Es wird vermutet, dass Zirruswolken in hohen geographischen Breiten (arktische Zirren), einen positiven „Cloud Radiative Effect“ (CRE) haben und somit zum Phänomen der "Arctic Amplification" beitragen. Das Vorzeichen und die Stärke des CRE arktischer Zirren hängt von deren mikrophysikalischen Eigenschaften, d.h. der Eispartikelkonzentration, dem effektiven Eispartikelradius und dem Eiswassergehalt (IWC), ab. Diese Parameter werden hauptsächlich durch den Eisbildungsprozess (heterogen vs. homogen) und durch den Bildungspfad (in-situ vs. flüssiger Ursprung) bestimmt. Dies impliziert insbesondere für Zirren flüssigen Ursprungs die Beteiligung von eisnukleierenden Partikeln (INP), was deren Häufigkeit, Eigenschaften und Quellen zu Schlüsselfaktoren für die Bildung, die mikrophysikalischen und Strahlungseigenschaften von Zirren in hoher Breiten macht. Informationen über INP in hohen geographischen Breiten im Allgemeinen und in größeren Höhen im Besonderen, extrem rar. Im Rahmen der HALO-Mission CIRRUS-HL wollen wir daher das Wissen hinsichtlich arktischer INP über a) die Charakterisierung von Eispartikel- (IPR) und Wolkentröpfchenresiduen (CPR, Summe aus IPR und Tröpfchenresiduen) in arktischen Zirren und Mischphasenwolken, und b) die vertikal aufgelöste Messung (Mischphase bis Zirrusniveau) von Hochtemperatur INP (> -30°C) außerhalb von Wolken, erweitern. Für die geplanten Untersuchungen werden der HALO-CVI („Counterflow Virtual Impactor“) und der Aerosolpartikelfiltersammler HERA verwendet werden. Hinter dem HALO-CVI werden Instrumente zur physikalischen (Anzahl der Konzentrationen, Partikelgrößenverteilung, BC-Konzentration) und chemischen (Einzelpartikelzusammensetzung, MPI-C) Charakterisierung der IPR und CPR betrieben. Die von HERA gesammelten Filterproben werden im Anschuss an die Kampagne in den TROPOS-Laboratorien hinsichtlich der physikalischen INP-Eigenschaften (Anzahlkonzentrationen und Gefrierspektren) sowie der chemischen Zusammensetzung der Aerosolpartikel analysiert.Bei In-Wolken-Messungen werden der HALO-CVI und HERA kombiniert werden. So können die INP, innerhalb der gesammelten IPR (Zirren) und Wolkentropfenresiduen (CPR, in Mischphasenwolken) identifiziert, quantifiziert und charakterisiert werden. Diese INP könnten potenzielle Vorläufer von Zirrus mit flüssigem Ursprung in hohen Breiten sein.In Verbindung mit den Ergebnissen der im Rahmen von CIRRUS-HL durchgeführten in-situ Messungen wolkenmikrophysikalischer Eigenschaften, sowie der Analyse von Rückwärtstrajektorien der untersuchten Luftmassen werden wir a) bzgl. der Häufigkeit und der Eigenschaften von INP ein bisher einmaliges Schließungsexperiment (innerhalb und außerhalb der Wolke) durchführen, b) das Wissen über die raumzeitliche Verteilung, die Eigenschaften und die Quellen von INP signifikant erweitern und c) tiefe Einblicke in INP-Effekte auf die Bildung und die mikrophysikalischen Eigenschaften von Zirruswolken in hohen geographischen Breiten erhalten.
Polarimetrische Radar Beobachtungen zeigen eine detaillierte und komplexe Sicht der Mikrophysik von Wolken und Niederschlag. Die Nutzung diese Daten ist jedoch immer noch eine große Herausforderung, z.B. aufgrund der zahllosen unterschiedlichen Formen und Größen von Eispartikeln und Schneeflocken. Dieses Wirrwarr zu entschlüsseln, ist das Ziel dieses Forschungsprojektes. Um dies zu erreichen, wird eine spezielle Messkampagne mit den modernsten polarimetrischen Radargeräten durchgeführt werden, um winterliche stratiforme Mischwolken zu vermessen. Durch die Kombination von Multifrequenz-Messung und spektraler Polarimetrie stellen diese Beobachtungen eine nie dagewesene Informationsfülle bereit. Der Detailreichtum diese Daten wird es erlauben, empirische Hypothesen für dominanten wolkenmikrophysikalische Prozessen in bestimmten Wolkenregionen zu entwickeln. Derartige Hypothesen werden auch polarimetrische Fingerabdrücke oder Signaturen genannt, deren Interpretation und Gültigkeit allerdings für Mischwolken noch recht unsicher ist. Um diese Hypothesen zu konkretisieren und zu quantifizieren, wird ein Lagrangesches Monte-Carlo Partikelmodell verwendet. Unter Verwendung einer Modellhierarchie vom 3d mesoskaligen Modell ICON mit parametrisierter Wolkenmikrophysik hin zum 1d spektral aufgelösten Monte-Carlo Prozessmodell, werden die beobachteten Fälle und Phänomene simuliert, mit dem Ziel die Interpretation auf ein solide physikalisch-theoretische Basis zu stellen. Das Testen von Hypothesen erfolgt natürlich auch in die andere Richtung, d.h. alternative Modellformulierungen und -annahmen können anhand der Beobachtungsdaten kritisch getestet und validiert bzw. falsifiziert werden. Um die Lücke zwischen Modell und Beobachtung zu schließen, ist ein verläßlicher polarimetrischer Radar-Vorwärtsoperator notwendig, der im Rahmen des Projekt entwickelt bzw. verbessert wird. So werden z.B. Streurechnungen für partiell bereifte Schneeflocken durchgeführt werden. Durch diese schlagkräftige Kombination von modernsten Beobachtungssystemen und detailierten Modellen mit einem konsistenten Vorwärtsoperator werden Prozesse wie Depositionswachstum, Aggregation, Bereifen und Eismultiplikation untersucht werden und unser derzeitiges Wissen über diese Prozesse wird kritisch hinterfragt, getestet und erweitert. Basierend auf diesem verbesserten Prozessverständnis erhoffen wir uns die Parametrisierungen von Wolken- und Niederschlagsprozessen in Wetter- und Klimamodellen verbessern zu können. Nur mit solch verbesserten Prozessparametrisierungen wird es mittelfristig möglich sein, die reichhaltige Information, die die modernen polarimetrischen Radarsysteme bieten, in Wettervorhersagesystemen zu assimilieren, um so die Vorhersagen von Wolken und Niederschlag weiter zu verbessern.
Seltenerdelemente und Yttrium (SEY), einschließlich Nd-Isotope, werden häufig als geochemische Proxys für frühere und rezente Umweltbedingungen und -prozesse verwendet. In den letzten Jahren wurde die Verwendung dieser Proxys zur Rekonstruktion frühzeitlicher Meerwasserchemie und die Nachverfolgung von Wassermassen in Frage gestellt, da die Primärsignale des Meerwassers in den Sediment-Archiven während der frühen Diagenese überprägt werden können. Die Wechselwirkung zwischen Porenwasser und Festphase kann zur Fraktionierung und Veränderung der SEY-Muster und der Nd-Isotopensignatur führen. Die zugrunde liegenden Prozesse sind noch wenig erforscht. Das Ziel des hier vorgeschlagenen Projekts ist es, aufzudecken, welchen Einfluss die Redox-Zonierung und die Lithologie auf die SEY-Zusammensetzung im Porenwasser und die beteiligten Prozesse im Sediment haben. Zur Beantwortung dieser Frage werden Proben aus der pazifischen und atlantischen Tiefsee, dem Kontinentalrand vor Neuschottland und der Amazonasmündung entnommen, analysiert und ausgewertet. Die SEY-Konzentrationen und die Nd-Isotopenzusammensetzung im Porenwasser, in der festen Phase und im darüber liegenden Meerwasser werden verglichen, um die Fraktionierung, Veränderung und Konservierung der Proxys zu identifizieren. Die vier Lokationen wurden aufgrund ihres unterschiedlichen Organik-Gehalts und der daraus resultierenden Redox-Zonierung sowie des variablen kontinentalen Eintrags ausgewählt. Die vorgeschlagene systematische Untersuchung der SEY im Porenwasser wird die Lücke in der paläozeanografischen Forschung schließen, unter welchen Umwelteinflüssen SEY-Proxys zuverlässig sein können und unter welchen Bedingungen sie nicht zuverlässig sind. Messwerte werden dringend benötigt, da bei Modellierungen und experimentellen Arbeiten keine guten Informationen zu Eingabevariablen und realistischen Randbedingungen vorliegen. Die vorgeschlagene Forschung wird neue Daten zu den bisher wenigen, bis gar nicht, verfügbaren Daten zu SEY-Konzentrationen und der Nd-Isotopenzusammensetzung in (insbesondere oxischen) Porenwässern liefern.
Die Bereifung (riming) ist ein Prozess, der unterkühlte Wassertröpfchen effizient in Eis umwandelt. Dieser Prozess hat daher einen signifikanten Einfluss auf die Bildung und Entwicklung von Niederschlag. Bereifung ist mit Fernerkundungsmethoden schwierig zu identifizieren und quantifizieren, und wird in Modellen noch unzureichend parametrisiert. Typischerweise werden nur intensive Bereifungsprozesse in Form von Graupel in Beobachtungs- und Modellstudien berücksichtigt Um ein besseres Verständnis über den Bereifungsprozess zu erhalten, werden in PROM-POMODORI operationelle polarimetrische Messungen aus dem C-Band Wetterradarverbund des DWD mit operationellen DWD ICON-D2 Wettervorhersagen und vertikalen Doppler-Messungen aus den hochauflösenden Wolkenradarmessungen aus JOYCE (Jülich) und vom Meteorologischen Institut der Ludwig-Maximilians-Universität in München, und auch von dem C-Band-Radarverbunds kombiniert. Aus vertikal sondierenden Doppler-Radarmessungen wird über die Fallgeschwindigkeit der Eispartikel der Bereifungsgrad quantifiziert. Der Bereifungsgrad auf Basis der JOYCE Wolkenradardaten wird dann mit den polarimetrischen Messungen aus dem Radarverbund und dem thermo(dynamischen) ICON-D2 Vorhersagen über ein maschinelles Lernverfahren korreliert. In dem man faktisch die Information aus (lokalen) Bereifungs-Retrievals von Doppler-Radarmessungen auf die räumlichen polarimetrischen und thermodynamischen Messfelder überträgt, wird die räumliche Variabilität der Bereifung in Niederschlagswolken für typische Niederschlagssituationen in Teilen Süddeutschlands untersucht. PROM-POMODORI wird die identifizierte Variabilität der Bereifung in Bezug zur ICON-D2-Gitterauflösung betrachten, und dabei untersuchen, wie significant die sub-skalige Bereifungsvariabilität ist. Darüber hinaus wird in PROM-POMODORI untersucht, ob die Güte des Bereifungs-Retrivals genutzt werden könnte, um als Indikator für kritische Flugzeug-Vereisungssituation zu dienen. Dabei werden die Retrieval-Ergebnisse, mit dem DWD ADWICE System verglichen, welches für die Luftfahrt Karten über Regionen mit potentiell kritischem Vereisungspotential zu Verfügung stellt.
Die Westliche Antarktische Halbinsel (engl. Western Antarctic Peninsula, WAP) umfasst ein hochproduktives Ökosystem und ist wohl eine der Regionen, die sich unter den Auswirkungen der globalen Erwärmung am schnellsten verändern. Natürliche zeitlich-räumliche Variabilitäten in Form von Meereis-Saisonalität, schelfübergreifendem Transport von warmem zirkumpolarem Wasser und submesoskaligen Wirbeln haben einen ausgeprägten Einfluss auf das chemische und biologische Umfeld des WAP. Daher könnten Umweltveränderungen wie das beschleunigte Abschmelzen der Gletscher, die verringerte Meereisbedeckung und die erhöhte Verfügbarkeit von UV-Licht enorme Auswirkungen auf die biogeochemischen Zyklen der Region haben. Die genaue Richtung der Veränderungen ist jedoch noch unklar, was vor allem auf den Mangel an Daten aufgrund des schwierigen Zugangs zurückzuführen ist. Klimarelevante Spurengase gehören zu hochrelevanten, noch nicht ausreichend untersuchten Verbindungen in den Polarregionen, insbesondere im WAP. Nicht nur mangelnde Datenerfassung, sondern auch ein detailliertes Verständnis der Kontrollmechanismen für den Transfer von Gasen aus der ozeanischen Mischschicht in die Atmosphäre macht es schwierig, ihre Gesamtemissionen in die Atmosphäre abzuschätzen. Die gemischte Wassermasse an der Oberfläche und die Atmosphäre sind durch natürlich vorkommende Oberflächenfilme getrennt, die die Austauschprozesse steuern. Daher ist bis heute nicht klar, ob der WAP eine Quelle oder Senke für Spurengase ist. Wir schlagen vor, eine ehrgeizige multidisziplinäre Studie durchzuführen, die darauf abzielt, die Produktion und die Austauschflüsse von Spurengasen in den Küstengewässern und im offenen Ozean des WAP zu quantifizieren. Insbesondere wollen wir: i) die Hauptproduktionswege von CH4, N2O, DMS und CO in der Region der Bransfield-Straße bewerten, ii) die Kontrollmechanismen für ihren Transfer über marine Oberflächenfilme in die Atmosphäre und ihre Variabilität während des Frühling-Sommer-Übergangs aufklären und iii) entschlüsseln, inwieweit submesoskalige Prozesse die Spurengaszyklen und Eigenschaften von Oberflächenfilmen beeinflussen. Zu diesem Zweck schlagen wir vor, verankerte Beobachtungen, saisonale Probenahmen an einer ortsfesten Station und eine Prozessstudie mit hochauflösenden physikalischen, chemischen und biologischen Messungen mit autonomen Plattformen (z.B. ferngesteuerte Katamaran und Drifter) zu verwenden. Das vorgeschlagene Projekt wird Einblicke in die Hauptkontrollen der Emissionen von Spurengasen in die Atmosphäre im WAP geben und zukünftigen Modellstudien helfen, die Darstellung der Auswirkungen der beschleunigten Gletscherschmelze in Ozean-Atmosphären-Modellen zu verbessern.
Labor- und Feldstudien zeigen, dass chemische Prozesse in Wolken zur organischen Aerosolpartikelmasse beitragen. Aus der HCCT-2010-Feldstudie und der CUMULUS-Kammerstudie geht hervor, dass die organische Massenproduktion beträchtlich sein kann und diese von der Konzentration der organischen Vorläuferverbindungen in der Gasphase abhängt. Es bestehen jedoch große Unsicherheiten, bei der Art der resultierenden Aerosolpartikel, welche metastabil sein können und einen Teil ihrer organischen Masse während der Evaporation der Wolkentropfen wieder verlieren. Ziel des Projekts PARAMOUNT ist die Untersuchung der Chemie in Wolkentropfen, welche organische Wolkeninhaltsstoffe prozessiert und zur Bildung organischer Aerosolpartikelmasse beiträgt. PARAMOUNT ist auf die Untersuchung der Multiphasenchemie relevanter Vorläuferverbindungen wie polyfunktioneller Carbonyle und Säuren fokussiert. Mit diesen Verbindungen sollen kombinierte Labor- und CESAM-Kammerstudien zur Multiphasenchemie durchgeführt werden. Dabei sollen die Untersuchung der Reaktionskinetik und der Produktverteilung in der wässrigen Phase zur Reaktionsmechanismusformulierung als Grundlage dienen. Die CESAM-Experimente stehen im Mittelpunkt des PARAMOUNT-Projektes und konzentrieren sich hauptsächlich auf die Untersuchung der organischen Masseproduktion durch chemische Wolkenprozesse. Zur Untersuchung der organischen Massenproduktion unter variierenden Umweltbedingungen werden die CESAM Kammerstudien mit verschiedenen Anfangsbedingungen durchgeführt. Die organische Massenzunahme soll während der künstlichen Wolkenepisoden in der CESAM-Kammer mit neusten analytischen Methoden untersucht werden. Ferner sollen mögliche Anreicherungen von organischen Carbonylverbindungen, welche in Feldproben während der Wolkenfeldmesskampagne HCCT-2010 beobachtet wurden, eruiert werden. Zwei Aerosol-Massenspektrometer dienen der Online-Bestimmung der organischen Aerosolfraktion. Des Weiteren erfolgt die Analyse prozessierter interstitieller Gasphasenverbindungen und deren Partitionierungverhalten zwischen Gas- und Flüssigphase unter Verwendung eines PTR-MS und eines mini CVI (counter virtual impactor) in Kombination mit Offline-Analytik.Abschließend werden die CESAM-Experimente mit dem komplexen MCM / CAPRAM Multiphasenchemiemechanismus modelliert. Die verknüpfte Modellierung soll den auf den experimentellen Ergebnissen basierenden Mechanismus validieren und die Interpretation der Kammermessungen unterstützen. Insgesamt stellt das hier vorgeschlagene Projekt PARAMOUNT einen wissenschaftlichen Durchbruch für das Verständnis von chemischen Wolkenprozessen dar, sowie deren Bedeutung für die Produktion von sekundärem organischem Aerosol.
Eine Reihe von Mechanismen wurden benannt, um die Abnahme und Zunahme der Meereisausdehnung im Südpolarmeer in den letzten Jahren zu erklären. Aber die Prozesse, die diese Entwicklung antreiben, sind bis jetzt noch nicht umfassend verstanden. Die Simulation des antarktischen Meereises in aktuellen Klimamodellen bleibt ein grundlegendes Problem. Es gibt einige Hinweise darauf, dass das Problem, neben der Formulierung von atmosphärischen und ozeanischen Prozesse, auch auf die Beschreibung der Meereisphysik im Südpolarmeer zurückzuführen ist. Obwohl ein großer Teil der gegenwärtigen Meereisbedeckung im Südlichen Ozean aus einer marginalen Eiszone besteht, lösen kontinuumsmechanische Meereismodelle die Meereisschollen normalerweise weder auf, noch parametrisieren sie dieses Regime und vernachlässigen somit wichtige Rückkopplungen zur Vorhersage von Klima und Wetter. Darüber hinaus ist die Anwendung von kontinuumsmechanischen Meereismodellen auf, oder unterhalb der Skala einzelner Schollen fragwürdig, da die zugrunde liegende Kontinuumsannahme dieser Meereismodelle wahrscheinlich nicht gegeben ist. In diesem Projekt möchten wir die Defizite der derzeitig verwendeten kontinuumsmechanischen Meereismodelle adressieren, indem wir ein hybrides Meereismodell entwickeln, das die Wechselwirkungen zwischen Atmosphäre, Meereis und Ozean bis zur Schollenskala explizit beschreibt. Das hybride Modell bietet einen nahtlosen Ansatz zur Vorhersage des Meereises, der von der Simulation einzelner Meereisschollen in der marginalen Eiszone bis hin zur Darstellung des Packeises reicht. Unser hybrides Modell, das Partikel- mit Kontinuumsmethoden kombiniert, wird zu einem besseren Verständnis und einer besseren Vorhersage des antarktischen Klimasystems beitragen, indem es Kopplungen zwischen Atmosphäre, Meereis und Ozean bis hin zu einer Schollenskala explizit miteinbezieht. Kleinskalige Prozesse, die sich auf einzelne Schollen beziehen, sind für das polare Klima wichtig, aber ihre Parametrisierung in kontinuumsmechanischen Meereismodellen bleibt eine offene Forschungsfrage.Um den Einfluss der schollenskaligen Wechselwirkungen auf die Entwicklung der Meereisbe-deckung im Südlichen Ozean zu analysieren, werden wir ein Diskretes-Elemente-Modell entwickeln, das auf der Beschreibung von DESIgn und dem Princeton-DEM basiert, und es in die kontinuumsmechanische Meereisformulierung im Klimamodell ICON einbetten. Unser Ziel ist, die Interaktion von Meereisschollen explizit in einem Teilgebiet wie der marginalen Eiszone darzustellen, denn es hat sich gezeigt, dass die Schollengrößenverteilung das simulierte Meereisvolumen signifikant beeinflusst. In Regionen, in denen eine hohe räumliche Auflösung nicht erforderlich ist, verwenden wir zur Simulation des Meereises das kontinuumsmechanische Modell, das ein geeigneter, recheneffizienter Ansatz ist, um die Meereisentwicklung auf großen Skalen und mit niedriger Auflösung zu beschreiben.
POLICE trägt zum ersten übergeordneten Ziel eines Projektes bei, der Nutzung von Polarimetrie für quantitative Prozess- und Modellevaluierung. Bereits existierende und neu geplante in-situ Messungen in der Schicht mit bevorzugtem Dendritenwachstum (DGL) und darunter werden verwendet um Hypothesen über die Ursache von Bändern erhöhter differentieller Phase KDP in der DGL zu evaluieren und verschiedene Indikatoren für die Unterscheidung von Riming und Aggregationsprozessen zu quantifizieren. Letzteres erlaubt einen ausschliesslich auf polarimetrischen Radarmessungen basierenden Diskriminierungsalgorithmus aufzusetzen. Sowohl die Erklärung von KDP-Bändern als auch die Fähigkeit Aggregation von Riming zu unterscheiden ist für die Datenassimilation als auch die Modellphysik über der Schmelzschicht von großer Bedeutung. POLICE verwendet die verfügbaren in-situ Messungen weiterhin um polarimetrische Retrieval von Partikelanzahlkonzentration Nt, mittleren Partikeldurchmesser Dm und Eiswassergehalt IWC zu evaluieren und die Representierung von Hydrometeortypen und ihrer Größenverteilung in ICON-LAM zu verifizieren. Die Verwendung von spektralen mikrophysikalischen Schemata im Wolkenmodel der Hebrew University (HUCM) in Kombination mit gemessenen polarimetrischen Profilen erlaubt es schlecht representierte Prozesse, welche für potentielle Modellschwächen verantwortlich sind, zu identifizieren und ermöglicht letztendlich eine bessere Repräsentierung der Hydrometeore in ICON.
Das Kronendach beeinflusst massive die mikroklimatischen Bedingungen eines Waldes und bestimmt damit die lokalen Habitat-Bedingungen für ektotherme Arten, die auf kleiner Skala agieren. In Mitteleuropa sind Waldarten mit Bindung an lichte Wälder aktuell stärker gefährdet als Arten der dichten Wälder. Dies spiegelt den Vorratsanstieg in den letzten hundert Jahren wider. Heutzutage wird das Kronendach durch natürliche Störungen aber auch durch Holznutzung beeinflusst. Die Differenzen im Mikroklima zwischen geschlossenen und offenen Waldbeständen können dabei größer sein als der aktuell beobachtete Anstieg der Temperatur durch die globale Erwärmung. Daher ist ein besseres Verständnis der Mechanismen hinter der Reaktion von Arten auf das Mikroklima sowohl für forstliches als auch naturschutzorientiertes Management von Bedeutung. In der Makroökologie hat die Reaktion von Arten auf Klimagradienten eine lange Tradition. Einige konsistente Muster haben zu ökogeographischen Regeln geführt. Diese sagen z.B. vorher wie die Antwort innerhalb und zwischen Arten auf sinkende Temperaturen, Feuchte oder generell auf harsche Umweltbedingungen aussieht. Wir beabsichtigen hier die Antwort dreier Insektengruppen, Totholzkäfer, Nachtschmetterlinge und Wanzen auf die Variation im Mikroklima unter Kontrolle der Ressourcenverfügbarkeit (Pflanzen, Totholz) zu untersuchen. Dazu werden wir zunächst einen bestehenden Datensatz aus 5 Waldgebieten (inklusive der Exploratorien) auswerten. Dabei werden wir auf drei Eigenschaften fokussieren, die sich in der Makroökologie als sensitiv erwiesen haben: Körpergröße, Flügel-Morphologie und Farbe. Im zweiten Schritt werden wir die Vorhersagen aus den Modellen in Schritt 1 mit neuen Daten aus dem Wald-Experiment der Exploratorien validieren. Im dritten Schritt werden wir anhand der Individuen im Experiment innerartliche Eigenschaft-Reaktionen ausgewählter Arten untersuchen. Im vierten Schritt werden wir Transkriptom-Sequenzierung an vier ausgewählten Arten durchführen, die experimentell in den Lücken und unter dem Kronendach exponiert werden. Damit versuchen wir transkriptionale Signaturen als Reaktion auf das Mikroklima zu identifizieren. Unsere Analysen zielen darauf ab die Mechanismen hinter den Reaktionen von Arten und Artengemeinschaften auf lichte und dichte Wälder besser zu verstehen.
| Origin | Count |
|---|---|
| Bund | 553 |
| Type | Count |
|---|---|
| Förderprogramm | 553 |
| License | Count |
|---|---|
| offen | 553 |
| Language | Count |
|---|---|
| Deutsch | 213 |
| Englisch | 457 |
| Resource type | Count |
|---|---|
| Keine | 314 |
| Webseite | 239 |
| Topic | Count |
|---|---|
| Boden | 449 |
| Lebewesen und Lebensräume | 454 |
| Luft | 366 |
| Mensch und Umwelt | 553 |
| Wasser | 373 |
| Weitere | 553 |