API src

Found 37 results.

Related terms

Kanadische Waldschutzabkommen

Am 18. Mai 2010 haben neun Umweltschutzorganisationen mit 21 führenden Papier- und Holzherstellern - Mitglieder des Verbands der kanadischen Forstindustrie (FPAC) - das bislang größte Waldschutzabkommen Kanadas unterzeichnet. Das Canadian Boreal Conservation Agreement umfasst 72 Mio. Hektar borealen Waldes. Für 28 Millionen Hektar wurde ein sofortiger Einschlagstopp zugesagt, von dem in den unberührten Lebensräumen unter anderem bedrohte Arten wie Bären, Wölfe und Karibus profitieren. Das Abkommen ermöglicht einen dreijährigen Planungsprozess mit dem Ziel, 72 Millionen Hektar borealen Wald in geschützte Flächen umzuwandeln und eine ökologisch nachhaltige Forstwirtschaft einzuführen. Das bisher größte kanadische Waldabkommen umfasst eine Fläche, etwa doppelt so groß wie Deutschland, die über 25 Milliarden Tonnen Kohlenstoff speichert.

A dataset to explore the influence of functional diversity for long-term forest biomass across six European regions using the model LPJmL-FIT

Abstract

Emissionen der Landnutzung, -änderung und Forstwirtschaft

Emissionen der Landnutzung, -änderung und Forstwirtschaft Wälder, Böden und ihre Vegetation speichern Kohlenstoff. Bei intensiver Nutzung wird Kohlendioxid freigesetzt. Maßnahmen, die die Freisetzung verhindern sollen, richten sich vor allem auf eine nachhaltige Bewirtschaftung der Wälder, den Erhalt von Dauergrünland, bodenschonende Bearbeitungsmethoden im Ackerbau, eine Reduzierung der Entwässerung und Wiedervernässung von Moorböden. Bedeutung von Landnutzung und Forstwirtschaft Der Kohlenstoffzyklus stellt im komplexen Klimasystem unserer Erde ein regulierendes Element dar. Durch die Vegetation wird Kohlendioxid (CO 2 ) aus der Luft mittels ⁠ Photosynthese ⁠ gebunden und durch natürlichen mikrobiellen Abbau freigesetzt. Zu den größten globalen Kohlenstoffspeichern gehören Meere, Böden und Waldökosysteme. Wälder bedecken weltweit ca. 31 % der Landoberfläche (siehe FAO Report 2020 ). Bedingt durch einen höheren Biomassezuwachs wirken insbesondere ⁠ boreale ⁠ Wälder in der nördlichen Hemisphäre als Kohlendioxid-Senken. Nach § 1.8 des Klimarahmenabkommens der Vereinten Nationen werden Senken als Prozesse, Aktivitäten oder Mechanismen definiert, die Treibhausgase (THG), ⁠ Aerosole ⁠ oder Vorläufersubstanzen von Treibhausgasen aus der ⁠ Atmosphäre ⁠ entfernen. Im Boden wird Kohlenstoff langfristig durch sog. Humifizierungsprozesse eingebaut. Global ist etwa fünfmal mehr Kohlenstoff im Boden gespeichert als in der Vegetation (siehe IPCC Special Report on Land Use, Land Use Change and Forestry ). Boden kann daher als wichtigster Kohlenstoffspeicher betrachtet werden. Natürliche Mineralisierungsprozesse führen im Boden zum Abbau der organischen Bodensubstanz und zur Freisetzung von den Treibhausgasen CO 2 , Methan und Lachgas. Der Aufbau und Abbau organischer Substanz steht in einem dynamischen Gleichgewicht. Die voran genannten Prozesse werden unter der Kategorie/Sektor „Landnutzung, ⁠ Landnutzungsänderung ⁠ und Forstwirtschaft“ (kurz ⁠ LULUCF ⁠) bilanziert. Modellierung von Treibhausgas-Emissionen aus Landnutzungsänderung Jährliche Veränderungen des nationalen Kohlenstoffhaushalts, die durch Änderungen der ⁠ Landnutzung ⁠ entstehen, werden über ein Gleichgewichtsmodell berechnet, welches für Deutschland auf einem Stichprobensystem mit rund 36 Millionen Stichprobenpunkten basiert. Für die Kartenerstellung der Landnutzung und -bedeckung werden zunehmend satellitengestützte Daten eingesetzt, um so die realen Gegebenheiten genauer abbilden zu können. Die nationalen Flächen werden in die Kategorien Wald, Acker- sowie Grünland, Feuchtgebiete, Siedlungen und Flächen anderer Nutzung unterteilt (siehe auch Struktur der Flächennutzung ). Die Bilanzierung (Netto) erfolgt über die Summe der jeweiligen Zu- bzw. Abnahmen der Kohlenstoffpools (ober- und unterirdische ⁠Biomasse⁠, ⁠Totholz⁠, Streu, organische und mineralische Böden und Holzprodukte) in den verschiedenen Landnutzungskategorien. Allgemeine Emissionsentwicklung Die aktuelle Emissionsentwicklung ist für den Sektor ⁠ LULUCF ⁠ zunehmend dramatisch. In den letzten Jahren ist der Sektor von einer abnehmenden Netto-Kohlenstoffspeicherung im Wald sowie von hohen THG-Emissionen der organischen Böden des Acker- und Grünlands geprägt (Netto THG-Emissionen in 1990: rund +40 Mio. t CO 2 Äquivalente und in 2022: + 4 Mio. t CO 2 Äquivalente). Im Rahmen des novellierten Klimaschutzgesetzes (KSG) wird eine Schätzung für das Vorjahr Vorjahr 2023 vorgelegt. Diese liefert für LULUCF nur Gesamtemissionen, deren Werte als unsicher einzustufen sind. Die Werte liegen bei 3,6 Mio. t CO 2 Äquivalenten. Aus diesem Grunde werden in den folgenden Abschnitten nur die Daten der Berichterstattung 2024 für das Jahr 2022 betrachtet. Veränderung des Waldbestands Die Emissionen sowie die Speicherung von Kohlenstoff bzw. CO 2 für die Kategorie Wald werden auf Grundlage von Bundeswaldinventuren berechnet. Bei der Einbindung von Kohlenstoff spielt insbesondere der Wald eine entscheidende Rolle als Netto-Kohlenstoffsenke. In der Waldkategorie sind die Pools ⁠ Biomasse ⁠ (69,6%), mineralische Böden (21,8 %) und ⁠ Totholz ⁠ (8,6 %) ausschlaggebend. Zu den Emissionsquellen im Wald zählen Streu, Drainage organischer Böden, Mineralisierung und Waldbrände. Zusammen machen diese Emissionsquellen nur einen Anteil von 7,4 % an der Treibhausgasmenge des deutschen Waldes aus. In den Jahren 1990 und 2007 trafen auf Deutschland Orkane (2007 war es der Sturm Kyrill), die zu erheblichem Holzbruch mit einem daraus resultierenden hohen Sturmholzaufkommen in den Folgejahren führten (siehe dazu NIR ). In 1990 wurden rund -19,5 Mio. t CO 2 -Äquivalente im Wald an CO 2 -Emissionen gespeichert. Im Jahr 2022 waren es -39,7 Mio. t CO 2 -Äquivalente (siehe Tab. „Emissionen und Senken im Bereich ⁠ Landnutzung ⁠, ⁠ Landnutzungsänderung ⁠ und Forstwirtschaft“). Inwieweit die Ereignisse der letzten Jahre wie Stürme, ⁠ Dürre ⁠ und Insekten Einfluss auf den Kohlenstoffspeicher Wald haben, werden erst die Analysen der Bundeswaldinventur 2022 aufzeigen, deren Ergebnisse kontinuierlich ab dem Jahr 2023 (und der Berichterstattung 2025) im ⁠ LULUCF ⁠-Inventar berücksichtigt werden können. Offensichtlich ist aber: Der Zustand des deutschen Waldes ist zunehmend besorgniserregend. Treibhausgas-Emissionen aus Waldbränden Bei Waldbränden werden neben CO 2 auch sonstige Treibhausgase bzw. Vorläufersubstanzen (CO, CH 4 , N 2 O, NOx und ⁠ NMVOC ⁠) freigesetzt. Aufgrund der klimatischen Lage Deutschlands und der Maßnahmen zur Vorbeugung von Waldbränden sind Waldbrände ein eher seltenes Ereignis, was durch die in der Waldbrandstatistik erfassten Waldbrandflächen bestätigt wird. Das Jahr 2022 war ein überdurchschnittliches Waldbrandjahr im Vergleich zum langjährigen Mittel. Dies gilt sowohl hinsichtlich der Anzahl auftretender Waldbrände als auch in Bezug auf die jeweils betroffene Waldfläche pro Brand (siehe mehr zu Waldbränden ). Durch die Brände wurden ca. 0,28 Mio. t CO 2 -Äquivalente an Treibhausgasen freigesetzt. Werden nur die CO 2 -Emissionen aus Waldbrand (0,25 Mio. t CO 2 -Äquivalente) betrachtet, machen diese im Verhältnis zu den CO 2 -Emissionen des deutschen Gesamtinventars nur einen verschwindend kleinen Bruchteil aus. Veränderungen bei Ackerland und Grünland Mit den Kategorien Ackerland und Grünland werden die Emissionen sowie die Einbindung von CO 2 aus mineralischen und organischen Böden, der ober- und unterirdischen ⁠ Biomasse ⁠ sowie direkte und indirekte Lachgasemissionen durch Humusverluste aus Mineralböden nach ⁠ Landnutzungsänderung ⁠ sowie Methanemissionen aus organischen Böden und Entwässerungsgräben berücksichtigt. Direkte Lachgas-Emissionen aus organischen Böden werden im Bereich Landwirtschaft unter landwirtschaftliche Böden berichtet. Für die Landnutzungskategorie Ackerland betrugen im Jahr 2022 die THG-Gesamtemissionen 15,6 Mio. t CO 2 Äquivalente und fielen damit um 0,9 Mio. t CO 2 Äquivalente ≙ 6 % größer im Vergleich zum Basisjahr 1990 aus (siehe Tab. „Emissionen und Senken im Bereich ⁠ Landnutzung ⁠, Landnutzungsänderung und Forstwirtschaft“). Hauptquellen sind die ackerbaulich genutzten organische Böden (74,1 %) und die Mineralböden (21,2 %), letztere hauptsächlich infolge des Grünlandumbruchs. Die ⁠ anthropogen ⁠ bedingte Netto-Freisetzung von CO 2 aus der Biomasse (4,7 %) ist im Ackerlandsektor gering. Dominierendes ⁠ Treibhausgas ⁠ in der Kategorie Ackerland ist CO 2 (2022: 14,7 Mio. t CO 2 Äquivalente, rund 97 %). Die Landnutzungskategorie Grünland wird in Grünland im engeren Sinne, in Gehölze und weiter in Hecken unterteilt. Die Unterkategorien unterscheiden sich bezüglich ihrer Emissionen sowohl qualitativ als auch quantitativ deutlich voneinander. Die Unterkategorie Grünland im engeren Sinne (dazu gehören z.B. Wiesen, Weiden, Mähweiden etc.) ist eine CO 2 -Quelle, welche durch die Emissionen aus organischen Böden dominiert wird. Für die Landnutzungskategorie Grünland wurden Netto-THG-Emissionen insgesamt in Höhe von 22,1 Mio. t CO 2 Äquivalenten errechnet. Diese fallen um rund 6,7 Mio. t CO 2 Äquivalente ≙ 23 % niedriger als im Basisjahr 1990 aus. Dieser abnehmende Trend wird durch die Pools Biomasse und Mineralböden beeinflusst. Mineralböden stellen eine anhaltende Kohlenstoffsenke dar. Die zunehmende Senkenleistung der Mineralböden der Unterkategorie Grünland im engeren Sinne beträgt in 2022 -5,1 Mio. t CO 2 . Moore (organische Böden) Drainierte Moorböden (d.h. entwässerte organische Böden) gehören zu den Hotspots für Treibhausgase und kommen in den meisten Landnutzungskategorien vor. Im Torf von Moorböden ist besonders viel Kohlenstoff gespeichert, welches als Kohlenstoffdioxid freigesetzt wird, wenn diese Torfschichten austrocken. Bei höheren Wasserständen werden mehr Methan-Emissionen freigesetzt. Zusätzlich entstehen Lachgas-Emissionen. Im Jahr 2022 wurden aus Moorböden um die 53,4 Mio. t CO 2 Äquivalente an THG-Emissionen (CO 2 -Emissionen: 47,9 Mio. t CO 2 Äquivalente, Methan-Emissionen: 1,7 Mio. t CO 2 Äquivalente, Lachgas-Emissionen: 0,4 Mio. t CO 2 Äquivalente) freigesetzt. Das entspricht etwas mehr als 7 % der gesamten Treibhausgasemissionen in Deutschland im Jahr 2022. (siehe Abb. "⁠ Treibhausgas ⁠-Emissionen aus Mooren"). Die Menge an freigesetzten CO 2 -Emissionen aus Mooren ist somit höher als die gesamten CO 2 -Emissionen des Industriesektors (41,0 Mio. t CO 2 ). Landwirtschaftlich genutzte Moorböden Drainierte Moorböden werden überwiegend landwirtschaftlich genutzt. Die dabei entstehenden Emissionen aus organischen Böden werden deshalb in den Landnutzungskategorien Ackerland und Grünland im engeren Sinne (d.h. Wiesen, Weiden, Mähweiden) erfasst. Hinzu kommen die Lachgasemissionen aus den organischen Böden (Histosole) des Sektors Landwirtschaft. Insgesamt wurde für diese Bereiche eine Emissionsmenge von rund 43,0 Mio. t CO 2 -Äquivalente in 2022 (folgende Angaben in Mio. t CO 2 -Äquivalente: CO 2 : 38,6, Methan: 1,0 und Lachgas: 3,2) freigesetzt, was insgesamt einem Anteil von 80,5 % an den THG-Emissionen aus Mooren entspricht. Feuchtgebiete Unter der Landnutzungskategorie „Feuchtgebiete“ werden in Deutschland verschiedene Flächen zusammengefasst: Zum einen werden Moorgebiete erfasst, die vom Menschen kaum genutzt werden. Dazu gehören die wenigen, naturnahen Moorstandorte in Deutschland, aber auch mehr oder weniger stark entwässerte Moorböden (sogenannte terrestrische Feuchtgebiete). Zum anderen werden unter Feuchtgebiete auch Emissionen aus Torfabbau (on-site: ⁠ Emission ⁠ aus Torfabbauflächen; off-site: Emissionen aus produziertem und zu Gartenbauzwecken ausgebrachtem Torf) erfasst. Allein die daraus entstehenden CO 2 -Emissionen liegen bei rund 2,0 Mio. t CO 2 -Äquivalente. Im Inventar neu aufgenommen sind die Emissionen aus natürlichen und künstlichen Gewässern. Zu letzteren gehören Fischzuchtteiche und Stauseen ebenso wie Kanäle der Wasserwirtschaft. Durch diese Neuerung fließen nun Methanemissionen in das Treibhausgasinventar ein, die bislang nicht berücksichtigt wurden. Dadurch liegen nun die Netto-Gesamtemissionen der Feuchtgebiete bei 9,7 Mio. t CO 2 -Äquivalenten im Jahr 2022 und haben im Trend gegenüber dem Basisjahr 1990 um 10 % zugenommen. Diese Zunahme im Trend lässt sich auf eine zwischenzeitlich verstärkte Umwidmung von Grünland-, Wald- und Siedlungsflächen zurückführen. Nachhaltige Landnutzung und Forstwirtschaft sowie weitere Maßnahmen Im novellierten Bundes-Klimaschutzgesetz sind in § 3a Klimaziele für den ⁠ LULUCF ⁠-Sektor 2021 festgeschrieben worden. Im Jahr 2030 soll der Sektor eine Emissionsbilanz von minus 25 Mio. t ⁠ CO2 ⁠-Äquivalenten erreichen. Dieses Ziel könnte unter Berücksichtigung der aktuellen Zahlen deutlich verfehlt werden. Um dieses Ziel zu erreichen, sind ambitionierte Maßnahmen zur Emissionsminderung, dem Erhalt bestehender Kohlenstoffpools und der Ausbau von Kohlenstoffsenken notwendig. Im Koalitionsvertrag adressieren die Regierungsparteien diese Herausforderungen. Das ⁠ BMUV ⁠ hat bereits den Entwurf eines „Aktionsprogramm natürlicher Klimaschutz“ vorgelegt, das nach einer Öffentlichkeitsbeteiligung im letzten Jahr innerhalb der Regierung abgestimmt wird. Auf die Notwendigkeit für ambitionierte Klimaschutzmaßnahmen und die Bedeutung von naturbasierten Lösungen für den Klimaschutz hat das Umweltbundesamt in verschiedenen Studien (siehe hierzu Treibhausgasminderung um 70 Prozent bis 2030: So kann es gehen! ) hingewiesen Seit dem Jahr 2015 wird die Grünlanderhaltung im Rahmen der EU-Agrarpolitik über das sogenannte Greening geregelt (Verordnung 1307/2013/EU) . Das bedeutet, dass zum ein über Pflug- und Umwandlungsverbot Grünland erhalten und zum anderen aber auch durch staatliche Förderung die Grünlandextensivierung vorangetrieben werden soll. Die Förderung findet auf Bundesländerebene statt. In der Forstwirtschaft sollen Waldflächen erhalten oder sogar mit Pflanzungen heimischer Baumarten ausgeweitet und die verstärkte Holznutzung aus nachhaltiger Holzwirtschaft (siehe Charta für Holz 2.0 ) gefördert werden. Weitere Erstaufforstungen sind bereits bewährte Maßnahmen, um die Senkenwirkung des Waldes zu erhöhen. Des Weiteren werden durch das Bundesministerium für Ernährung und Landwirtschaft (⁠ BMEL ⁠) internationale Projekte zur nachhaltigen Waldwirtschaft, die auch dem deutschen Wald zu Gute kommen, zunehmend gefördert. Eine detailliertere Betrachtung dazu findet sich unter Klimaschutz in der Landwirtschaft . Die ⁠ Treibhausgas ⁠-Emissionen aus drainierten Moorflächen lassen sich verringern, indem man den Wasserstand gezielt geregelt erhöht, was zu geringeren CO 2 -Emissionen führt. Weitere Möglichkeiten liegen vor allem bei Grünland und Ackerland in der landwirtschaftlichen Nutzung nasser Moorböden, der sogenannten Paludikultur (Landwirtschaft auf nassen Böden, die den Torfkörper erhält oder zu dessen Aufbau beiträgt). Eine weitere Klimagasrelevante Maßnahme ist die Reduzierung des Torfabbaus und der Torfanwendung (siehe Moorklimaschutz ).

Physarum virescens Ditmar Schleimpilze Ungefährdet

Bevorzugt dicke Moospolster (z.B. Dicranum sp.) am Boden; gern in lichten, relativ trockenen Kiefernwäldern. Ein Nachweis von Müller (2007) an Streu von Calluna. Durch die kräftig grünlichgelbe Farbe der sich bildenden Fruchtkörper kurzzeitig sehr auffällig, reife Fruchtkörper sind dagegen leicht zu übersehen. Deutlich häufiger in borealen Wäldern.

Workshop: '10 Jahre Living Lakes - Nachhaltige Entwicklung am Baikalsee'

Das Projekt "Workshop: '10 Jahre Living Lakes - Nachhaltige Entwicklung am Baikalsee'" wird vom Umweltbundesamt gefördert und von Global Nature Fund durchgeführt. Die Deutsch-Russische Baikalsee-Konferenz findet vom 25.-30. August 2009 in Ulan-Ude (Hauptstadt der Republik Burjatien) statt. Der Fokus der Konferenz liegt auf dem Schutz des Baikalsees. Die Konferenz bietet eine Plattform zum Erfahrungsaustausch über die nachhaltige Entwicklung von Seenregionen zwischen deutschen, russischen und internationalen Experten. Anlass der Veranstaltung ist das zehnjährige Jubiläum des Baikalsees als Partner im Netzwerk 'Living Lakes'. Der Baikalsee und seine Umwelt weisen eine einzigartige Flora und Fauna auf. Etwa zwei Drittel der rund 1.500 Tier- und 1.000 Pflanzenarten sind endemisch, kommen also ausschließlich hier vor. Bemerkenswert ist unter anderem das Vorkommen der Baikalrobbe (Phoca sibirica), einer nur im Süßwasser des Baikalsees vorkommenden Robbenart. Das Wasser des Baikalsees wird ständig auf natürliche Weise geklärt, so dass sein Reinheitsgrad extrem hoch ist. Diese Reinheit ist durch die Einleitung von Industrie- und Hausabwässern gefährdet. An den Baikalsee grenzt ein zwei Millionen Hektar großer Nationalpark, der eine Vielzahl von Floren- und Faunenelementen der sibirischen Taiga sowie der südlich angrenzenden innerasiatischen Steppengebieten beherbergt.

Wachstumsmonitoring im borealen Wald: Das Stammdickenwachstum von Fichte, Kiefer, Aspe und Birke im Jahresverlauf - Wann beginnt es, wie ist der Verlauf, wann endet es?

Das Projekt "Wachstumsmonitoring im borealen Wald: Das Stammdickenwachstum von Fichte, Kiefer, Aspe und Birke im Jahresverlauf - Wann beginnt es, wie ist der Verlauf, wann endet es?" wird vom Umweltbundesamt gefördert und von Universität Freiburg, Professur für Waldwachstum durchgeführt. In Kooperation mit Partnern aus Russland und Finnland haben wir in einem naturnahen Mischbestand in der mittleren Taiga in NW-Russland (forstliche Versuchsstation Lyaly, Republik Komi) eine ökologische Freilandmessstation installiert. Dort werden die Radialveränderungen der Baumschäfte von Fichten (Picea obovata), Kiefern (Pinus sylvestris), Aspen (Populus tremulus) und Birken (Betula spec.) mit Punkt-Dendrometern zeitlich hochaufgelöst registriert. An einem Teilkollektiv der Untersuchungsbäume wird zusätzlich die elektrische Leitfähigkeit der Baumstämme kontinuierlich gemessen. An der Messstation ist auch ein Magnetometer installiert, der Änderungen im Erdmagnetfeld aufzeichnet. Mit dieser speziellen Messeinrichtung ist es möglich, Auswirkungen von Schwankungen des Erdmagnetfeldes auf die Hydrologie und das Baumwachstum zu erkennen und zu analysieren. Das Wachstumsmonitoring liefert Informationen über die Bedeutung verschiedener Standorts- und Umweltfaktoren auf das kurz-, mittel- und langfristige Wuchsverhalten der Bäum im borealen Wald. Damit werden wichtige Grundlagen für die Abschätzung der Potenziale und Risiken vorhergesagter Umweltveränderungen geschaffen.

Einfluss von Dürre auf das Waldsterben in Europa und Westkanada (Water03 - IDDEC)

Das Projekt "Einfluss von Dürre auf das Waldsterben in Europa und Westkanada (Water03 - IDDEC)" wird vom Umweltbundesamt gefördert und von Technische Universität München, Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt, Fachgebiet für Ökoklimatologie durchgeführt. While many forests and woodlands may be at increasing risk of climate-induced dieback, significant knowledge gaps remain in our understanding of the causes of climate-induced tree mortality. Recent publications underscore the critical importance of understanding the mechanisms that trigger plant mortality (Adams et al., 2009), particularly regarding features and traits that could be used as physiological indicators of tree death (McDowell et al., 2008). Alterations in wood formation and structure often occur prior to visual symptoms of crown decline. Thus, physiological, morphological, and anatomical traits related to xylem ('water-conducting pipes') may provide early-warning signals of drought-induced dieback. A better mechanistic understanding of drought-induced forest dieback would improve our ability to predict tree mortality and future changes in forest composition and coverage. The project aims at studying how drought episodes promote dieback via changes in xylem structure. Different genotypes of aspen (parkland region and the southern boundary of the boreal forest in western Canada), oak (Southern Europe) and pine (experiment) will be studied along gradients of moisture availability. Xylem-related traits that will be measured include ring-width, number of missing rings, quantitative wood anatomical structures (diameter and frequency of vessels/ tracheids, inter-vessel pit structure) as well as cavitation resistance, hydraulic conductivity, and water potentials.

Wachstumsmonitoring von Fichte, Kiefer, Aspe und Birke in der mittleren Taiga, Komi, NW-Russland

Das Projekt "Wachstumsmonitoring von Fichte, Kiefer, Aspe und Birke in der mittleren Taiga, Komi, NW-Russland" wird vom Umweltbundesamt gefördert und von Universität Freiburg, Professur für Waldwachstum durchgeführt. In einem naturnahen Mischbestand werden an der forstlichen Versuchsstation Lyaly (Republik Komi) die Radialveränderungen der Baumschäfte von Fichten (Picea obovata), Kiefern (Pinus sylvestris), Aspen (Populus tremulus) und Birken (Betula spec.) zeitlich hochaufgelöst registriert. An einem Teilkollektiv der Untersuchungsbäume wird zusätzlich im 5-Minuten Takt die elektrische Leitfähigkeit des Stammes registriert. Gleichzeitig werden die Lufttemperatur, die Luftfeuchte sowie die Bodenfeuchte gemessen. Am Untersuchungsstandort werden mit einem Magnetometer Schwankungen des Erdmagnetfeldes in den drei Raumrichtungen registriert. Aus den Analysen werden Informationen über die Bedeutung verschiedener Standorts- und Umweltfaktoren auf das kurz-, mittel- und langfristige Wuchsverhalten von Bäumen erwartet.

The impact of forest cover transformation on the status and distribution of Siberian spruce grouse, an endemic old-growth specialist of the Russian Far East

Das Projekt "The impact of forest cover transformation on the status and distribution of Siberian spruce grouse, an endemic old-growth specialist of the Russian Far East" wird vom Umweltbundesamt gefördert und von Universität Freiburg, Forstzoologisches Institut, Professur für Wildtierökologie und Wildtiermanagement durchgeführt. Siberian Spruce Grouse is an example of a poorly studied species associated with old-growth boreal forests. According to IUCN criteria, it is classified as Near Threatened but the current rates of timber harvest and an increase in the extents and frequency of forest fires in the Russian Far East suggest a need for a higher protection category. However, the necessary information on population trends and/or rates of habitat loss are missing. The research project aims at improving the knowledge about habitat associations of Siberian grouse at different spatial scales, at identifying rates of habitat loss in recent decades and at reconstructing population trends. These trends will be analyzed in the context of land cover transformations for several protected areas across the species range. Results will be compared with population responses to habitat deterioration of the better studied Canadian Spruce Grouse in order to come up with recommendations for Siberian grouse conservation.

Teilprojekt: Bi-stabilität von borealen Wälder am El'gygytgyn See (NO Russland) während der Interglaziale der letzten 2,15 Millionen Jahre

Das Projekt "Teilprojekt: Bi-stabilität von borealen Wälder am El'gygytgyn See (NO Russland) während der Interglaziale der letzten 2,15 Millionen Jahre" wird vom Umweltbundesamt gefördert und von Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung durchgeführt. Die ökosystemaren Dienstleistungen borealer Wälder sind von zentraler Bedeutung für das Wohlergehen der Menschheit und unterscheiden sich stark zwischen immergrünen und summergrünen Nadelwäldern. In dem vorgeschlagenen Projekt soll die höchst-relevante Frage beantwortet werden 'Warum Nordasien im Holozän von Lärchenwäldern dominiert wird wohingegen es in früheren Interglazialen trotz scheinbar gleicher klimatischer Bedingungen von immergrünen Nadelwäldern bedeckt war?. Wir vermuten, dass sommergrüne und immergrüne Nadelwälder alternative stabile Zustände von borealen Wäldern darstellen die unter gleichen Klimabedingungen vorkommen, jedoch durch unterschiedliche Umweltbedigungen während des vorangegangenen Glazials geprägt werden u.a. durch die unterschiedliche Zusammensetzung der glazialen Refugien.Diese Hypothese wollen wir mit Hilfe einer Multi-Proxy-Analyse von Sedimenten des El'gygytgyn-Sees (Chukotka, NO Asien) untersuchen, die im Rahmen des ICDP Programms gewonnen wurden.Die Untersuchungen im Work Package 1 (AG M. Melles) zielen auf die Rekonstruktion der regionalen Vegetationsveränderungen innerhalb der letzten 2 Millionen Jahre anhand der Analyse von ca. 500 Pollenspektren und deren Integration in den vorhanden Pollendatensatz.Die Untersuchung der sedimentären fossilen DNA im Rahmen von Work Package 2 (AG U. Herzschuh) soll die Interpretierbarkeit von der Pollendaten ermöglichen. Insbesondere soll die regionale Natur der Pollensignals verifiziert werden. Außerdem soll anhand von artspezifischen DNA-Markern überprüft werden, ob es sich bei denen im Pollensignal ermittelten holzigen Gattungen um baum- oder buschförmige Arten handelt.Die Rekonstruktion der regionalen Klimaänderungen anhand von Untersuchungen des stabilen Sauerstoffsignals von Diatomeenschalen ausgewählter Glazial-Interglazial-Zyklen steht im Zentrum von Work Package 3 (AG H. Meyer). Die erzielten Ergebnisse sollen genutzt werden um zu überprüfen, welche der global verfügbare hoch-auflösende Paläoklimasequenzen das regionale Klima in Nord-Asien auf Glazial-Interglazial-Zeitskala verlässlich abbilden.Alle erzielten Ergebnisse sollen dann in Work Package 4 durch alle Projekt-Beteiligte zusammengeführt und re-analysiert werden um die postulierte Hypothese zu untersuchen.

1 2 3 4