Während Revisionsarbeiten, zu denen der Atommeiler seit dem 19.07. abgeschaltet war, wurde das Lösen einer Sicherungsmutter an den Steuerstäben im Reaktordruckbehälter entdeckt. Auch das sie haltende Gewinde war zerstört. Zuvor hatten Sonderprüfungen Hinweise auf erneute Risse an Rohrleitungen im Speisewasser ergeben. (Quelle: Greenpeace)
Lieber Leser*innen, macht sich der Klimawandel mancherorts durch Dürren und Hitze bemerkbar, sind es andernorts steigende Meerwasserpegel und Überflutungen. Lokale und regionale Strategien zur Klimaanpassung werden wichtiger. Dem voraus gehen Klimarisikoanalysen – insbesondere auf kommunaler Ebene. Wie das funktionieren kann, erläutert eine praxisnahe Handlungsempfehlung des Umweltbundesamts, auf die wir in unserem Schwerpunktartikel eingehen. Außerdem geht es in dieser Newsletter-Ausgabe etwa um digitale Gefahrenkommunikation bei Hochwasser, um Naturschutz mit Daten aus dem All und um das Potential, das in Flechten als Frühwarnsystem steckt. Eine spannende Newsletter-Lektüre wünscht Ihr KomPass-Team Klimarisikoanalysen für Kommunen: globales Problem lokal angehen Klimarisikoanalyse auf kommunaler Ebene Quelle: istockphoto.com / Simon Dux Der Klimawandel betrifft die ganze Welt. Die konkreten Folgen und deren Schwere sind jedoch verschieden. Um den Herausforderungen des Klimawandels treffend zu begegnen, sind daher lokal und regional angepasste Strategien gefragt. Eine neue Veröffentlichung des Umweltbundesamts liefert praxisnahe Handlungsempfehlungen für Klimarisikoanalysen in Kommunen. „Blauer Kompass“ wird im September verliehen Mit dem „blauen Kompass“ werden jährlich die besten Projekte zur Vorsorge und Anpassung an die Folgen des Klimawandels ausgezeichnet. In diesem Jahr wird die höchste staatliche Auszeichnung am 16. September im Bundesumweltministerium verliehen. Aus über 240 Bewerbungen wurden zunächst 20 Projekte für den Preis nominiert. Mittlerweile hat die Jury aus Expert*innen des BMUV, des UBA, den Kommunalen Spitzenverbänden sowie aus der Wirtschaft, Forschung, dem Ehrenamt und der Klimakommunikation, fünf Sieger ausgewählt. Welche das sind und wer sich unter anderem über je 25.000 Euro Preisgeld freuen darf, wird bei der Preisverleihung bekannt gegeben. Die Veranstaltung wird auch live im Internet übertragen. 5,6 Millionen Euro Förderung für Acker-Bewässerungsprojekt in NRW Im nordrhein-westfälischen Bedburg-Pütz soll ein neues Bewässerungssystem die sparsame und effiziente Wasserversorgung für den Anbau von Kartoffeln, Möhren, Zwiebeln und Feldgemüse sichern. Das dortige Landschafts- und Umweltministerium fördert das Projekt mit 5,6 Millionen Euro. Das Vorhaben sei ein Leuchtturmprojekt zur Anpassung an den Klimawandel und werde die Wasserversorgung landwirtschaftlicher Betriebe auch in trockenen Monaten sichern, betont Ministerin Ulrike Heinen-Esser. Das Projekt umfasst den Neubau von sechs Tiefbrunnen und einem Leitungsnetz von circa 20 Kilometern Länge, mit dem künftig bis zu 2.500 Hektar mit rund 1,5 Millionen Kubikmeter Wasser jährlich bewässert werden können. BMUV-Förderung für Klimawandelanpassung in sozialen Einrichtungen Die Klimakrise stellt auch soziale Einrichtungen wie Kindertagesstätten, Schulen, Altenpflegeeinrichtungen und Krankhäuser vor Herausforderungen. Auch sie müssen Maßnahmen ergreifen, um sich an den Klimawandel anzupassen – etwa durch Verschattungen der überhitzen Gebäude und Gelände oder mit der Installation von Wasserspendern. Das Bundesumweltministerium hat dazu das Förderprogramm „Klimaanpassung in sozialen Einrichtungen“ ins Leben gerufen, das bundesweit Projekte unterstützt. Zuletzt übergab Bundesumweltministerin Steffi Lemke sechs Förderschecks an soziale Einrichtungen, um bei den geplanten Maßnahmen zu helfen. Im vergangenen Jahr konnten bereits 192 Anträge erfolgreich bewilligt werden. Niedrigwasserampel in Brandenburg ist online Um Brandenburg an fehlende Niederschläge, Trockenheit und Niedrigwasser besser anzupassen, hat das Klimaschutzministerium das „Gesamtkonzept zur Anpassung an den Klimawandel im Politikfeld Wasser“ erarbeitet. Das Konzept beinhaltet acht Module, zu denen unter anderem die Stabilisierung des Landschaftswasserhaushalts, ein Hochwasser- und Starkregenrisikomanagement und der Moorschutz gehören. Modulübergreifend wurde bereits im Rahmen des Landesniedrigwasserkonzepts ein pegelspezifisches Niedrigwasserinformationssystem entwickelt – diese sogenannte Niedrigwasserampel ist bereits online. Das Gesamtkonzept Wasser ist Teil der Brandenburger Anpassungsstrategien zur Minderung der Klimawandelfolgen. Hessen fördert klimaangepasste öffentliche Wasserversorgung Mit rund 430.000 Euro fördert Hessen ein Wasserkonzept, das die Oberhessischen Versorgungsbetriebe AG (OVAG) gemeinsam mit ihren Kommunen erstellt. Mit dem Konzept, das im Versorgungsgebiet der OVAG 20 kommunalen Wasserversorgern zugutekommen wird, sollen die Regionen besser auf die klimatischen Veränderungen vorbereitet werden. Dazu gehört etwa eine Prognose der Trinkwasserversorgung und die Ermittlung von Chancen und Risiken, die bei der langfristigen Sicherstellung berücksichtigt werden müssen. Daraus abgeleitet soll die nachhaltige Wasserversorgung langfristig gewährleistet werden – etwa durch Ressourcenschutz, Einsparungen und Verwendung von Brauchwasser statt Trinkwasser. Resümee der Vernetzungskonferenz des Zentrums KlimaAnpassung Erstmals hat das Zentrum KlimaAnpassung (ZKA) die Vernetzungskonferenz „Kommunale Klimaanpassung im Dialog“ veranstaltet. Bei dem zweitägigen Treffen im Auftrag des Bundesumweltministeriums stellt Bundesumweltministerin Steffi Lemke das neue „Sofortprogramm Klimaanpassung“ vor, für das bis 2026 60 Millionen Euro bereitgestellt werden. Neben Themenvorträgen gab es Diskussionsrunden, in denen deutlich wurde: Für die Kommunen spielen vor allem verlässliche Daten und deren Verknüpfung eine zentrale Rolle für wirksame Klimaanpassung. Ebenso wichtig sei Geld und ausreichendes Personal. Die Finanzierung sollte daher unbürokratisch gestaltet sein. Die nächste Vernetzungskonferenz ist für den Herbst geplant. Aktionsbündnis entwickelt Hitzeschutzpläne für Berlin Berlin hat als erste Großstadt gemeinsam mit Gesundheitsakteur*innen Hitzeaktionspläne aufgestellt. Dafür wurde das „Aktionsbündnis Hitzeschutz Berlin“ gegründet, dem neben der Ärztekammer Berlin auch die Deutsche Allianz Klimawandel und Gesundheit (KLUG) sowie die Senatsverwaltung für Wissenschaft, Gesundheit, Pflege und Gleichstellung angehört. Für die Hitzeschutzpläne wurden unter anderem Checklisten für fünf Sektoren des Gesundheitswesens erarbeitet, darunter stationärer und ambulanter Bereich sowie Feuerwehr und Katastrophenschutz. Zu den Maßnahmen, die vor den Folgen des Klimawandels schützen sollen, gehören etwa maßgeschneiderte Lüftungs- und Verschattungskonzepte. Virtuelle Zukunftsstadt-Tour zu klimaangepassten Städten Wie kann die Stadt der Zukunft lebenswert, CO2-neutral und klimaangepasst, energie- und ressourceneffizient gestaltet werden? Antworten auf diese Frage haben rund 50 Forschungsteams im Rahmen der „Zukunftsstadt-Forschung“ gefunden und dabei vielfältige praxisnahe Produkte und Strategien entwickelt und teilweise bereits getestet. Die verschiedenen Projekte sind auf der Website des Vernetzungsprojekts SynVer*Z einsehbar. Zusätzlich gibt es dort eine virtuelle Zukunftsstadt-Tour. Die Reise führt von Juni 2022 bis Dezember 2022 durch mehr als 20 Kommunen und stellt ausgewählte Ergebnisse der vom BMBF geförderten Zukunftsstadt-Forschung vor. Verbesserte Gefahrenkommunikation bei Hochwasser Die Hochwasserkatastrophe vom Juli 2021 hat gezeigt, wie in kurzer Zeit extremer Niederschlag zu zerstörerischem Hochwasser führen kann. Um die Gefahrenkommunikation zu verbessern, wurden in das länderübergreifenden Hochwasserportal (LHP) neben den Pegelmessdaten und Hochwasserberichten auch neue regionale Hochwasserwarnkarten integriert. Damit ist nun auf einen Blick zu erkennen, in welchen Regionen oder Flussabschnitten eine akute Hochwassergefahr besteht. Für dieses Jahr ist zudem eine Ankopplung der neuen regionalen Hochwasserwarnungen an die etablierten Warn-Apps NINA, KATWARN und Warnwetter geplant. Länder wollen besser vor Hochwasser schützen Mehrere Länder haben ihren Umgang mit Hochwassergefahr verbessert. So erstattet das Umweltministerium Saarland bis zu 90 Prozent der Kosten, die die Kommunen für Starkregen- und Hochwasservorsorgekonzepte aufbringen müssen. Knapp 10 Millionen Euro hat das Ministerium bereits in bauliche Maßnahmen und Vorsorgekonzepte investiert, um die Region klimaresilienter zu machen. In Sachsen-Anhalt kann das Pegelmessnetz mittlerweile im 15-Minuten-Takt Wasserstände der Flüsse melden und in Thüringen wurde die Hochwasser-App samt Internetportal überarbeitet. Dort können sich die Bürger nun für ausgesuchte Pegel und Warngebiete per Push-Nachricht aktiv benachrichtigen lassen. Aussagen zum Stadtklima mithilfe von Flechten Forschende an der Technischen Universität München wollen zeigen, dass mithilfe von Flechten Aussagen über das Stadtklima getroffen werden können. Flechten sind Lebensgemeinschaften aus Pilzen und Algen oder Cyanobakterien und siedeln an Baumrinden, Gestein oder auf dem Erdboden. Sie reagieren empfindlich und früh auf Änderungen von Temperatur und Luftfeuchte und werden daher als Klimawandelzeiger eingestuft. In drei bayerischen Städten sollen die Auswirkungen der lokalen mikroklimatischen Verhältnisse auf die Flechten erarbeitet werden. Mit den Ergebnissen können Aussagen zum Stadtklima leicht nachvollziehbar dargestellt und Handlungsempfehlungen vorgeschlagen werden. Trinkwasserversorgung bei Extremwetterereignissen sicherstellen Lange Trockenperioden und Starkregen als Folgen des Klimawandels gefährden auch die Trinkwasserversorgung. Das Forschungsprojekt TrinkXtrem hat sich zum Ziel gesetzt, die Vorhersagefähigkeit von Grundwassermodellen zu verbessern und Entscheidungen besser abzusichern. Dabei sollen innovative Konzepte und Tools entwickelt werden, um die Versorgung mit Trinkwasser auch in langen Trockenperioden und bei Starkregen sicherzustellen. In dem Projekt kooperieren unter der Leitung des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart Wasserversorgungsunternehmen aus ganz Deutschland mit Forschungseinrichtungen und Einrichtungen des Bundes und der Länder. Toolbox für die klimawandelangepasste Straßenraumgestaltung Der Projektverbund BlueGreenStreets hat eine Planungshilfe für eine Neugestaltung bestehender Stadtstraßen entwickelt. Die Toolbox richtet sich vor allem an Akteur*innen, die für die Konzeption, Planung und den Umbau verantwortlich sind, da die Neugestaltung der Straßenräume vor dem Hintergrund das Klimawandels immer wichtiger wird. Zu den planerischen Empfehlungen und Werkzeugen der Toolbox zählen etwa Fachmodule zur Wasserspeicherung, zu Pflanzgruben und Baumrigolen, zur Verbesserung der Verdunstungseffekte und des Mikroklimas sowie die Module zum Stoffstrom- und Straßensanierungsmanagement. Exakte Baumartenkarte mit Daten aus dem All Baumartenkarten basierten bislang auf statistischen Berechnungen; die Verteilung der Hauptbaumarten ist räumlich nicht eindeutig. Nun steht erstmals eine satellitengestützte Baumkarte online, die Anhand von Aufnahmen aus dem All zeigt, wie die häufigsten Baumarten Fichte, Kiefer, Buche, Eiche und Lärche in Deutschland verteilt sind. Dabei wurden mittels maschinellen Lernens die Datenmengen der Satelliten mit Stichprobendaten aus Forstinventuren kombiniert. Die Karte ist Teil des Online-Waldmonitors der Naturwaldakademie und der Remote Sensing Solutions GmbH. Die exakte Baumartenverteilung soll helfen, an den Klimawandel angepasste Maßnahmen für den Naturschutz und das Waldmanagement zu entwickeln. Was tun bei Hitze? Hilfreiche Tipps Das Zentrum KlimaAnpassung hat eine Linkliste erstellt, die Tipps bei Hitzewellen gibt. So rät das Zentrum etwa zum Schutz der Gesundheit tages- und ortsspezifisch die Hitzewarnungen des Deutschen Wetterdienstes im Blick zu halten. Die Verlinkungen richten sich zum einen an Privatpersonen und geben neben einem Hitze-Knigge unter anderem auch Ideen beim Umgang mit den hohen Temperaturen im Allgemeinen und am Arbeitsplatz. Außerdem hat das Zentrum KlimaAnpassung auch für Kommunen Tipps zusammengestellt und bietet etwa Informationen zur kommunalen Hitzevorsorge sowie zu Veranstaltungen, beispielsweise zu Hitzebelastungen in Städten. EU sucht Gemeinden für Mission „Anpassung an den Klimawandel“ Die EU-Kommission lädt alle Regionen und Gemeinden in Europa ein, sich der Mission „Anpassung an den Klimawandel“ anzuschließen. Dazu können diese zunächst an einer Umfrage teilnehmen, um ihr Interesse zu bekunden. Nach der Analyse der Antworten können diejenigen, die sich der Mission verpflichtet fühlen, die Missions-Charter unterschreiben. Damit werden Regionen und lokale Behörden dann Teil einer Praxisgemeinschaft zur Anpassung an den Klimawandel und können sich mit anderen Regionen und lokalen Behörden in Europa vernetzen und austauschen. Die erste Vernetzungskonferenz wird am 7. Juni stattfinden. NRW wird mit Input als Praxisbeispiel zu regionaler Anpassungsplanung vertreten sein. Warum naturbasierte Lösungen nur zögerlich eingesetzt werden Naturbasierte Lösungen (NBL) wie Baumpflanzungen und Dachbegrünungen können bei der Klimaanpassung von Städten eine entscheidende Rolle spielen. Obwohl ihr Nutzen unbestritten ist, werden sie in städtischen Gebieten oft nur zögerlich eingesetzt, haben Forschende im Rahmen des Projekts „Adaptive Cities Through integrated Nature Based Solutions“ (ACT on NBS) herausgefunden. Für ihre Forschung haben die Wissenschaftler*innen der Wageningen University & Research (WUR) und der University of Bologna zusammengetragen, wo die Hürden liegen und welche Tools dazu beitragen könnten, die Umsetzungsprobleme der Städte zu bewältigen. Auswirkungen der Klimakrise auf Tier- und Pflanzenarten Eine Million der schätzungsweise acht Millionen Tier- und Pflanzenarten auf der Welt sind bedroht – die allermeisten aufgrund der Klimakrise. Denn bereits bei einem durchschnittlichen Temperaturanstieg von einem Grad Celsius stoßen Arten und Ökosysteme an die Grenzen ihrer Anpassungsfähigkeit. Das geht aus dem neuen WWF-Bericht „Feeling the Heat – Die Zukunft der Natur bei einer globalen Erhitzung von 1,5 Grad und darüber hinaus“ hervor. Der Bericht hebt 13 Tier- und Pflanzenarten hervor, die durch die Auswirkungen der Klimakrise bereits in akute Bedrängnis geraten sind. So ist in Deutschland etwa der Strandflieder durch den rasanten Anstieg des Meeresspiegels von Nord- und Ostsee bedroht, während der Streifen-Bläuling in den Alpen immer weiter in die Höhe wandern muss. Malmö wird Teil der Initiative „Making Cities Resilient 2030“ Die schwedische Stadt Malmö will die Klimaanpassung in den Mittelpunkt der Stadtentwicklung stellen, um die Auswirkungen des Klimawandels besser zu bewältigen. Dafür ist Malmö der Initiative „Making Cities Resilient 2030“ (MRC2030) beigetreten. MRC2030 wurde im Jahr 2021 vom Büro der Vereinten Nationen für Katastrophenvorsorge (UNDRR) mit dem Ziel ins Leben gerufen, die Städte beim Aufbau ihrer Widerstandsfähigkeit gegenüber Klima- und Katastrophenrisiken zu unterstützten. Neben der MCR2030-Mitgliedschaft beabsichtigt Malmö auch, sich als Resilience Hub für den Ostseeraum zu etablieren – unter anderem soll ab 2030 die gesamte Stadt mit erneuerbarer Energie versorgt werden. Mit nachhaltiger Biomasse Klimaschäden ausbessern Die Länder der europäischen Union könnten die Menge an nachhaltig produzierter Biomasse in den kommenden Jahrzehnten verdreifachen und dabei gleichzeitig Land wieder aufbauen, das durch den Klimawandel geschädigt wurde. Das sagt der wissenschaftliche Leiter der niederländischen Organisation für Angewandte Naturwissenschaftliche Forschung (TNO), André Faaij, in einem Interview mit dem pan-europäischen Mediennetzwerk EURACTIV. So könne etwa die Wiederbepflanzung der Länder mit salztoleranten Arten eine Möglichkeit sein, sie zu regenerieren, sie vor weiterer Erosion zu schützen, Salzprobleme zu mindern und mehr Kohlenstoff in den Boden zu bringen. Handreichung des UBA zu Klimarisikoanalysen auf kommunaler Ebene Klimarisikoanalysen werden immer wichtiger. Denn um sich gegen die Folgen des Klimawandels zu rüsten, sind Strategien auf kommunaler Ebene gefragt. Die Klimarisikoanalsyen helfen den Kommunen dabei, Klimarisiken richtig bewerten und priorisieren zu können. Das Umweltbundesamt (UBA) hat zur Unterstützung die Handreichung „Klimarisikoanalysen auf kommunaler Ebene – Handlungsempfehlungen zur Umsetzung der ISO 14091“ entwickelt. Diese fasst den internationalen Standard zusammen und ergänzt den allgemeinen Leitfaden mit spezifischen Empfehlungen für Kommunen. Die Handreichung ist auch in Englisch verfügbar. Den Freizeitgartenbau an den Klimawandel anpassen GartenKlimA Quelle: Lena Fröhler Auch Hobby- und Freizeitgärtner*innen bekommen längst die Folgen des Klimawandels zu spüren. In dem Projekt GartenKlimA wurden daher Bildungsmodule entwickelt, mit denen Multiplikator*innen den Freizeitgartlern einfach vermitteln können, wie der eigene Garten an den Klimawandel angepasst werden kann. So sollen die geschulten Multiplikator*innen mit dem Vortragsmaterial ohne viel Aufwand eigene Vorträge halten können – etwa in ihren Gartenbauvereinen. Die Hobbygärtner*innen sollen dann wiederum ihr Wissen „über den Gartenzaun“ an die Nachbarn weitergeben. Insgesamt wurden in dem Projekt zehn Bildungsmodule erstellt, die jeweils einen ausgearbeiteten Vortrag (Folien und Text) sowie umfangreiches Zusatzmaterial (Informationstexte, Fotos, interaktive Module, Linksammlung, Merkblätter, Poster) umfassen. Die Module sind kostenfrei auf der Homepage www.garten-klima.de zu finden. Das Projekt GartenKlimA, das vom März 2020 bis März 2022 lief, wurde vom Institut für Gartenbau (IGB) der Hochschule Weihenstephan-Triesdorf (HSWT) in Kooperation mit der Bayerischen Landesanstalt für Weinbau und Gartenbau (LWG) und dem Bayerischen Landesverband für Gartenbau und Landespflege e.V. durchgeführt.
PVC-Polymerisation von monomerem Vinylchlorid (VCM) zu Polyvinylchorid (PVC) nach dem Masseverfahren. Drei Verfahren zur Herstellung von PVC werden industriell durchgeführt, das Suspensionsverfahren, das Masseverfahren und das Emulsionsverfahren. Das Herstellungsverfahren beeinflußt die Eigenschaften des PVC und damit dessen Anwendungsgebiete. [PVC wird nie in Reinform verarbeitet. Hilfsstoffe (Farbmittel, Weichmacher etc.) ermöglichen die reibungslose Verarbeitung und bestimmen die Eigenschaften des Produkts. Die Weiterverarbeitung von PVC wird in diesem Prozess nicht berücksichtigt.]. Ein wesentlicher Teil des technischen Aufwandes zur PVC-Herstellung gilt der Verhinderung von VCM-Emissionen und der Entmonomerisierung (Entfernen von VCM aus dem Polymerisationsprodukt). Beim Masseverfahren wird reines VCM polymerisiert. Der Prozeß ist verfahrenstechnisch sehr einfach, da im Unterschied zum Suspensions- und Emulsionsverfahren keine wässrige Phase existiert. Es werden keine Emulgatoren oder Suspendierungsmittel verwendet, wodurch ein sehr reines Produkt entsteht. Die Polymerisation wird in einem Rührkessel durchgeführt. Nach Beendigung der Reaktion wird nicht umgesetztes VCM zurückgewonnen. Die Polymerpartikel werden gemahlen, gesiebt und verpackt. Der große Nachteil des Verfahrens ist seine geringe Flexibilität. Ortsbezug: Weltweit wurden 1990 18,3 Mio. t PVC produziert (Nordamerika 4,7 Mio. t, Westeuropa 4,8 Mio. t, Japan 2,1 Mio. t) (Ullmann 1992). In (APME 1994) werden für Westeuropa 1994 PVC-Produktionsmengen von 5,243 Mio. t angegeben. Nach (Ullmann 1992) entfallen 80 % der Weltprodukion auf das Suspensionsverfahren, 12 % auf das Emulsionsverfahren (1989: weltweit 1,6 Mio. t; davon 41 % Westeuropa, 17 % USA, 10 % Japan) und 8 % auf das Masseverfahren. Nach (OEKO 1989) entfallen in der Bundesrepublik Deutschland 60 % der PVC-Produktion auf das Suspensionsverfahren, 28 % auf das Emulsionsverfahren und 12 % auf das Masseverfahren. In der BRD wurden 1987 1,32 Mio PVC hergestellt (Tötsch 1990). Für die Genese der Kennziffern bei GEMIS wurden Daten aus #1 bzw #22 verwendet. Die dort enthaltenen Werte geben den Stand der Technik Ende der 80er bzw. Anfang der 90er Jahre in der BRD bzw. von Standorten der Fa. Norsk Hydro wieder. Allokation: keine Genese der Daten: Massenbilanz - Für die Erzeugung von 1 t PVC werden 1015 kg an monomerem Vinylchlorid eingesetzt. Weiterhin werden 0,4 kg an Betriebsstoffen (Katalysator) benötigt. Die Verluste bei der Massenbilanz werden bei (Tötsch 1990) mit "PVC-Verluste" 4,9 kg und "VCM-Verluste" 10,1 kg beziffert. Weiterhin fallen 0,4 kg Katalysator und desssen Abbauprodukte an. Energiebedarf - Der Energiebedarf zur Herstellung einer Tonne PVC beträgt nach #1 rund 1,18 GJ an elektrische Energie. Emissionen - An prozessspezifischen Luftemissionen bei der PVC-Polymerisation ist vor allem VCM von Bedeutung. Es wird mit einem Umwelteintrag von 300 t VCM für 1988 gerechnet (#1). Legt man die PVC-Produktionszahlen von 1987 (1,32 Mio. t) zugrunde, so ergibt sich für die VCM-Emission ein Wert von ca. 0,23 kg/t PVC. Verfahrensunterschiede (Suspensions-, Masse- oder Emulsionsverfahren) bleiben bei dieser Berechnung unberücksichtigt. In #2 werden Emissionen der PVC-Produktion nach einer Studie von Norsk Hydro (Grundlagen sind Daten von vier Standorten der Fa. Norsk Hydro) aufgeführt. Es werden folgende Emissionen genannt: 0,675 kg VCM/t PVC (Luft), 0,185 kg PVC-Staub/t PVC (Luft), 0,059 kg PVC/t PVC (Wasser) und 3,9 kg verunreinigtes PVC/t PVC (Produktionsabfall). Eine Zuordnung der Emissionen zu einem bestimmten Herstellungsverfahren ist dabei nicht möglich. Wasser - Für die Herstellung von PVC nach dem Masseverfahren werden insgesamt 66,61 t Wasser/t PVC benötigt. 66 t werden davon als Kühlwasser, 0,23 t als Hochdruck-, 0,06 t als Mitteldruck- und 0,14 t als Niederdruckdampf verwendet. Weitere 0,18 t werden unter der Bezeichnung "Prozeßwasser" aufgeführt (#1). Quantitative Angaben zu Abwasserfrachten beim Masserverfahren liegen nicht vor. Da bei der chemischen Umsetzung selbst keine wässrige Phase vorliegt, sollten die Abwasserfrachten gering sein. Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Chemie gesicherte Leistung: 100% Jahr: 2005 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 98,5% Produkt: Kunststoffe
PVC-Polymerisation von monomerem Vinylchlorid (VCM) zu Polyvinylchorid (PVC) nach dem Masseverfahren. Drei Verfahren zur Herstellung von PVC werden industriell durchgeführt, das Suspensionsverfahren, das Masseverfahren und das Emulsionsverfahren. Das Herstellungsverfahren beeinflußt die Eigenschaften des PVC und damit dessen Anwendungsgebiete. [PVC wird nie in Reinform verarbeitet. Hilfsstoffe (Farbmittel, Weichmacher etc.) ermöglichen die reibungslose Verarbeitung und bestimmen die Eigenschaften des Produkts. Die Weiterverarbeitung von PVC wird in diesem Prozess nicht berücksichtigt.]. Ein wesentlicher Teil des technischen Aufwandes zur PVC-Herstellung gilt der Verhinderung von VCM-Emissionen und der Entmonomerisierung (Entfernen von VCM aus dem Polymerisationsprodukt). Beim Masseverfahren wird reines VCM polymerisiert. Der Prozeß ist verfahrenstechnisch sehr einfach, da im Unterschied zum Suspensions- und Emulsionsverfahren keine wässrige Phase existiert. Es werden keine Emulgatoren oder Suspendierungsmittel verwendet, wodurch ein sehr reines Produkt entsteht. Die Polymerisation wird in einem Rührkessel durchgeführt. Nach Beendigung der Reaktion wird nicht umgesetztes VCM zurückgewonnen. Die Polymerpartikel werden gemahlen, gesiebt und verpackt. Der große Nachteil des Verfahrens ist seine geringe Flexibilität. Ortsbezug: Weltweit wurden 1990 18,3 Mio. t PVC produziert (Nordamerika 4,7 Mio. t, Westeuropa 4,8 Mio. t, Japan 2,1 Mio. t) (Ullmann 1992). In (APME 1994) werden für Westeuropa 1994 PVC-Produktionsmengen von 5,243 Mio. t angegeben. Nach (Ullmann 1992) entfallen 80 % der Weltprodukion auf das Suspensionsverfahren, 12 % auf das Emulsionsverfahren (1989: weltweit 1,6 Mio. t; davon 41 % Westeuropa, 17 % USA, 10 % Japan) und 8 % auf das Masseverfahren. Nach (OEKO 1989) entfallen in der Bundesrepublik Deutschland 60 % der PVC-Produktion auf das Suspensionsverfahren, 28 % auf das Emulsionsverfahren und 12 % auf das Masseverfahren. In der BRD wurden 1987 1,32 Mio PVC hergestellt (Tötsch 1990). Für die Genese der Kennziffern bei GEMIS wurden Daten aus #1 bzw #22 verwendet. Die dort enthaltenen Werte geben den Stand der Technik Ende der 80er bzw. Anfang der 90er Jahre in der BRD bzw. von Standorten der Fa. Norsk Hydro wieder. Allokation: keine Genese der Daten: Massenbilanz - Für die Erzeugung von 1 t PVC werden 1015 kg an monomerem Vinylchlorid eingesetzt. Weiterhin werden 0,4 kg an Betriebsstoffen (Katalysator) benötigt. Die Verluste bei der Massenbilanz werden bei (Tötsch 1990) mit "PVC-Verluste" 4,9 kg und "VCM-Verluste" 10,1 kg beziffert. Weiterhin fallen 0,4 kg Katalysator und desssen Abbauprodukte an. Energiebedarf - Der Energiebedarf zur Herstellung einer Tonne PVC beträgt nach #1 rund 1,18 GJ an elektrische Energie. Emissionen - An prozessspezifischen Luftemissionen bei der PVC-Polymerisation ist vor allem VCM von Bedeutung. Es wird mit einem Umwelteintrag von 300 t VCM für 1988 gerechnet (#1). Legt man die PVC-Produktionszahlen von 1987 (1,32 Mio. t) zugrunde, so ergibt sich für die VCM-Emission ein Wert von ca. 0,23 kg/t PVC. Verfahrensunterschiede (Suspensions-, Masse- oder Emulsionsverfahren) bleiben bei dieser Berechnung unberücksichtigt. In #2 werden Emissionen der PVC-Produktion nach einer Studie von Norsk Hydro (Grundlagen sind Daten von vier Standorten der Fa. Norsk Hydro) aufgeführt. Es werden folgende Emissionen genannt: 0,675 kg VCM/t PVC (Luft), 0,185 kg PVC-Staub/t PVC (Luft), 0,059 kg PVC/t PVC (Wasser) und 3,9 kg verunreinigtes PVC/t PVC (Produktionsabfall). Eine Zuordnung der Emissionen zu einem bestimmten Herstellungsverfahren ist dabei nicht möglich. Wasser - Für die Herstellung von PVC nach dem Masseverfahren werden insgesamt 66,61 t Wasser/t PVC benötigt. 66 t werden davon als Kühlwasser, 0,23 t als Hochdruck-, 0,06 t als Mitteldruck- und 0,14 t als Niederdruckdampf verwendet. Weitere 0,18 t werden unter der Bezeichnung "Prozeßwasser" aufgeführt (#1). Quantitative Angaben zu Abwasserfrachten beim Masserverfahren liegen nicht vor. Da bei der chemischen Umsetzung selbst keine wässrige Phase vorliegt, sollten die Abwasserfrachten gering sein. Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Chemie gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 98,5% Produkt: Kunststoffe
Chlorherstellung (Membranverfahren): Chlor in elementarer Form (Cl2) wird heute elektrochemisch dargestellt. Im Prozess wird die Herstellung von Cl2 durch Elektrolyse von Natriumchlorid (NaCl) nach dem Membranverfahren bilanziert. Der Prozess liefert neben Chlor stets Natronlauge und Wasserstoff. Ausgangsstoff ist Steinsalz (NaCl in Wasser gelöst) als Elektrolytm der im Kreis geführt wird. Die Elektrolyse findet in einer Zelle statt, die durch eine hydraulisch undurchlässige, ionenleitende Membran in zwei Räume getrennt ist. Die notwendigerweise sehr reine Natriumchloridlösung gelangt in den Anodenraum, dort wird an der aus aktiviertem Titan bestehenden Elektrode Chlor frei. Die verbleibenden Natriumionen diffundieren durch die Membran und können dort mit Hydroxidionen als Natronlauge (32 bis 35 %ig) abgezogen werden. Die Natronlauge wird auf eine verkaufsfähige 50 %ige Lösung aufkonzentriert. Der Kathodenraum wird dabei mit Wasser gespeist. An der Stahlelektrode entsteht Wasserstoff. Die Nachteile des Verfahrens liegen in der hohen Reinheitsanforderung an den Elektrolyten und das mit Sauerstoff verunreinigte Chlor. Dem stehen jedoch als Vorteile ein relativ geringer Energieverbrauch, reine Natronlauge und die Vermeidung bedenklicher Stoffe wie Quecksilber (Amalgamverfahren) oder Asbest (Diaphragmaverfahren) gegenüber. Als Rohstoffe für die Elektrolyse dienen neben Natriumchlorid in geringem Umfang auch Salzsäure und Kaliumchlorid. 1987 wurden etwa 93 % aus NaCl hergestellt. Es stehen drei verschiedene Elektrolyseverfahren für NaCl zur Verfügung: das Amalgamverfahren, das Diaphragmaverfahren und das Membranverfahren. 1985 entfielen in der BRD ca. 63 % der gesamten Chlorproduktion auf das Amalgamverfahren, ca. 31 % auf das Diaphragmaverfahren und ca. 6 % auf sonstige Verfahren (HCl, Schmelzfluß) (#1). Die Verteilung der weltweiten Produktionskapazitäten auf die verschiedenen Verfahren nach #2 können für das Jahr 1990 der Tabelle 1 entnommen werden. Das Membranverfahren stellt das derzeit modernste Verfahren dar. In der Bundesrepublik sind jedoch nur Versuchsanlagen bei der Hoechst AG und der Bayer AG in Betrieb (#3). Die Produktion an Chlor betrug 1987 in der BRD ca. 3,5 Mio. Tonnen. Die Weltkapazität für die Chlorherstellung ist größer als 40 Mio. Tonnen pro Jahr (Ullmann 1986). Die Kennziffern dieser Prozeßeinheit beziehen sich auf die Chlorherstellung in Deutschland Ende der 80er Jahre. Tabelle 1 Produktionskapazitäten 1990 in Prozent (#2). Prozess USA Kanada Westeuropa Japan Amalgam 18 15 65 0 Diaphragma 76 81 29 20 Membran 6 4 6 80 Allokation: Bei der Elektrolyse entstehen Cl und NaOH im molaren Verhältnis von 1 zu 1. Entsprechend diesem Verhältnis werden die Gesamtwerte der Elektrolyse (Massenbilanz, Energiebedarf, Emissionen, Wasser) zwischen Chlor und Natriumhydroxid zu gleichen Anteilen aufgeteilt. Rechnet man das molare Verhältnis auf Mengen um, so enstehen pro Tonne Cl2 1,128 Tonnen NaOH (100 %ig). Bei der Elektrolyse entstehen weiterhin 28 kg Wasserstoff (H2)/t Cl2. Es wird angenommen, daß der Wasserstoff energetisch verwertet wird (Verbrennung). Entsprechend wird für H2 eine Energiegutschrift (siehe: „H2-Kessel-D“) berechnet, die zu jeweils 50 % der Chlor- und Natronlaugeherstellung gutgeschrieben wird. (Vgl. Prozess: Chem-Anorg\NaOH). Massenbilanz: Zur Herstellung einer Tonne Cl2 (und gleichzeitig 1,128 t NaOH) werden als Rohstoff 1710 kg Natriumchlorid benötigt. Um Verunreinigungen aus dem Elektolyten für die Elektrolyse zu entfernen werden 44 kg Fällungsmittel (NaOH, Na2CO3, BaCO3) eingesetzt. Die Verunreinigungen fallen als Abfall (151 kg, feucht) an. Bei der Reaktion enstehen als Nebenprodukt 28 kg Wasserstoff (Energiegutschrift bei GEMIS) nach #1. Zur Genese der Kennziffern bei GEMIS werden nach der obigen Allokationsregel dem Chlor 50 % der aufgeführten Mengen zugeteilt. Die restlichen 50 % entfallen auf die Herstellung der Natronlauge. Energiebedarf: Der Energiebedarf für den Gesamtprozess der Herstellung einer Tonne Chlor und 1,128 Tonnen NaOH (die Werte wurden von der Natronlaugen- auf die Chlorherstellung umgerechnet) für die verschiedenen Elektrolyseverfahren kann nach #2 der Tabelle 2 entnommen werden. Als Kennziffer für die hier betrachtete Prozeßeinheit (Membranverfahren) wurde gemäß der Allokationsregel 50 % der Mittelwert der Werte aus Tabelle 2 - 1354 + 76 kWh/t Cl 2 - eingesetzt. Tabelle 2 Energiebedarf in kWh für die Herstellung von 1t Chlor und 1,128 t NaOH Energie [kWh] Amalgam Diaphragma Membran elektr. Energie 3158-3610 2820-2933 2594-2820 Dampf(äquivalent) 0 790-1015 102-203 Summe 3158-3610 3610-3948 2696-3023 Im Vergleich dazu wird der Gesamtenergiebedarf in #1 mit 2800 kWh/t Cl2 + 1,128 t NaOH elektrischer Energie - nach Allokation: 1400 kWh/t Cl2 - angegeben. Da die Werte aus #2 besser nachvollziehbar sind, werden diese für GEMIS verwendet. Prozessbedingte Emissionen: Für das Membranverfahren sind keine prozessbedingten Emissionsdaten bekannt. Wasser: Das für die Chlor- und Natronlaugenherstellung benötigte Wasser setzt sich aus dem chemisch verbrauchten Wasser (508 kg, z.B. für die Bildung von Wasserstoff), dem Lösungswasser (1147 kg, Lösung von NaCl und Bildung der wässrigen NaOH), dem Niederdruckdampf (800 kg), dem Prozeßwasser (1500 kg) und dem Kühlwasser (100000 kg) zusammen (nach #1). Die oben aufgeführten Gesamtwassermengen wurden für GEMIS anteilig zu je 50 % unter den beiden Prozeßeinheiten der Chlor- und Natronlaugeherstellung aufgeteilt. Abwasserbelastungen: Es konnten für das Membranverfahren keine Angaben gefunden werden. Auslastung: 5000h/a Brenn-/Einsatzstoff: Rohstoffe gesicherte Leistung: 100% Jahr: 2015 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 117% Produkt: Grundstoffe-Chemie Verwendete Allokation: Allokation durch Gutschriften
Chlorherstellung (Membranverfahren): Chlor in elementarer Form (Cl2) wird heute elektrochemisch dargestellt. Im Prozess wird die Herstellung von Cl2 durch Elektrolyse von Natriumchlorid (NaCl) nach dem Membranverfahren bilanziert. Der Prozess liefert neben Chlor stets Natronlauge und Wasserstoff. Ausgangsstoff ist Steinsalz (NaCl in Wasser gelöst) als Elektrolytm der im Kreis geführt wird. Die Elektrolyse findet in einer Zelle statt, die durch eine hydraulisch undurchlässige, ionenleitende Membran in zwei Räume getrennt ist. Die notwendigerweise sehr reine Natriumchloridlösung gelangt in den Anodenraum, dort wird an der aus aktiviertem Titan bestehenden Elektrode Chlor frei. Die verbleibenden Natriumionen diffundieren durch die Membran und können dort mit Hydroxidionen als Natronlauge (32 bis 35 %ig) abgezogen werden. Die Natronlauge wird auf eine verkaufsfähige 50 %ige Lösung aufkonzentriert. Der Kathodenraum wird dabei mit Wasser gespeist. An der Stahlelektrode entsteht Wasserstoff. Die Nachteile des Verfahrens liegen in der hohen Reinheitsanforderung an den Elektrolyten und das mit Sauerstoff verunreinigte Chlor. Dem stehen jedoch als Vorteile ein relativ geringer Energieverbrauch, reine Natronlauge und die Vermeidung bedenklicher Stoffe wie Quecksilber (Amalgamverfahren) oder Asbest (Diaphragmaverfahren) gegenüber. Als Rohstoffe für die Elektrolyse dienen neben Natriumchlorid in geringem Umfang auch Salzsäure und Kaliumchlorid. 1987 wurden etwa 93 % aus NaCl hergestellt. Es stehen drei verschiedene Elektrolyseverfahren für NaCl zur Verfügung: das Amalgamverfahren, das Diaphragmaverfahren und das Membranverfahren. 1985 entfielen in der BRD ca. 63 % der gesamten Chlorproduktion auf das Amalgamverfahren, ca. 31 % auf das Diaphragmaverfahren und ca. 6 % auf sonstige Verfahren (HCl, Schmelzfluß) (#1). Die Verteilung der weltweiten Produktionskapazitäten auf die verschiedenen Verfahren nach #2 können für das Jahr 1990 der Tabelle 1 entnommen werden. Das Membranverfahren stellt das derzeit modernste Verfahren dar. In der Bundesrepublik sind jedoch nur Versuchsanlagen bei der Hoechst AG und der Bayer AG in Betrieb (#3). Die Produktion an Chlor betrug 1987 in der BRD ca. 3,5 Mio. Tonnen. Die Weltkapazität für die Chlorherstellung ist größer als 40 Mio. Tonnen pro Jahr (Ullmann 1986). Die Kennziffern dieser Prozeßeinheit beziehen sich auf die Chlorherstellung in Deutschland Ende der 80er Jahre. Tabelle 1 Produktionskapazitäten 1990 in Prozent (#2). Prozess USA Kanada Westeuropa Japan Amalgam 18 15 65 0 Diaphragma 76 81 29 20 Membran 6 4 6 80 Allokation: Bei der Elektrolyse entstehen Cl und NaOH im molaren Verhältnis von 1 zu 1. Entsprechend diesem Verhältnis werden die Gesamtwerte der Elektrolyse (Massenbilanz, Energiebedarf, Emissionen, Wasser) zwischen Chlor und Natriumhydroxid zu gleichen Anteilen aufgeteilt. Rechnet man das molare Verhältnis auf Mengen um, so enstehen pro Tonne Cl2 1,128 Tonnen NaOH (100 %ig). Bei der Elektrolyse entstehen weiterhin 28 kg Wasserstoff (H2)/t Cl2. Es wird angenommen, daß der Wasserstoff energetisch verwertet wird (Verbrennung). Entsprechend wird für H2 eine Energiegutschrift (siehe: „H2-Kessel-D“) berechnet, die zu jeweils 50 % der Chlor- und Natronlaugeherstellung gutgeschrieben wird. (Vgl. Prozess: Chem-Anorg\NaOH). Massenbilanz: Zur Herstellung einer Tonne Cl2 (und gleichzeitig 1,128 t NaOH) werden als Rohstoff 1710 kg Natriumchlorid benötigt. Um Verunreinigungen aus dem Elektolyten für die Elektrolyse zu entfernen werden 44 kg Fällungsmittel (NaOH, Na2CO3, BaCO3) eingesetzt. Die Verunreinigungen fallen als Abfall (151 kg, feucht) an. Bei der Reaktion enstehen als Nebenprodukt 28 kg Wasserstoff (Energiegutschrift bei GEMIS) nach #1. Zur Genese der Kennziffern bei GEMIS werden nach der obigen Allokationsregel dem Chlor 50 % der aufgeführten Mengen zugeteilt. Die restlichen 50 % entfallen auf die Herstellung der Natronlauge. Energiebedarf: Der Energiebedarf für den Gesamtprozess der Herstellung einer Tonne Chlor und 1,128 Tonnen NaOH (die Werte wurden von der Natronlaugen- auf die Chlorherstellung umgerechnet) für die verschiedenen Elektrolyseverfahren kann nach #2 der Tabelle 2 entnommen werden. Als Kennziffer für die hier betrachtete Prozeßeinheit (Membranverfahren) wurde gemäß der Allokationsregel 50 % der Mittelwert der Werte aus Tabelle 2 - 1354 + 76 kWh/t Cl 2 - eingesetzt. Tabelle 2 Energiebedarf in kWh für die Herstellung von 1t Chlor und 1,128 t NaOH Energie [kWh] Amalgam Diaphragma Membran elektr. Energie 3158-3610 2820-2933 2594-2820 Dampf(äquivalent) 0 790-1015 102-203 Summe 3158-3610 3610-3948 2696-3023 Im Vergleich dazu wird der Gesamtenergiebedarf in #1 mit 2800 kWh/t Cl2 + 1,128 t NaOH elektrischer Energie - nach Allokation: 1400 kWh/t Cl2 - angegeben. Da die Werte aus #2 besser nachvollziehbar sind, werden diese für GEMIS verwendet. Prozessbedingte Emissionen: Für das Membranverfahren sind keine prozessbedingten Emissionsdaten bekannt. Wasser: Das für die Chlor- und Natronlaugenherstellung benötigte Wasser setzt sich aus dem chemisch verbrauchten Wasser (508 kg, z.B. für die Bildung von Wasserstoff), dem Lösungswasser (1147 kg, Lösung von NaCl und Bildung der wässrigen NaOH), dem Niederdruckdampf (800 kg), dem Prozeßwasser (1500 kg) und dem Kühlwasser (100000 kg) zusammen (nach #1). Die oben aufgeführten Gesamtwassermengen wurden für GEMIS anteilig zu je 50 % unter den beiden Prozeßeinheiten der Chlor- und Natronlaugeherstellung aufgeteilt. Abwasserbelastungen: Es konnten für das Membranverfahren keine Angaben gefunden werden. Auslastung: 5000h/a Brenn-/Einsatzstoff: Rohstoffe gesicherte Leistung: 100% Jahr: 2010 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 117% Produkt: Grundstoffe-Chemie Verwendete Allokation: Allokation durch Gutschriften
Chlorherstellung (Membranverfahren): Chlor in elementarer Form (Cl2) wird heute elektrochemisch dargestellt. Im Prozess wird die Herstellung von Cl2 durch Elektrolyse von Natriumchlorid (NaCl) nach dem Membranverfahren bilanziert. Der Prozess liefert neben Chlor stets Natronlauge und Wasserstoff. Ausgangsstoff ist Steinsalz (NaCl in Wasser gelöst) als Elektrolytm der im Kreis geführt wird. Die Elektrolyse findet in einer Zelle statt, die durch eine hydraulisch undurchlässige, ionenleitende Membran in zwei Räume getrennt ist. Die notwendigerweise sehr reine Natriumchloridlösung gelangt in den Anodenraum, dort wird an der aus aktiviertem Titan bestehenden Elektrode Chlor frei. Die verbleibenden Natriumionen diffundieren durch die Membran und können dort mit Hydroxidionen als Natronlauge (32 bis 35 %ig) abgezogen werden. Die Natronlauge wird auf eine verkaufsfähige 50 %ige Lösung aufkonzentriert. Der Kathodenraum wird dabei mit Wasser gespeist. An der Stahlelektrode entsteht Wasserstoff. Die Nachteile des Verfahrens liegen in der hohen Reinheitsanforderung an den Elektrolyten und das mit Sauerstoff verunreinigte Chlor. Dem stehen jedoch als Vorteile ein relativ geringer Energieverbrauch, reine Natronlauge und die Vermeidung bedenklicher Stoffe wie Quecksilber (Amalgamverfahren) oder Asbest (Diaphragmaverfahren) gegenüber. Als Rohstoffe für die Elektrolyse dienen neben Natriumchlorid in geringem Umfang auch Salzsäure und Kaliumchlorid. 1987 wurden etwa 93 % aus NaCl hergestellt. Es stehen drei verschiedene Elektrolyseverfahren für NaCl zur Verfügung: das Amalgamverfahren, das Diaphragmaverfahren und das Membranverfahren. 1985 entfielen in der BRD ca. 63 % der gesamten Chlorproduktion auf das Amalgamverfahren, ca. 31 % auf das Diaphragmaverfahren und ca. 6 % auf sonstige Verfahren (HCl, Schmelzfluß) (#1). Die Verteilung der weltweiten Produktionskapazitäten auf die verschiedenen Verfahren nach #2 können für das Jahr 1990 der Tabelle 1 entnommen werden. Das Membranverfahren stellt das derzeit modernste Verfahren dar. In der Bundesrepublik sind jedoch nur Versuchsanlagen bei der Hoechst AG und der Bayer AG in Betrieb (#3). Die Produktion an Chlor betrug 1987 in der BRD ca. 3,5 Mio. Tonnen. Die Weltkapazität für die Chlorherstellung ist größer als 40 Mio. Tonnen pro Jahr (Ullmann 1986). Die Kennziffern dieser Prozeßeinheit beziehen sich auf die Chlorherstellung in Deutschland Ende der 80er Jahre. Tabelle 1 Produktionskapazitäten 1990 in Prozent (#2). Prozess USA Kanada Westeuropa Japan Amalgam 18 15 65 0 Diaphragma 76 81 29 20 Membran 6 4 6 80 Allokation: Bei der Elektrolyse entstehen Cl und NaOH im molaren Verhältnis von 1 zu 1. Entsprechend diesem Verhältnis werden die Gesamtwerte der Elektrolyse (Massenbilanz, Energiebedarf, Emissionen, Wasser) zwischen Chlor und Natriumhydroxid zu gleichen Anteilen aufgeteilt. Rechnet man das molare Verhältnis auf Mengen um, so enstehen pro Tonne Cl2 1,128 Tonnen NaOH (100 %ig). Bei der Elektrolyse entstehen weiterhin 28 kg Wasserstoff (H2)/t Cl2. Es wird angenommen, daß der Wasserstoff energetisch verwertet wird (Verbrennung). Entsprechend wird für H2 eine Energiegutschrift (siehe: „H2-Kessel-D“) berechnet, die zu jeweils 50 % der Chlor- und Natronlaugeherstellung gutgeschrieben wird. (Vgl. Prozess: Chem-Anorg\NaOH). Massenbilanz: Zur Herstellung einer Tonne Cl2 (und gleichzeitig 1,128 t NaOH) werden als Rohstoff 1710 kg Natriumchlorid benötigt. Um Verunreinigungen aus dem Elektolyten für die Elektrolyse zu entfernen werden 44 kg Fällungsmittel (NaOH, Na2CO3, BaCO3) eingesetzt. Die Verunreinigungen fallen als Abfall (151 kg, feucht) an. Bei der Reaktion enstehen als Nebenprodukt 28 kg Wasserstoff (Energiegutschrift bei GEMIS) nach #1. Zur Genese der Kennziffern bei GEMIS werden nach der obigen Allokationsregel dem Chlor 50 % der aufgeführten Mengen zugeteilt. Die restlichen 50 % entfallen auf die Herstellung der Natronlauge. Energiebedarf: Der Energiebedarf für den Gesamtprozess der Herstellung einer Tonne Chlor und 1,128 Tonnen NaOH (die Werte wurden von der Natronlaugen- auf die Chlorherstellung umgerechnet) für die verschiedenen Elektrolyseverfahren kann nach #2 der Tabelle 2 entnommen werden. Als Kennziffer für die hier betrachtete Prozeßeinheit (Membranverfahren) wurde gemäß der Allokationsregel 50 % der Mittelwert der Werte aus Tabelle 2 - 1354 + 76 kWh/t Cl 2 - eingesetzt. Tabelle 2 Energiebedarf in kWh für die Herstellung von 1t Chlor und 1,128 t NaOH Energie [kWh] Amalgam Diaphragma Membran elektr. Energie 3158-3610 2820-2933 2594-2820 Dampf(äquivalent) 0 790-1015 102-203 Summe 3158-3610 3610-3948 2696-3023 Im Vergleich dazu wird der Gesamtenergiebedarf in #1 mit 2800 kWh/t Cl2 + 1,128 t NaOH elektrischer Energie - nach Allokation: 1400 kWh/t Cl2 - angegeben. Da die Werte aus #2 besser nachvollziehbar sind, werden diese für GEMIS verwendet. Prozessbedingte Emissionen: Für das Membranverfahren sind keine prozessbedingten Emissionsdaten bekannt. Wasser: Das für die Chlor- und Natronlaugenherstellung benötigte Wasser setzt sich aus dem chemisch verbrauchten Wasser (508 kg, z.B. für die Bildung von Wasserstoff), dem Lösungswasser (1147 kg, Lösung von NaCl und Bildung der wässrigen NaOH), dem Niederdruckdampf (800 kg), dem Prozeßwasser (1500 kg) und dem Kühlwasser (100000 kg) zusammen (nach #1). Die oben aufgeführten Gesamtwassermengen wurden für GEMIS anteilig zu je 50 % unter den beiden Prozeßeinheiten der Chlor- und Natronlaugeherstellung aufgeteilt. Abwasserbelastungen: Es konnten für das Membranverfahren keine Angaben gefunden werden. Auslastung: 5000h/a Brenn-/Einsatzstoff: Rohstoffe gesicherte Leistung: 100% Jahr: 2020 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 117% Produkt: Grundstoffe-Chemie Verwendete Allokation: Allokation durch Gutschriften
Chlor-Herstellung (Membranverfahren).Chlor in elementarer Form (Cl2) wird heute elektrochemisch dargestellt. In dieser Prozeßeinheit wird die Herstellung von Cl2 durch Elektrolyse von Natriumchlorid (NaCl) nach dem Membranverfahren bilanziert. Der Prozeß liefert neben Chlor stets Natronlauge und Wasserstoff. Ausgangsstoff des Verfahrens ist Steinsalz (NaCl). Der Elektrolyt (NaCl in Wasser gelöst) wird im Kreis geführt. Die Elektrolyse findet in einer Zelle statt, die durch eine hydraulisch undurchlässige, ionenleitende Membran in zwei Räume getrennt ist. Die notwendigerweise sehr reine Natriumchloridlösung gelangt in den Anodenraum, dort wird an der aus aktiviertem Titan bestehenden Elektrode Chlor frei. Die verbleibenden Natriumionen diffundieren durch die Membran und können dort mit Hydroxidionen als Natronlauge (32 bis 35 %ig) abgezogen werden. Die Natronlauge wird auf eine verkaufsfähige 50 %ige Lösung aufkonzentriert. Der Kathodenraum wird dabei mit Wasser gespeist. An der Stahlelektrode entsteht Wasserstoff. Die Nachteile des Verfahrens liegen in der hohen Reinheitsanforderung an den Elektrolyten und das mit Sauerstoff verunreinigte Chlor. Dem stehen jedoch als Vorteile ein relativ geringer Energieverbrauch, reine Natronlauge und die Vermeidung bedenklicher Stoffe wie Quecksilber (Amalgamverfahren) oder Asbest (Diaphragmaverfahren) gegenüber. Als Rohstoffe für die Elektrolyse dienen neben Natriumchlorid in geringem Umfang auch Salzsäure und Kaliumchlorid. 1987 wurden etwa 93 % aus NaCl hergestellt. Es stehen drei verschiedene Elektrolyseverfahren für NaCl zur Verfügung: das Amalgamverfahren, das Diaphragmaverfahren und das Membranverfahren. 1985 entfielen in der BRD ca. 63 % der gesamten Chlorproduktion auf das Amalgamverfahren, ca. 31 % auf das Diaphragmaverfahren und ca. 6 % auf sonstige Verfahren (HCl, Schmelzfluß) (#1). Die Verteilung der weltweiten Produktionskapazitäten auf die verschiedenen Verfahren nach #2 können für das Jahr 1990 der Tabelle 1 entnommen werden. Das Membranverfahren stellt das derzeit modernste Verfahren dar. In der Bundesrepublik sind jedoch nur Versuchsanlagen bei der Hoechst AG und der Bayer AG in Betrieb (#3). Die Produktion an Chlor betrug 1987 in der BRD ca. 3,5 Mio. Tonnen. Die Weltkapazität für die Chlorherstellung ist größer als 40 Mio. Tonnen pro Jahr (Ullmann 1986). Die Kennziffern dieser Prozeßeinheit beziehen sich auf die Chlorherstellung in Deutschland Ende der 80er Jahre. Tabelle 1 Produktionskapazitäten 1990 in Prozent (#2). Prozeß USA Kanada Westeuropa Japan Amalgam 18 15 65 0 Diaphragma 76 81 29 20 Membran 6 4 6 80 Allokation: Bei der Elektrolyse entstehen Cl und NaOH im molaren Verhältnis von 1 zu 1. Entsprechend diesem Verhältnis werden die Gesamtwerte der Elektrolyse (Massenbilanz, Energiebedarf, Emissionen, Wasser) zwischen Chlor und Natriumhydroxid zu gleichen Anteilen aufgeteilt. Rechnet man das molare Verhältnis auf Mengen um, so enstehen pro Tonne Cl2 1,128 Tonnen NaOH (100 %ig). Bei der Elektrolyse entstehen weiterhin 28 kg Wasserstoff (H2)/t Cl2. Es wird angenommen, daß der Wasserstoff energetisch verwertet wird (Verbrennung). Entsprechend wird für H2 eine Energiegutschrift (siehe: „H2-Kessel-D“) berechnet, die zu jeweils 50 % der Chlor- und Natronlaugeherstellung gutgeschrieben wird. (Vgl. Prozeßeinheit: Chem-Anorg\NaOH). Genese der Kennziffern Massenbilanz: Zur Herstellung einer Tonne Cl2 (und gleichzeitig 1,128 t NaOH) werden als Rohstoff 1710 kg Natriumchlorid benötigt. Um Verunreinigungen aus dem Elektolyten für die Elektrolyse zu entfernen werden 44 kg Fällungsmittel (NaOH, Na2CO3, BaCO3) eingesetzt. Die Verunreinigungen fallen als Abfall (151 kg, feucht) an. Bei der Reaktion enstehen als Nebenprodukt 28 kg Wasserstoff (Energiegutschrift bei GEMIS) nach #1. Zur Genese der Kennziffern bei GEMIS werden nach der obigen Allokationsregel dem Chlor 50 % der aufgeführten Mengen zugeteilt. Die restlichen 50 % entfallen auf die Herstellung der Natronlauge. Energiebedarf: Der Energiebedarf für den Gesamtprozeß der Herstellung einer Tonne Chlor und 1,128 Tonnen NaOH (die Werte wurden von der Natronlaugen- auf die Chlorherstellung umgerechnet) für die verschiedenen Elektrolyseverfahren kann nach #2 der Tabelle 2 entnommen werden. Als Kennziffer für die hier betrachtete Prozeßeinheit (Membranverfahren) wurde gemäß der Allokationsregel 50 % der Mittelwert der Werte aus Tabelle 2 - 1354 + 76 kWh/t Cl 2 - eingesetzt. Tabelle 2 Energiebedarf in kWh für die Herstellung von 1t Chlor und 1,128 t NaOH Energie [kWh] Amalgam Diaphragma Membran elektr. Energie 3158-3610 2820-2933 2594-2820 Dampf(äquivalent) 0 790-1015 102-203 Summe 3158-3610 3610-3948 2696-3023 Im Vergleich dazu wird der Gesamtenergiebedarf in #1 mit 2800 kWh/t Cl2 + 1,128 t NaOH elektrischer Energie - nach Allokation: 1400 kWh/t Cl2 - angegeben. Da die Werte aus #2 besser nachvollziehbar sind, werden diese für GEMIS verwendet. Prozeßbedingte Emissionen: Für das Membranverfahren konnten keine prozeßbedingten Emissionsdaten gefunden werden. Wasser: Das für die Chlor- und Natronlaugenherstellung benötigte Wasser setzt sich aus dem chemisch verbrauchten Wasser (508 kg, z.B. für die Bildung von Wasserstoff), dem Lösungswasser (1147 kg, Lösung von NaCl und Bildung der wässrigen NaOH), dem Niederdruckdampf (800 kg), dem Prozeßwasser (1500 kg) und dem Kühlwasser (100000 kg) zusammen (nach #1). Die oben aufgeführten Gesamtwassermengen wurden für GEMIS anteilig zu je 50 % unter den beiden Prozeßeinheiten der Chlor- und Natronlaugeherstellung aufgeteilt. Zu Abwasserwerten konnten für das Membranverfahren keine Angaben gefunden werden. Auslastung: 5000h/a Brenn-/Einsatzstoff: Rohstoffe gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 117% Produkt: Grundstoffe-Chemie Verwendete Allokation: Allokation durch Gutschriften
Im Hochofen wird das Eisenerz aus Sinter, Pellets oder Stückerz mit Koks zu Eisen reduziert und dabei geschmolzen. Die mineralischen Begleiter aus Eisenerz und Koks bilden zusammen mit den Zuschlägen die Schlacke. Zusätzliche Prozeßwärme wird durch partielle Oxidation des Kokses mit erhitzter Luft (Wind) erzeugt, der dem Hochofen im unteren Teil zugeführt wird. Ein Teil des Kokses kann dabei durch andere Energieträger wie Kohle oder Schweröl ersetzt werden. Alle Daten sind auf Deutschland bezogen. Allokation: Der Hochofen „produziert" Gichtgas aus der partiellen Oxidation der fossilen Energieträger. Das gereinigte Gichtgas wird zu einem Drittel verbraucht, um den Wind vorzuwärmen. Aus dem restlichen Gichtgas wird Strom produziert. Genese der Daten: Material- und Energiebilanz wurden aus #1 und #2 zusammengestellt und in #3 diskutiert. Es wird angenommen, daß 33% des intern entstandenen Gichtgases von insgesamt 6 GJ/t RE zur Erhitzung des Windes verbrannt wird, die restlichen 66% werden zur Stromerzeugung genutzt. Da auf einen Austausch der Energieträger Kokereigas und Gichtgas verzichtet wird, folgt die Bilanzierung damit weitgehend dem Energieverteilungsplan nach (Ullmann 1989). Aus Ullmann wird ebenfalls der elektrische Wirkungsgrad von 0,374 übernommen. Es werden somit 1,5 GJ/t RE Strom erzeugt. Die Emissionsfaktoren sind aus (UBA 1995) sowie aus eigenen Berechnungen gewonnen worden. Die Tabelle gibt einen Überblick über die Zusammensetzung der Emissionen. Emission prozessbedingte Feuerung Feuerung kg/t RE Winderhitzer Kraftwerk CO2 1419 CO 1,18 0,095 0,38 1,655 CH4 - NMVOC - SO2 0,06 0,0066 0,013 0,08 NOx 0,133 0,76 0,893 Staub 1,0 1 Die Daten für prozessbedingte Emissionen sind aus (UBA 1995) entnommen worden. Die Emissionen werden durch Undichtigkeiten des Gichtgassystems und Emissionen aus der Gießhalle verursacht. Da es sich um keine gefaßten Emissionen handelt, sind die Emissionen vom UBA geschätzt bzw. aus Einzelmessungen hochgerechnet. Für Stickoxide sind keine Emissionsfaktoren erhoben worden, obwohl beim Abstich Stickoxide entstehen können. Emissionsfaktoren zur Feuerung der Gichtgase liegen vom UBA (UBA 1989) vor und wurden für SO2 übernommen. Die Emissionsfaktoren für Stickoxide sind aufgrund der Aufspaltung der Gichtgasnutzung in Winderhitzer und Kraftwerk nicht anwendbar. Zur Berechnung der Stickoxide sind für den Winderhitzer 50 mg Nox/ Nm3 und für das Kraftwerk 200 mg NOx/Nm3 bei 6 Vol-% Restsauerstoff angesetzt worden. Für CO werden 50 mg CO/Nm3 beim Winderhitzer und 100 mg CO/Nm3 beim Kraftwerk berechnet. CO2 ist aus dem Kohlenstoffinput direkt berechnet worden, ohne Abzug des im Roheisen verbleibenden Kohlenstoff. Die Wasserinanspruchnahme von 3,24 m3/t Prozeßwasser wird nach #2 zur Kühlung der Gicht, zur Granulierung der Schlacke und zur Naßwäsche eingesetzt. Zur Kühlung der Außenhaut wird 2 m3/t Kühlwasser nach #2 gebraucht. Als Produktionsabfall entsteht Schlacke (235 kg/t) sowie Gichtgasstaub (5 kg/t) und Gichtgasschlamm (5 kg/t). Gichtgasstaub wird rezykliert und daher nicht bilanziert. Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Sonstige gesicherte Leistung: 100% Jahr: 2005 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 98% Produkt: Metalle - Eisen/Stahl Verwendete Allokation: Allokation durch Gutschriften
Im Hochofen wird das Eisenerz aus Sinter, Pellets oder Stückerz mit Koks zu Eisen reduziert und dabei geschmolzen. Die mineralischen Begleiter aus Eisenerz und Koks bilden zusammen mit den Zuschlägen die Schlacke. Zusätzliche Prozeßwärme wird durch partielle Oxidation des Kokses mit erhitzter Luft (Wind) erzeugt, der dem Hochofen im unteren Teil zugeführt wird. Ein Teil des Kokses kann dabei durch andere Energieträger wie Kohle oder Schweröl ersetzt werden. Alle Daten sind auf Deutschland bezogen. Allokation: Der Hochofen „produziert" Gichtgas aus der partiellen Oxidation der fossilen Energieträger. Das gereinigte Gichtgas wird zu einem Drittel verbraucht, um den Wind vorzuwärmen. Aus dem restlichen Gichtgas wird Strom produziert. Genese der Daten: Material- und Energiebilanz wurden aus #1 und #2 zusammengestellt und in #3 diskutiert. Es wird angenommen, daß 33% des intern entstandenen Gichtgases von insgesamt 6 GJ/t RE zur Erhitzung des Windes verbrannt wird, die restlichen 66% werden zur Stromerzeugung genutzt. Da auf einen Austausch der Energieträger Kokereigas und Gichtgas verzichtet wird, folgt die Bilanzierung damit weitgehend dem Energieverteilungsplan nach (Ullmann 1989). Aus Ullmann wird ebenfalls der elektrische Wirkungsgrad von 0,374 übernommen. Es werden somit 1,5 GJ/t RE Strom erzeugt. Die Emissionsfaktoren sind aus (UBA 1995) sowie aus eigenen Berechnungen gewonnen worden. Die Tabelle gibt einen Überblick über die Zusammensetzung der Emissionen. Emission prozessbedingte Feuerung Feuerung kg/t RE Winderhitzer Kraftwerk CO2 1419 CO 1,18 0,095 0,38 1,655 CH4 - NMVOC - SO2 0,06 0,0066 0,013 0,08 NOx 0,133 0,76 0,893 Staub 1,0 1 Die Daten für prozessbedingte Emissionen sind aus (UBA 1995) entnommen worden. Die Emissionen werden durch Undichtigkeiten des Gichtgassystems und Emissionen aus der Gießhalle verursacht. Da es sich um keine gefaßten Emissionen handelt, sind die Emissionen vom UBA geschätzt bzw. aus Einzelmessungen hochgerechnet. Für Stickoxide sind keine Emissionsfaktoren erhoben worden, obwohl beim Abstich Stickoxide entstehen können. Emissionsfaktoren zur Feuerung der Gichtgase liegen vom UBA (UBA 1989) vor und wurden für SO2 übernommen. Die Emissionsfaktoren für Stickoxide sind aufgrund der Aufspaltung der Gichtgasnutzung in Winderhitzer und Kraftwerk nicht anwendbar. Zur Berechnung der Stickoxide sind für den Winderhitzer 50 mg Nox/ Nm3 und für das Kraftwerk 200 mg NOx/Nm3 bei 6 Vol-% Restsauerstoff angesetzt worden. Für CO werden 50 mg CO/Nm3 beim Winderhitzer und 100 mg CO/Nm3 beim Kraftwerk berechnet. CO2 ist aus dem Kohlenstoffinput direkt berechnet worden, ohne Abzug des im Roheisen verbleibenden Kohlenstoff. Die Wasserinanspruchnahme von 3,24 m3/t Prozeßwasser wird nach #2 zur Kühlung der Gicht, zur Granulierung der Schlacke und zur Naßwäsche eingesetzt. Zur Kühlung der Außenhaut wird 2 m3/t Kühlwasser nach #2 gebraucht. Als Produktionsabfall entsteht Schlacke (235 kg/t) sowie Gichtgasstaub (5 kg/t) und Gichtgasschlamm (5 kg/t). Gichtgasstaub wird rezykliert und daher nicht bilanziert. Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Sonstige gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 98% Produkt: Metalle - Eisen/Stahl Verwendete Allokation: Allokation durch Gutschriften
Origin | Count |
---|---|
Bund | 1355 |
Land | 153 |
Type | Count |
---|---|
Ereignis | 2 |
Förderprogramm | 1143 |
Taxon | 2 |
Text | 222 |
Umweltprüfung | 72 |
unbekannt | 41 |
License | Count |
---|---|
geschlossen | 179 |
offen | 1166 |
unbekannt | 137 |
Language | Count |
---|---|
Deutsch | 1476 |
Englisch | 134 |
Resource type | Count |
---|---|
Archiv | 129 |
Bild | 4 |
Datei | 132 |
Dokument | 214 |
Keine | 891 |
Webdienst | 5 |
Webseite | 389 |
Topic | Count |
---|---|
Boden | 1088 |
Lebewesen & Lebensräume | 1121 |
Luft | 764 |
Mensch & Umwelt | 1480 |
Wasser | 1482 |
Weitere | 1482 |