.
This dataset presents hydrogen sulfide (H2S) and nitrate (NO3-) concentrations in the water column at 15 stations in the Kiel Bight taken during the research cruises BE10/2018 (23.10.2018), BE03/2019 (15.03.2019), L23-13 (13.09.2023 - 15.09.2023), Hai24VE2 (24.09.2024) and EMB374 (04.09.2025 - 13.09.2025). Water samples were collected using Niskin bottles attached to a stainless-steel framework with CTD sensors. Concentrations of H2S and NO3- were measured photometrically (Hitachi U-2900). The data are used to describe seasonal hypoxia in the Kiel Bight water column and are combined with sediment and porewater data to identify controlling factors governing the accumulation of H2S at the seafloor. Furthermore, we compare the H2S measurements from the deepest Niskin bottle with bottom water H2S concentrations obtained from the benthic tracer profiler and from the overlying water in sediment cores. This allows us to illustrate H2S trends from several meters above the seafloor down to the sediment-water interface, and to discuss advantages and limitations of the different sampling techniques in characterizing geochemical conditions in the benthic environment.
This dataset presents porewater and bottom water data from 63 stations in the Kiel Bight taken during the research cruises BE03/2016 (08.03.2016), BE10/2016 (19.10.2016), BE10/2018 (23.10.2018), BE03/2019 (15.03.2019), L23-13 (13.09.2023 - 15.09.2023), Sagitta24-1 (16.09.2024), Sagitta24-2 (23.09.2024), L25-2b (09.02.2025 - 17.02.2025) and EMB374 (04.09.2025 - 13.09.2025). Short sediment cores (<50cm) were recovered using a Multicorer (MUC), Minicorer (MIC) or Rumohrlot (RL). At 22 of those stations, bottom water and porewater samples were analysed for total alkalinity (TA), ammonium (NH4+), sulfate (SO42-), hydrogen sulfide (H2S), dissolved iron (Fe2+) and dissolved manganese (Mn2+). At 41 stations, exclusively a bottom water sample was taken for H2S measurements. Bottom waters were sampled from the supernatant water in the sediment cores. Porewater samples were extracted from the sediments using rhizones. TA was determined by titration (METROHM 876 Dosimat Plus), NH4+ and H2S using a photometer (Hitachi U-2900), SO42- by Ion Chromatography (METROHM 761 Compact) and Fe2+ and Mn2+ by Inductively Coupled Plasma Optical Emission Spectroscopy (Varian 720-ES). The collected data will be used to determine the spatial and temporal variability of hydrogen sulfide in bottom waters of the Kiel Bight, (ii) identify the controlling factors governing the accumulation of hydrogen sulfide at the seafloor, and (iii) establish an early warning system of sulfidic seafloor conditions for regional stakeholders in the Baltic Sea.
During the research cruises BE03/2016 (08.03.2016), BE10/2016 (19.10.2016), BE10/2018 (23.10.2018), BE03/2019 (15.03.2019), L23-13 (13.09.2023 - 15.09.2023), Sagitta24-1 (16.09.2024), Sagitta24-2 (23.09.2024), Hai24VE2 (24.09.2024), L25-2b (09.02.2025 - 17.02.2025) and EMB374 (04.09.2025 - 13.09.2025), CTDs were deployed and sediment corers were retrieved at 99 stations in Kiel Bight in the southwestern Baltic Sea. Water column oxygen concentrations were determined using oxygen sensors attached to the CTD framework. At selected water depths, water samples were collected with Niskin bottles for the analysis of nitrate concentrations using an autoanalyzer. Short sediment cores (<50cm) were recovered using a Multicorer (MUC), Minicorer (MIC) or Rumohrlot (RL). Bottom waters were sampled from the supernatant water in the sediment cores. Solid phase sediment samples were analyzed for total organic carbon using an element analyzer. Porewater was extracted from the sediment cores using rhizones and analyzed for total alkalinity (titration), ammonium (photometer), sulfate (ion chromatography), hydrogen sulfide (photometer), dissolved iron (ICP-OES) and dissolved manganese (ICP-OES). The collected data will be used to (i) determine the spatial and temporal variability of hydrogen sulfide in bottom waters of the Kiel Bight, (ii) identify the controlling factors governing the accumulation of hydrogen sulfide at the seafloor, and (iii) establish an early warning system of sulfidic seafloor conditions for regional stakeholders in the Baltic Sea.
This dataset presents dissolved oxygen (O2) concentrations in the water column at 38 stations in the Kiel Bight, collected during the research cruises BE10/2018 (23.10.2018), BE03/2019 (15.03.2019), L23-13 (13.09.2023 - 15.09.2023), Hai24VE2 (24.09.2024), and EMB374 (04.09.2025 - 13.09.2025). The O2 data were measured using a dissolved oxygen sensor (Sea-Bird, SBE43) attached to a stainless-steel framework with CTD sensors. The O2 water column data is used to describe the effect of seasonal hypoxia in the Kiel Bight and is combined with sediment and porewater data to identify controlling factors governing the accumulation of H2S at the seafloor.
Additionally, at four shallow water stations (Booknis Eck, Buelk, Behrensdorf and Katharinenhof) temperature, salinity and dissolved oxygen are continuously logged at 2-3 m depth by self-contained data loggers. These are: (I) MiniDOT loggers (Precision Measurement Engineering; http://pme.com; ±10 µmol L-1 or ±5 % saturation) including copper antifouling option (copper plate and mesh) to measure dissolved oxygen concentration and (II) DST CT salinity & temperature loggers (Star-Oddi; http://star-oddi.com; ±1.5 mS cm-1) to record the conductivity. Both sensor types additionally record water temperature with an accuracy of ± 0.1 °C. The sampling interval was set to 30 minutes for all parameters. In context of the long-term monitoring project RegLocDiv (Regional-Local-Diversity) by M. Wahl (Franz, M. et al. 2019a), another seven stations were equipped with the same two types of sensors at 4-6 m depth to continuously record environmental parameters (again: temperature, salinity, dissolved oxygen) and included into this data set. These stations are at: Falshoeft, Booknis Eck, Schoenberg, Westermarkelsdorf, Staberhuk, Kellenhusen and Salzhaff (abandoned in 2023). Since 2021, in the context of implementing a reef monitoring to fulfil obligations by the EU Habitats Directive, step-by-step, eleven further stations were installed at reefs in the Schleswig-Holstein Baltic Sea. These are at: Platengrund (14 m depth) and Mittelgrund (8 m) (both since 2021), at Walkyriengrund (9 m), Brodtener Ufer (8 m), Außenschlei (11 m), Kalkgrund (8 m), Stollergrund (7.5 m) and Flueggesand (10 m) (all since 2022), as well as at Gabelsflach (10 m), Sagasbank (8.5 m) and Stabehuk (11.5 m) (all since 2023). Again, at all of these 11 stations, temperature, salinity and dissolved oxygen are continuously logged by self-contained data loggers: Conductivity (and temperature) is logged by HOBO® Salt Water Conductivity/Salinity Data Logger (Onset Computer Corporation, Bourne, MA, USA; https://www.onsetcomp.com) using the U2X protective housing to prevent fouling on the sensors. The same MiniDOT loggers (Precision Measurement Engineering) as at the above mentioned more shallow stations (including antifouling copper plate and mesh) are used to measure dissolved oxygen concentration. Dissolved oxygen concentration data measured by the MiniDOT loggers are corrected for a depth of 10 m (or 2,5 m on the shallow stations) using the software provided by the manufacturer. Additionally, a manual compensation for salinity was calculated (see details in Franz, M. et al. 2019b). Quality control was carried out by spike and gradient tests, following recommendations of SeaDataNet quality control procedures (see https://seadatanet.org/Standards/Data-Quality-Control). All data values were flagged according to applied quality checks using the following flags: 1 = Pass, 2 = Suspect, 3 = Fail, 4 = Visually suspect, 5 = Salinity compensation fail (further explanations can be found in Franz, M. et al. 2019b).
The dataset was acquired at the time-series station Boknis Eck (54.5°N and 10.0°E) at six standard depths (1, 5, 10, 15, 20, 25 m). The dataset contains data for ammonium (sampled with a rosette sampler and measured using a QuAAtro Continuous Segmented Flow Analyzer). The data are from 1979 to 2023.
The dataset was acquired at the time-series station Boknis Eck (54.5°N and 10.0°E) at six standard depths (1, 5, 10, 15, 20, 25 m). The dataset contains data for Chlorophyll a (sampled with a rosette sampler, measured using a fluorometer until 2019 and using high performance liquid chromatography from 2019). The data are from 2015 to 2021.
| Origin | Count |
|---|---|
| Wissenschaft | 8 |
| Type | Count |
|---|---|
| Daten und Messstellen | 8 |
| License | Count |
|---|---|
| offen | 8 |
| Language | Count |
|---|---|
| Englisch | 8 |
| Resource type | Count |
|---|---|
| Archiv | 1 |
| Datei | 7 |
| Topic | Count |
|---|---|
| Boden | 7 |
| Lebewesen und Lebensräume | 1 |
| Mensch und Umwelt | 8 |
| Wasser | 8 |
| Weitere | 8 |