API src

Found 144 results.

Related terms

Hybride Brennstoffzellenantriebe für mobile Arbeitsmaschinen, Teilvorhaben: Technoökonomische Systemanalyse

Ziel des Projekts ist die Entwicklung und Anwendung eines Model-Based Systems Engineering (MBSE)-Systemmodells zum Zweck der Neu- oder Umrüstungsentwicklung von wirtschaftlich konkurrenzfähigen Wasserstoff-Brennstoffzellenantrieben (H2-BZ-Antrieb) für mobile Arbeitsmaschinen. Hybride H2-BZAntriebe für mobile Arbeitsmaschinen stoßen in der im Projekt angestrebten technischen Umsetzung im Betrieb lokal keine Luftschadstoffe und Treibhausgase aus und ermöglichen bei der Verwendung von grünem Wasserstoff Emissionsfreiheit. Die unmittelbare Verringerung von Luftschadstoff- und Treibhausgasemissionen gegenüber Dieselmotorantrieben adressiert die Klimaschutzziele der Bundesregierung, die im Klimaschutzplan festgelegt wurden. Mit Hilfe des MBSE werden die technische (Robustheit, Dynamik, Sicherheit, Betriebsführung) und technoökonomische (Lebenszykluskosten, Umfelddynamik) Sichtweise auf hybride H2-BZ-Antriebe in einem Systemmodell verknüpft. So werden technische Anforderungen erfüllt und die Systemkomplexität handhabbar. Die Sichtweisen werden durch geeignete domänenübergreifende Teilmodelle repräsentiert. Das MBSE schafft eine einheitliche Datengrundlage (single source of truth), formale Modellspezifikationen (Modellontologien) und Modellierungssprache (SysML). Die Komplexität wird handhabbar, die Modelldokumentation systematisch und transparent, was den Wissensaustausch begünstigt. Im Projekt wird dieser systemanalytische Ansatz angewendet und für FuE von H2-BZ-Antrieben weiterentwickelt. Damit trägt das Projekt weiterhin zum Ziel der Entwicklung systemanalytischer Werkzeuge mit fachdisziplinübergreifender Beteiligung im 7. EfP bei. Die methodische Entwicklung wird im Projekt dazu verwendet, einen hybriden H2-BZ-Antrieb für eine Materialumschlagmaschine zu entwickeln und zu integrieren. Mit der Erprobung im realen Einsatz soll eine TRL-Erhöhung von 6 auf 7 erfolgen.

Energiemanagement für Supercap-Brennstoffzellenfahrzeuge

Eine Brennstoffzelle als Primärenergiequelle mit einem Doppelschichtkondensator (Supercap) als Zwischenspeicher zu kombinieren ist ein vielversprechender Ansatz für zukünftige Elektrofahrzeuge. In Kooperation mit einem Fahrzeughersteller wurden verschiedene Strategien für ein Energiemanagement für die Kombination einer Brennstoffzelle mit einem Doppelschichtkondensatormodul entworfen und verglichen. Basierend auf der aktuellen Geschwindigkeit und Beschleunigung werden verschiedene Fahrzeugzustände bezüglich kinetischer Energie und Leistungsbedarf unterschieden. In Abhängigkeit von der verfügbaren Leistung von Supercaps und Brennstoffzelle wird eine optimale Leistungsaufteilung zwischen den beiden Energiequellen ermittelt. In Bremsphasen wird durch Rekuperation Energie zurückgewonnen und in den Supercaps gespeichert. Wenn die Supercaps vollgeladen sind oder ihre maximale Ladeleistung erreicht haben, übernehmen mechanische Bremsen die übrige Ladeleistung. Da diese Situation zu einem Energieverlust führt, sollte sie möglichst vermieden werden. Um immer die notwendige Beschleunigungsleistung und gleichzeitig auch ein Maximum an Rekuperation zu garantieren, wird der Ladezustand der Supercaps kontinuierlich und dynamisch an die kinetische Energie des Fahrzeugs angepasst. Verschiedene Strategien wurden in Matlab/Simulink mit einem Stateflow-Chart zur Abbildung der Zustände implementiert. Die verfügbare Supercapleistung wird mit Hilfe eines impedanzbasierten Modells für Supercaps berechnet. Mit diesen Strategiemodellen können die Leistungsfähigkeit der verschiedenen Strategien verglichen und die Einflüsse von Parametern untersucht werden. Ziel eines Energiemanagements ist es, den Wasserstoffverbrauch zu minimieren und die notwendige Leistung zu jeder Zeit sicherzustellen. Bei der Bewertung der Strategien wird der Wasserstoffverbrauch, die verlorene Bremsenergie und eine mögliche Geschwindigkeitsreduzierung verglichen. Mit einer optimalen Strategie können bis zu 23 Prozent Wasserstoff während eines definierten Fahrprofils gespart werden.

Skalierbares Thermomanagement und Antriebsstrang für Brennstoffzellen-Nutzfahrzeuge, Teilvorhaben: Modulare Inverter Platform für Anwendung in Brennstoffzellenfahrzeugen

Brennstoffzellen als Antrieb von Regionalflugzeugen, NIP II - FuE : Brennstoffzellen als Antrieb von Regionalflugzeugen (BALIS2)

FuE Wärmeübertrager für ein Flugzeug mit Brennstoffzellenantrieb

Hybride Brennstoffzellenantriebe für mobile Arbeitsmaschinen, Teilvorhaben: ISEA-Batteriesystem

Ziel des Projekts ist die Entwicklung und Anwendung eines Model-Based Systems Engineering (MBSE)-Systemmodells zum Zweck der Neu- oder Umrüstungsentwicklung von wirtschaftlich konkurrenzfähigen Wasserstoff-Brennstoffzellenantrieben (H2-BZ-Antrieb) für mobile Arbeitsmaschinen. Hybride H2-BZ Antriebe für mobile Arbeitsmaschinen stoßen in der im Projekt angestrebten technischen Umsetzung im Betrieb lokal keine Luftschadstoffe und Treibhausgase aus und ermöglichen bei der Verwendung von grünem Wasserstoff Emissionsfreiheit. Die unmittelbare Verringerung von Luftschadstoff- und Treibhausgasemissionen gegenüber Dieselmotorantrieben adressiert die Klimaschutzziele der Bundesregierung, die im Klimaschutzplan festgelegt wurden. Mit Hilfe des MBSE werden die technische (Robustheit, Dynamik, Sicherheit, Betriebsführung) und technoökonomische (Lebenszykluskosten, Umfelddynamik) Sichtweise auf hybride H2-BZ-Antriebe in einem Systemmodell verknüpft. So werden technische Anforderungen erfüllt und die Systemkomplexität handhabbar. Die Sichtweisen werden durch geeignete domänenübergreifende Teilmodelle repräsentiert. Das MBSE schafft eine einheitliche Datengrundlage (single source of truth), formale Modellspezifikationen (Modellontologien) und Modellierungssprache (SysML). Die Komplexität wird handhabbar, die Modelldokumentation systematisch und transparent, was den Wissensaustausch begünstigt. Im Projekt wird dieser systemanalytische Ansatz angewendet und für FuE von H2-BZ-Antrieben weiterentwickelt. Damit trägt das Projekt weiterhin zum Ziel der Entwicklung systemanalytischer Werkzeuge mit fachdisziplinübergreifender Beteiligung im 7. EfP bei. Die methodische Entwicklung wird im Projekt dazu verwendet, einen hybriden H2-BZ-Antrieb für eine Materialumschlagmaschine zu entwickeln und zu integrieren. Mit der Erprobung im realen Einsatz soll eine TRL-Erhöhung von 6 auf 7 erfolgen.

Hybride Brennstoffzellenantriebe für mobile Arbeitsmaschinen, Teilvorhaben: Lebenszykluskosten

Ziel des Projekts ist die Entwicklung und Anwendung eines Model-Based Systems Engineering (MBSE)-Systemmodells zum Zweck der Neu- oder Umrüstungsentwicklung von wirtschaftlich konkurrenzfähigen Wasserstoff-Brennstoffzellenantrieben (H2-BZ-Antrieb) für mobile Arbeitsmaschinen. Hybride H2-BZ-Antriebe für mobile Arbeitsmaschinen stoßen in der im Projekt angestrebten technischen Umsetzung im Betrieb lokal keine Luftschadstoffe und Treibhausgase aus und ermöglichen bei der Verwendung von grünem Wasserstoff Emissionsfreiheit. Die unmittelbare Verringerung von Luftschadstoff- und Treibhausgasemissionen gegenüber Dieselmotorantrieben adressiert die Klimaschutzziele der Bundesregierung, die im Klimaschutzplan festgelegt wurden. Mit Hilfe des MBSE werden die technische (Robustheit, Dynamik, Sicherheit, Betriebsführung) und technoökonomische (Lebenszykluskosten, Umfelddynamik) Sichtweise auf hybride H2-BZ-Antriebe in einem Systemmodell verknüpft. So werden technische Anforderungen erfüllt und die Systemkomplexität handhabbar. Die Sichtweisen werden durch geeignete domänenübergreifende Teilmodelle repräsentiert. Das MBSE schafft eine einheitliche Datengrundlage (single source of truth), formale Modellspezifikationen (Modellontologien) und Modellierungssprache (SysML). Die Komplexität wird handhabbar, die Modelldokumentation systematisch und transparent, was den Wissensaustausch begünstigt. Im Projekt wird dieser systemanalytische Ansatz angewendet und für FuE von H2-BZ-Antrieben weiterentwickelt. Damit trägt das Projekt weiterhin zum Ziel der Entwicklung systemanalytischer Werkzeuge mit fachdisziplinübergreifender Beteiligung im 7. EfP bei. Die methodische Entwicklung wird im Projekt dazu verwendet, einen hybriden H2-BZ-Antrieb für eine Materialumschlagmaschine zu entwickeln und zu integrieren. Mit der Erprobung im realen Einsatz soll eine TRL-Erhöhung von 6 auf 7 erfolgen.

Hybride Brennstoffzellenantriebe für mobile Arbeitsmaschinen, Teilvorhaben: Gesamtsystem Umschlagmaschine

Ziel des Projekts ist die Entwicklung und Anwendung eines Model-Based Systems Engineering (MBSE)-Systemmodells zum Zweck der Neu- oder Umrüstungsentwicklung von wirtschaftlich konkurrenzfähigen Wasserstoff-Brennstoffzellenantrieben (H2-BZ-Antrieb) für mobile Arbeitsmaschinen. Hybride H2-BZ-Antriebe für mobile Arbeitsmaschinen stoßen in der im Projekt angestrebten technischen Umsetzung im Betrieb lokal keine Luftschadstoffe und Treibhausgase aus und ermöglichen bei der Verwendung von grünem Wasserstoff Emissionsfreiheit. Die unmittelbare Verringerung von Luftschadstoff- und Treibhausgasemissionen gegenüber Dieselmotorantrieben adressiert die Klimaschutzziele der Bundesregierung, die im Klimaschutzplan festgelegt wurden. Mit Hilfe des MBSE werden die technische (Robustheit, Dynamik, Sicherheit, Betriebsführung) und technoökonomische (Lebenszykluskosten, Umfelddynamik) Sichtweise auf hybride H2-BZ-Antriebe in einem Systemmodell verknüpft. So werden technische Anforderungen erfüllt und die Systemkomplexität handhabbar. Die Sichtweisen werden durch geeignete domänenübergreifende Teilmodelle repräsentiert. Das MBSE schafft eine einheitliche Datengrundlage (single source of truth), formale Modellspezifikationen (Modellontologien) und Modellierungssprache (SysML). Die Komplexität wird handhabbar, die Modelldokumentation systematisch und transparent, was den Wissensaustausch begünstigt. Im Projekt wird dieser systemanalytische Ansatz angewendet und für FuE von H2-BZ-Antrieben weiterentwickelt. Damit trägt das Projekt weiterhin zum Ziel der Entwicklung systemanalytischer Werkzeuge mit fachdisziplinübergreifender Beteiligung im 7. EfP bei. Die methodische Entwicklung wird im Projekt dazu verwendet, einen hybriden H2-BZ-Antrieb für eine Materialumschlagmaschine zu entwickeln und zu integrieren. Mit der Erprobung im realen Einsatz soll eine TRL-Erhöhung von 6 auf 7 erfolgen.

Hybride Brennstoffzellenantriebe für mobile Arbeitsmaschinen, Teilvorhaben: IMSE-Systemmodellierung

Ziel des Projekts ist die Entwicklung und Anwendung eines Model-Based Systems Engineering (MBSE)-Systemmodells zum Zweck der Neu- oder Umrüstungsentwicklung von wirtschaftlich konkurrenzfähigen Wasserstoff-Brennstoffzellenantrieben (H2-BZ-Antrieb) für mobile Arbeitsmaschinen. Hybride H2-BZ-Antriebe für mobile Arbeitsmaschinen stoßen in der im Projekt angestrebten technischen Umsetzung im Betrieb lokal keine Luftschadstoffe und Treibhausgase aus und ermöglichen bei der Verwendung von grünem Wasserstoff Emissionsfreiheit. Die unmittelbare Verringerung von Luftschadstoff- und Treibhausgasemissionen gegenüber Dieselmotorantrieben adressiert die Klimaschutzziele der Bundesregierung, die im Klimaschutzplan festgelegt wurden. Mit Hilfe des MBSE werden die technische (Robustheit, Dynamik, Sicherheit, Betriebsführung) und technoökonomische (Lebenszykluskosten, Umfelddynamik) Sichtweise auf hybride H2-BZ-Antriebe in einem Systemmodell verknüpft. So werden technische Anforderungen erfüllt und die Systemkomplexität handhabbar. Die Sichtweisen werden durch geeignete domänenübergreifende Teilmodelle repräsentiert. Das MBSE schafft eine einheitliche Datengrundlage (single source of truth), formale Modellspezifikationen (Modellontologien) und Modellierungssprache (SysML). Die Komplexität wird handhabbar, die Modelldokumentation systematisch und transparent, was den Wissensaustausch begünstigt. Im Projekt wird dieser systemanalytische Ansatz angewendet und für FuE von H2-BZ-Antrieben weiterentwickelt. Damit trägt das Projekt weiterhin zum Ziel der Entwicklung systemanalytischer Werkzeuge mit fachdisziplinübergreifender Beteiligung im 7. EfP bei. Die methodische Entwicklung wird im Projekt dazu verwendet, einen hybriden H2-BZ-Antrieb für eine Materialumschlagmaschine zu entwickeln und zu integrieren. Mit der Erprobung im realen Einsatz soll eine TRL-Erhöhung von 6 auf 7 erfolgen.

Hybride Brennstoffzellenantriebe für mobile Arbeitsmaschinen, Teilvorhaben: Tanksystem

Ziel des Projekts ist die Entwicklung und Anwendung eines Model-Based Systems Engineering (MBSE)-Systemmodells zum Zweck der Neu- oder Umrüstungsentwicklung von wirtschaftlich konkurrenzfähigen Wasserstoff-Brennstoffzellenantrieben (H2-BZ-Antrieb) für mobile Arbeitsmaschinen. Hybride H2-BZAntriebe für mobile Arbeitsmaschinen stoßen in der im Projekt angestrebten technischen Umsetzung im Betrieb lokal keine Luftschadstoffe und Treibhausgase aus und ermöglichen bei der Verwendung von grünem Wasserstoff Emissionsfreiheit. Die unmittelbare Verringerung von Luftschadstoff- und Treibhausgasemissionen gegenüber Dieselmotorantrieben adressiert die Klimaschutzziele der Bundesregierung, die im Klimaschutzplan festgelegt wurden. Mit Hilfe des MBSE werden die technische (Robustheit, Dynamik, Sicherheit, Betriebsführung) und technoökonomische (Lebenszykluskosten, Umfelddynamik) Sichtweise auf hybride H2-BZ-Antriebe in einem Systemmodell verknüpft. So werden technische Anforderungen erfüllt und die Systemkomplexität handhabbar. Die Sichtweisen werden durch geeignete domänenübergreifende Teilmodelle repräsentiert. Das MBSE schafft eine einheitliche Datengrundlage (single source of truth), formale Modellspezifikationen (Modellontologien) und Modellierungssprache (SysML). Die Komplexität wird handhabbar, die Modelldokumentation systematisch und transparent, was den Wissensaustausch begünstigt. Im Projekt wird dieser systemanalytische Ansatz angewendet und für FuE von H2-BZ-Antrieben weiterentwickelt. Damit trägt das Projekt weiterhin zum Ziel der Entwicklung systemanalytischer Werkzeuge mit fachdisziplinübergreifender Beteiligung im 7. EfP bei. Die methodische Entwicklung wird im Projekt dazu verwendet, einen hybriden H2-BZ-Antrieb für eine Materialumschlagmaschine zu entwickeln und zu integrieren. Mit der Erprobung im realen Einsatz soll eine TRL-Erhöhung von 6 auf 7 erfolgen.

1 2 3 4 513 14 15