Vorbeugende Konzepte gegen schaedliche Umwelteinwirkungen, wie sie die grundlegende Novellierung des Luftreinhalteplan-Instrumentariums im BImSchG vom 14 Mai 1990 verstanden wissen will, benoetigen nicht nur bundesweit geltende Grenz- und Leitwerte, sondern regional differenzierte Ansaetze. Der rationellen Energienutzung, dh der Vermeidung von Emissionen ist vor einer Emissionsminderung an der Quelle bzw den Massnahmen zum Passivschutz die hoechste Prioritaet einzuraeumen. Relativ gesicherte Aussagen zur lokalen Belastungssituation und den Entwicklungstrends sind hierzu erforderlich. Forschungsfragen sind: - Wie stellt sich die raeumliche Verteilung der Emissionen im Kraftwerkssektor in der BRD im Jahre 1989 dar? - Welche Veraenderungen ergeben sich im Vergleich zum Jahr 1986, und welche Massnahmen verursachten diese Veraenderungen? - Wie entwickeln sich die Kraftwerksstruktur und Kraftwerkstechnik, die aus der Bruttostromerzeugung und Bruttoengpassleistung resultierenden Vollastbenutzungsstunden und das Einsatzspektrum der verschiedenen Energietraeger bis zum Jahr 2005? - Welche regionalen Schadstoffemissionen sind in diesem Zeitraum zu erwarten? - Welche regionalen Auswirkungen hat ein verstaerkter Ausbau der Kraft-Waerme-Kopplung als energiesparende Technik und die Abkopplung der Stromerzeugung vom Gas und Oel auf die Reduktion der Emissionen? - Welche regionalen Entwicklungen erzeugt eine verstaerkte energetische Nutzung von Abfaellen, die statistisch zu den regenerativen Energien gezaehlt wird, bei den Kraftwerksemissionen, und erfolgen evtl Rueckwirkungen auf das Abfallaufkommen?
Sachsen-Anhalt gehört nicht nur beim Ausbau von Windkraft und Photovoltaik bundesweit zu den führenden Ländern. Auch bei Bioenergie ist das Land ein Vorreiter: Landesweit 482 Anlagen erzeugen rund drei Millionen Megawattstunden Strom und 1,9 Terrawattstunden Biomethangas. Bei einer Veranstaltung am heutigen Mittwoch in der Landesvertretung Sachsen-Anhalts in Berlin hat Energieminister Prof. Dr. Armin Willingmann betont, dass Bioenergie ein wichtiger Baustein für die Energie- und Wärmewende sei und deshalb vom Bund stärker unterstützt werden müsse. „Bioenergie hat den großen Vorteil, dass sie steuerbar ist. Wenn der Wind nicht weht und die Sonne nicht scheint, kann sie Versorgungslücken schließen“, betonte Willingmann. „Bioenergie kann sich auch mit Blick auf die Wärmewende zu einer wichtigen Option entwickeln.“ Der Minister fordert deshalb den Bund auf, zügig eine Strategie für Bioenergie vorzulegen und die Förderkulisse über die nächsten zwei Jahre hinaus zu klären. „Mit dem Anfang 2025 vorgelegten Biomasse-Paket hat der Bund zwar die Förderung von Anlagen bis Ende 2026 leicht erhöht. Wie es danach weitergehen soll, ist jedoch offen. Wenn wir den Abbau intakter und zukunftsfähiger Anlagen vermeiden wollen, muss die neue Bundesregierung zeitnah handeln und dem Bekenntnis zur Bioenergie aus dem Koalitionsvertrag Taten folgen lassen.“ Im Koalitionsvertrag von Union und SPD heißt es unter anderem: „Bioenergie spielt bei Wärme, Verkehr und steuerbarer Stromerzeugung eine wichtige Rolle. Wir wollen das Flexibilitätspotenzial der Biomasse konsequent heben.“ Zuletzt lag der Anteil der Biomasse an der gesamten Bruttostromerzeugung in Sachsen-Anhalt bei 12,4 Prozent. Für das laufende Jahr wurde das Ausschreibungsvolumen von 400 auf 1.000 Megawatt erhöht, für 2026 von 300 auf 800 Megawatt. Ab 2027 drohen nach den bislang weiterhin gültigen Plänen der früheren Bundesregierung geringere Volumina (2027: 326 MW; 2028: 76 MW), was zu einem Rückbau von Anlagen führen könnte. „Ich gestehe dem Bund zu, dass aktuell die Vorbereitungen für Ausschreibungen im Zuge der Kraftwerksstrategie unter Hochdruck vorangetrieben werden. Aber auch bei der Bioenergie gilt es, keine Zeit zu verlieren“, erklärte Willingmann. „Unternehmen, Privatleute, Länder und Kommunen brauchen verlässliche Orientierungspunkte, wie viel und welche Biomasse für welche Anwendung zur Verfügung stehen wird.“ Impressum: Ministerium für Wissenschaft, Energie, Klimaschutz und Umwelt des Landes Sachsen-Anhalt Pressestelle Leipziger Str. 58 39112 Magdeburg Tel: +49 391 567-1950, E-Mail: PR@mwu.sachsen-anhalt.de , Facebook , Instagram , LinkedIn , Threads , Bluesky , Mastodon und X
Auf der Grundlage des Beschlusses des rheinland-pfälzischen Landtags (Drucksache 12/1154 vom 18. März 1992) ist in einem zweijährigen Turnus der Energiebericht des Landes Rheinland-Pfalz zu erstellen. Der nunmehr 15. Energiebericht basiert auf den Beiträgen des MKUEM, des Ministeriums für Wirtschaft, Verkehr, Landwirtschaft und Weinbau (MWVLW), des Ministeriums für Bildung (BM), des Ministeriums für Wissenschaft und Gesundheit (MWG), des Ministeriums der Finanzen (FM) sowie des Ministeriums des Innern und für Sport (MdI) sowie des Statistischen Landesamts Rheinland-Pfalz. Die Schwerpunkte des Berichts umfassen die Ziele und die Darstellung der wichtigsten Handlungsfelder der rheinland-pfälzischen Energiepolitik, landesspezifische energiestatistische Daten zur Entwicklung der Energieerzeugung, des Energieverbrauchs und der Energiepreise, die Kurzberichterstattung gemäß § 7 Abs. 2 Nr. 1 Landesklimaschutzgesetz zur Entwicklung der Treibhausgasemissionen im Zeitraum 1990 bis 2021 sowie die Darstellung und Bewertung der Entwicklung energiebedingter Emissionen von SO2 und NOx. Die im 15. Energiebericht Rheinland-Pfalz enthaltenen amtlichen Statistiken und die damit verbundenen statistischen Auswertungen beziehen sich insbesondere auf die Bilanzjahre 2020 und 2021. Der 15. Energiebericht zeigt sehr anschaulich, dass im Berichtszeitraum durch zahlreiche Maßnahmen der Landesregierung die Umsetzung der Energiewende im Land gemeinsam erfolgreich weiter vorangebracht werden konnte. So konnte in den zurückliegenden 10 Jahren der Anteil der erneuerbaren Energien an der Bruttostromerzeugung von circa 30 Prozent in 2011 auf circa 51 Prozent sowie an der Deckung des Bruttostrombedarfs von circa 17 Prozent in 2011 auf über 37 Prozent deutlich gesteigert werden. Gleichzeitig ist der Anteil der Stromimporte zur Deckung des rheinland-pfälzischen Strombedarfs von über 43 Prozent in 2011 auf unter 27 Prozent gesunken.
Dem stetig wachsenden Anteil erneuerbarer Energien an der Bruttostromerzeugung steht ein Rückgang der konventionellen Stromerzeugung gegenüber. Erneuerbare Energien wie Wind, Sonne und Biomasse sind zusammen inzwischen die wichtigsten Energieträger im Strommix und sorgen für sinkende Emissionen. Zeitliche Entwicklung der Bruttostromerzeugung Die insgesamt produzierte Strommenge wird als Bruttostromerzeugung bezeichnet. Sie wird an der Generatorklemme vor der Einspeisung in das Stromnetz gemessen. Zieht man von diesem Wert den Eigenverbrauch der Kraftwerke ab, erhält man die Nettostromerzeugung . In den Jahren 1990 bis 1993 nahm die Bruttostromerzeugung ab, da nach der deutschen Wiedervereinigung zahlreiche, meist veraltete Industrie- und Kraftwerksanlagen in den neuen Bundesländern stillgelegt wurden. Seit 1993 stieg die Stromerzeugung aufgrund des wachsenden Bedarfs wieder an. In der Spitze lag der deutsche Bruttostromverbrauch im Jahr 2007 bei 624 Terawattstunden (Milliarden Kilowattstunden). Gegenüber diesem Stand ist der Verbrauch bis heute wieder deutlich gesunken. Im Jahr 2009 gab es einen stärkeren Rückgang in der Stromerzeugung. Ursache dafür war der stärkste konjunkturelle Einbruch der Nachkriegszeit und die folgende geringere wirtschaftliche Leistung (siehe Abb. „Bruttostromerzeugung und Bruttostromverbrauch“). Seit 2017 nimmt die inländische Stromerzeugung ab. Gründe dafür sind ein rückläufiger Stromverbrauch, die Außerbetriebnahme von konventionellen Kraftwerken und mehr Stromimporte. Entwicklung des Stromexportes Importe und Exporte im europäischen Stromverbund gleichen die Differenzen zwischen Stromverbrauch und -erzeugung aus. Die Abbildung „Bruttostromerzeugung und Bruttostromverbrauch“ zeigt, dass die Bruttostromerzeugung in den Jahren 2003 bis 2022 stets größer war als der Verbrauch. Entsprechend wies Deutschland in diesem Zeitraum beim Stromaußenhandel einen Exportüberschuss auf. Im Jahr 2017 erreichte der Überschuss mit etwa 52 TWh einen Höchststand, damals wurden 8 Prozent der Stromerzeugung exportiert. In den folgenden Jahren ging der Netto-Export zurück. Seit dem Jahr 2023 ist Deutschland wieder Nettoimporteur - mit einem Nettoimport von etwa 24 TWh wurden im Jahr 2024 knapp 5 Prozent des inländischen Stromverbrauchs gedeckt. Der Netto-Stromimport ist Ergebnis des europäischen Strombinnenmarktes, der es im Rahmen der vorhandenen Interkonnektor-Kapazitäten erlaubt, einen grenzüberschreitenden Ausgleich zwischen Erzeugung und Verbrauch herzustellen und insofern nationale Schwankungen abzufedern. Die inländische Erzeugung hätte in bestimmten Bedarfsfällen zu höheren Kosten geführt als der Import von Strom aus unseren Nachbarländern. Bruttostromerzeugung aus nicht erneuerbaren Energieträgern Die Struktur der Bruttostromerzeugung hat sich seit 1990 deutlich geändert (siehe Abb. „Bruttostromerzeugung nach Energieträgern“). Im Folgenden werden die nicht-erneuerbaren Energieträger kurz dargestellt. Erneuerbare Energieträger werden im darauffolgenden Abschnitt näher erläutert. Der Anteil der Energieträger Braunkohle , Steinkohle und Kernenergie an der Bruttostromerzeugung hat stark abgenommen. 2024 hatten die drei Energieträger zusammen nur noch einen Anteil von 21 %. Im Jahr 2000 waren es noch 80 %. Der Einsatz von Steinkohle zur Stromerzeugung ist gegenüber früheren Jahren deutlich zurückgegangen. Die Kosten für CO 2 -Emissionszertifikate machten und machen den Betrieb von Kohlekraftwerken zunehmend unwirtschaftlicher. Im Jahr 2024 trugen Steinkohlekraftwerke noch etwa 5% zur gesamten Bruttostromerzeugung bei, im Jahr 2000 waren es noch 25 %. Auch die Stromerzeugung aus Braunkohle verringerte sich in den letzten Jahren deutlich. 2024 lag die Stromerzeugung aus Braunkohle auf dem niedrigsten Wert seit 1990. Mit nur mehr 79 TWh halbierte sich die Stromerzeugung aus Braunkohle innerhalb der letzten 10 Jahre. Ihr Anteil an der Bruttostromerzeugung lag 2024 bei 16 %. Die deutliche Abnahme der Kernenergie seit 2001 erfolgte auf der Grundlage des Ausstiegsbeschlusses aus der Kernenergie gemäß Atomgesetz (AtG) in der Fassung von 2002, 2011 und 2022. Die Stromerzeugung aus Kernenergie betrug 2023 nur noch einen Bruchteil der Erzeugung von Anfang der 2000er Jahre. Im Frühjahr 2023 wurde die Stromerzeugung aus Kernkraft gemäß AtG vollständig eingestellt. Der Anteil von Mineralöl an der Stromerzeugung hat sich nur wenig geändert und bleibt marginal. Er schwankt seit 1990 zwischen 1 % und 2 % der gesamten Stromerzeugung. Die Stromerzeugung auf Basis von Erdgas lag 2024 höher als im Jahr 2000, insbesondere durch den Zubau neuer Gaskraftwerke mit Kraft-Wärme-Kopplung. Der Höhepunkt der Erzeugung wurde im Jahr 2020 erreicht (95 TWh). Seitdem ist die Erzeugung auf Basis von Erdgas wieder gefallen. Ein Grund waren insbesondere auch die in Folge des russischen Angriffskrieges in der Ukraine stark gestiegenen Gaspreise und der voranschreitende Ausbau erneuerbarer Energien. Bruttostromerzeugung auf Basis von erneuerbaren Energieträgern Der Strommenge, die auf Basis erneuerbarer Energien (Windenergie, Photovoltaik, Wasserkraft, Biomasse , biogener Anteil des Abfalls, Geothermie) erzeugt wurde, hat sich in den letzten Jahrzehnten vervielfacht. Im Jahr 2023 machte grüner Strom erstmals mehr als 50 % der insgesamt erzeugten und verbrauchten Strommenge aus. Diese Entwicklung setzte sich auch im Jahr 2024 fort. Angestoßen wurde das Wachstum der erneuerbaren Energien maßgeblich durch die Einführung des Erneuerbare-Energien-Gesetzes (EEG) im Jahr 2000 (siehe Abb. „Stromerzeugung aus erneuerbaren Energien im Jahr 2024“). Das EEG hat ganz wesentlich zum Rückgang der fossilen Stromerzeugung und dem damit verbundenen Ausstoß von Treibhausgasen beigetragen (vgl. Artikel „ Erneuerbare Energien – Vermiedene Treibhausgase “). Die verschiedenen erneuerbaren Energieträger tragen dabei unterschiedlich zum Anstieg der Erneuerbaren Strommenge bei. Die Stromerzeugung aus Wasserkraft war bis etwa zum Jahr 2000 für den größten Anteil der erneuerbaren Stromproduktion verantwortlich. Danach wurde sie von Photovoltaik -, Windkraft - und Biomasseanlagen deutlich überholt. Im Jahr 2024 wurden auf Basis der Wasserkraft noch etwa 8 % des erneuerbaren Stroms erzeugt – und ca. 4 % der insgesamt erzeugten Strommenge. In den letzten Jahren stieg die Bedeutung der Windenergie am schnellsten: Im Jahr 2024 wurde knapp die Hälfte des erneuerbaren Stroms und etwa 28 % des insgesamt in Deutschland erzeugten Stroms durch Windenergieanlagen an Land und auf See bereitgestellt (siehe Abb. „Stromerzeugung aus erneuerbaren Energien“). Bemerkenswert ist zudem die Entwicklung der Stromerzeugung aus Photovoltaik , die im Jahr 2024 26 % des erneuerbaren Stroms beisteuerte und inzwischen 15 % der gesamten Bruttostromerzeugung ausmacht. Ausführlicher werden die verschiedenen erneuerbaren Energieträger im Artikel „ Erneuerbare Energien in Zahlen “ beschrieben. Stromerzeugung aus erneuerbaren Energien im Jahr 2024 Quelle: Umweltbundesamt auf Basis AGEE-Stat Diagramm als PDF Stromerzeugung aus erneuerbaren Energien Quelle: Umweltbundesamt auf Basis AGEE-Stat Diagramm als PDF
Die wichtigsten Fakten Der Anteil der erneuerbaren Energien am Bruttostromverbrauch stieg zwischen 2000 und 2024 von 6,3 % auf 54,4 %. Das Erneuerbare-Energien-Gesetz (EEG) sieht vor, dass der Anteil der erneuerbaren Energien bis 2030 auf mindestens 80 % steigen soll. Wenn Deutschland seine ambitionierten Ausbauziele für neue Photovoltaik- und Windkraftanlagen in den nächsten Jahren einhält, ist dieses Ziel in Reichweite. Welche Bedeutung hat der Indikator? Elektrizität machte im Jahr 2024 nur etwa ein Viertel des gesamten Endenergieverbrauchs in Deutschland aus – deutlich mehr Energie wurde für die Mobilität (Kraftstoffe) und zum Heizen (beispielsweise Erdgas) genutzt. Allerdings sollen künftig auch die Wärmeerzeugung und die Mobilität immer stärker auf elektrischem Strom basieren. Damit wird der „Anteil erneuerbarer Energien am Bruttostromverbrauch“ ein immer zentralerer klima- und energiepolitischer Indikator . Noch bis vor wenigen Jahren basierte die Stromerzeugung in Deutschland überwiegend auf fossilen und nuklearen Energieträgern. Besonders durch Stein- und Braunkohle entstanden hohe Treibhausgasemissionen. Bei der Umstellung der Stromerzeugung auf erneuerbare Energien werden hingegen nur geringe bis gar keine Mengen an Treibhausgasen emittiert. Zudem kann die Stromerzeugung zu großen Teilen auf Basis inländischer (erneuerbarer) Ressourcen erfolgen. Der Bruttostromverbrauch umfasst den von sogenannten Letztverbrauchern wie Industrie oder privaten Haushalten verwendeten Strom sowie den Eigenverbrauch der Kraftwerke und die Netzverluste bei der Übertragung. Da der Indikator damit das Stromsystem vollständig abbildet, wird er bevorzugt als politischer Zielindikator verwendet. Wie ist die Entwicklung zu bewerten? In den letzten Jahrzehnten entwickelte sich der Einsatz erneuerbarer Energien in der Stromerzeugung rasant. Hauptgrund war die Förderung der erneuerbaren Stromerzeugungs-Technologien seit der Einführung des „Erneuerbare Energie Gesetzes“ (EEG) in Deutschland. Um die Klimaziele Deutschlands zu erreichen, setzt die Politik auf einen künftig weiter stark steigenden Erneuerbaren-Anteil am Bruttostromverbrauch . In der EEG-Novelle des Jahres 2023 wurde festgeschrieben, dass der Anteil bis 2030 auf mindestens 80 % steigen soll. Im „ Projektionsbericht 2023 für Deutschland “ wurde wissenschaftlich untersucht, ob Deutschland seine Klimaziele im Jahr 2030 erreichen kann. Auch die Entwicklung der erneuerbaren Stromversorgung wurde betrachtet. Der Bericht zeigt, dass der Erneuerbaren-Anteil am Stromverbrauch im Jahr 2030 bei über 80 % liegen kann. Voraussetzung ist allerdings, dass Deutschland seine festgelegten Ausbauziele erreicht. Insbesondere im Bereich der Windkraft zeichnet sich bislang ab, dass dies eine große Herausforderung sein wird. Wie wird der Indikator berechnet? Der Indikator setzt die Bruttostromerzeugung aus erneuerbaren Energien ins Verhältnis zum gesamten Bruttostromverbrauch . Letzterer entspricht der Bruttostromerzeugung aus allen Energieträgern, berücksichtigt aber auch den Stromaußenhandelssaldo, also ob in einem Jahr mehr Strom importiert oder exportiert wurde. Die verwendeten Daten werden von der Arbeitsgruppe Erneuerbare Energien-Statistik (AGEE-Stat) und der Arbeitsgemeinschaft Energiebilanzen (AGEB) bereitgestellt. Ausführliche Informationen zum Thema finden Sie in den Daten-Artikeln " Erneuerbare und konventionelle Stromerzeugung " sowie " Stromverbrauch ".
Die Energiewende ändert die Zusammensetzung des deutschen Kraftwerksparks. Die Anzahl an Kraftwerken zur Nutzung erneuerbarer Energien nimmt deutlich zu. Kraftwerke mit hohen Treibhausgas-Emissionen werden vom Netz genommen. Gleichzeitig muss eine sichere regionale und zeitliche Verfügbarkeit der Stromerzeugung zur Deckung der Stromnachfrage gewährleistet sein. Kraftwerkstandorte in Deutschland Die Bereitstellung von Strom aus konventionellen Energieträgern verteilt sich unterschiedlich über die gesamte Bundesrepublik. Das UBA stellt verschiedene Karten mit Informationen zu Kraftwerken in Deutschland zur Verfügung. In der Karte „Kraftwerke und Verbundnetze in Deutschland“ sind Kraftwerke der öffentlichen Stromversorgung und Industriekraftwerke mit einer elektrischen Bruttoleistung ab 100 MW verzeichnet. Basis ist die Datenbank „Kraftwerke in Deutschland“ . Weiterhin sind die Höchstspannungsleitungstrassen in den Spannungsebenen 380 Kilovolt (kV) und 220 kV eingetragen. In der Karte „ Kraftwerke mit Kraft-Wärme-Kopplung (KWK) in Deutschland “ sind Kraftwerke der öffentlichen Stromversorgung und Industriekraftwerke ab einer elektrischen Bruttoleistung von 50 MW bzw. mit einer Wärmeauskopplung ab 100 MW verzeichnet. Auch hier ist die Basis die Datenbank „Kraftwerke in Deutschland“ . Die Karte „Kraftwerke und Windleistung in Deutschland“ zeigt die installierte Windleistung pro Bundesland und die Kraftwerke ab 100 MW. Die Karte „Kraftwerke und Photovoltaikleistung in Deutschland“ vermittelt ein Bild des Zusammenspiels von Photovoltaikleistung und fossilen Großkraftwerken. Aus der Karte "Kraftwerksleistung in Deutschland" werden bundeslandscharf die jeweiligen Kraftwerksleistungen ersichtlich. Kraftwerke und Verbundnetze in Deutschland Kraftwerke und Verbundnetze in Deutschland, Stand Januar 2025. Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf. Quelle: Umweltbundesamt Karte als pdf herunterladen Kraftwerke und Verbundnetze in Deutschland, Stand Januar 2025. Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf. Kraftwerke mit Kraft-Wärme-Kopplung (KWK) in Deutschland Kraftwerke mit Kraft-Wärme-Kopplung (KWK) in Deutschland, Stand Januar 2025 Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf. Quelle: Umweltbundesamt Karte als PDF herunterladen Kraftwerke mit Kraft-Wärme-Kopplung (KWK) in Deutschland, Stand Januar 2025 Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf. Kraftwerke und Windleistung in Deutschland Karte Kraftwerke und Windleistung in Deutschland, Stand Dezember 2024 Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf. Quelle: Umweltbundesamt Karte als pdf herunterladen Karte Kraftwerke und Windleistung in Deutschland, Stand Dezember 2024 Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf. Kraftwerke und Photovoltaikleistung in Deutschland Karte Kraftwerke und Photovoltaikleistung in Deutschland, Stand Dezember 2024 Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf. Quelle: Umweltbundesamt Karte als pdf herunterladen Karte Kraftwerke und Photovoltaikleistung in Deutschland, Stand Dezember 2024 Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf. Kraftwerksleistung in Deutschland Installierte Kraftwerksleistung in Deutschland 2024 (Stand: Januar 2025) Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf. Quelle: Umweltbundesamt Karte als pdf herunterladen Installierte Kraftwerksleistung in Deutschland 2024 (Stand: Januar 2025) Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf. Kraftwerke auf Basis konventioneller Energieträger Der deutsche Kraftwerkspark beruhte vor der Energiewende vor allem auf konventionellen Erzeugungsanlagen auf Grundlage eines breiten, regional diversifizierten, überwiegend fossilen Energieträgermixes (Stein- und Braunkohlen, Kernenergie, Erdgas, Mineralölprodukte, Wasserkraft etc.). Die gesamte in Deutschland installierte Brutto-Leistung konventioneller Kraftwerke ist basierend auf Daten des Umweltbundesamtes in der Abbildung „Installierte elektrische Leistung von konventionellen Kraftwerken ab 10 Megawatt nach Energieträgern“ dargestellt. Die aktuelle regionale Verteilung der Kraftwerkskapazitäten ist in der Abbildung „Kraftwerksleistung aus konventionellen Energieträgern ab 10 Megawatt nach Bundesländern“ dargestellt. In den letzten Jahrzehnten hat sich die Energiebereitstellung aus erneuerbaren Energien sehr dynamisch entwickelt. Gleichzeitig wurden mit dem im Jahr 2023 erfolgten gesetzlichen Ausstieg Deutschlands aus der Nutzung der Kernenergie und dem fortschreitenden Ausstieg aus der Braun- und Steinkohle konkrete Zeitpläne zur Reduktion konventioneller Kraftwerkskapazitäten festgelegt (siehe Tab. „Braunkohlen-Kraftwerke in Deutschland gemäß Kohleausstiegsgesetz“ im letzten Abschnitt). Unabhängig davon übt der CO2 -Preis einen wesentlichen Einfluss auf die Rentabilität und insofern den Einsatz fossiler Kraftwerke aus. Braunkohlenkraftwerke : Mit Einsetzen der „Kommission für Wachstum, Strukturwandel und Beschäftigung“ wurde der Prozess zum Ausstieg aus der Kohlestromerzeugung in Deutschland gestartet. Im Januar 2020 wurde im Rahmen des Kohleausstiegsgesetzes ein Ausstiegspfad für die Braunkohlestromerzeugung zwischen Bund, Ländern und beteiligten Unternehmen erarbeitet, welcher Entschädigungsregelungen für die Unternehmen und Förderung für die betroffenen Regionen enthält. Die Leistung von Braunkohlenkraftwerken als typische Grundlastkraftwerke lässt sich nur unter Energieverlust kurzfristig regeln. Sie produzieren Strom in direkter Nähe zu den Braunkohlenvorkommen im Rheinischen und Lausitzer Revier sowie im Mitteldeutschen Raum. Steinkohlenkraftwerke: Im Rahmen des Kohleausstiegs wird auch der Ausstieg aus der Steinkohle angestrebt. 2019 wurde bereits aus ökonomischen Gründen der Abbau von Steinkohle in Deutschland eingestellt. Im Gegensatz zur Braunkohle wird der Ausstieg aus der Steinkohle durch einen Auktionsmechanismus geregelt, der die Entschädigungszahlungen bestimmt. Steinkohlenkraftwerke produzieren Strom in den ehemaligen Steinkohle-Bergbaurevieren Ruhr- und Saarrevier, in den Küstenregionen und entlang der Binnenwasserstraßen, da hier kostengünstige Transportmöglichkeiten für Importsteinkohle vorhanden sind. (Weitere Daten und Fakten zu Steinkohlenkraftwerken finden sie in der Broschüre „Daten und Fakten zu Braun- und Steinkohle“ des Umweltbundesamtes.) Gaskraftwerke: Die Strom- und Wärmeerzeugung mit Gaskraftwerken erzeugt niedrigere Treibhausgasemissionen als die mit Kohlenkraftwerken. Des Weiteren ermöglichen sie durch ihre hohe Regelbarkeit und hohe räumliche Verfügbarkeit eine Ergänzung der Stromerzeugung aus erneuerbaren Energien. Dennoch muss zum Erreichen der Klimaziele die gesamte Stromerzeugung dekarbonisiert werden, etwa durch Umrüstung auf Wasserstoffkraftwerke. Kraftwerksleistung aus konventionellen Energieträgern ab 10 Megawatt nach Bundesländern Quelle: Umweltbundesamt Diagramm als PDF Installierte elektrische Leistung von konventionellen Kraftwerken ab 10 Megawatt nach Energieträgern Quelle: Umweltbundesamt Diagramm als PDF Tab: Braunkohlenkraftwerke in Deutschland gemäß Kohleausstiegsgesetz Quelle: UBA-Kraftwerksliste und BMWi Diagramm als PDF Kraftwerke auf Basis erneuerbarer Energien Im Jahr 2024 erreichte der Ausbau der erneuerbaren Energien in Deutschland einen neuen Höchststand: In diesem Jahr wurden über 20 Gigawatt (GW) an erneuerbarer Kraftwerkskapazität zugebaut. Dieser Zubau liegt damit nochmals höher als die vorherige Ausbaurekord aus dem Jahr 2023. Insgesamt stieg damit die Erzeugungskapazität erneuerbarer Kraftwerke auf 188,8 GW. (siehe Abb. „Installierte Leistung zur Stromerzeugung aus erneuerbaren Energien“) Getragen wurde der Erneuerbaren-Zubau in den vergangenen Jahren vor allem von einem starken Ausbau der Photovoltaik (PV). Seit Anfang 2020 wurden mehr als 50 GW PV-Leistung zugebaut, damit hat sich die installierte Leistung in den letzten fünf Jahren verdoppelt. Mit einem Zubau von über 16,7 GW wurde im Jahr 2024 darüber hinaus ein neuer Zubaurekord erreicht. Nach den Ausbaustarken Jahren 2011 und 2012 war der Photovoltaikausbau zunächst stark eingebrochen, seit etwa 10 Jahren wächst der Zubau aber kontinuierlich mit einer deutlichen Beschleunigung innerhalb der letzten fünf Jahre. Um das im EEG 2023 formulierte PV-Ausbauziel von 215 GW im Jahr 2030 zu erreichen, wurde ein Ausbaupfad festgelegt. Das Zwischenziel von 89 GW zum Ende des Jahres 2024 wurde deutlich übertroffen. In den Folgejahren bis 2030 bleibt allerdings ein weiterer Zubau von jährlich fast 20 GW zur Zielerreichung notwendig. Auch wenn das Ausbautempo bei Windenergie zuletzt wieder zulegt hat, sind die aktuelle zugebauten Anlagenleistungen weit von den hohen Zubauraten früherer Jahre entfernt. Im Jahr 2024 wurden 3,4 GW neue Windenergie-Leistung zugebaut (2023: 3,3 GW; 2021: 2,4 GW). In den Jahren 2014 bis 2017 waren es im Schnitt allerdings 5,5 GW. Insgesamt lag die am Ende des Jahres 2023 installierte Anlagenleistung von Windenergieanlagen an Land und auf See bei 72,8 GW. Um die im EEG 2023 festgelegte Ausbauziele von 115 GW (an Land) und 30 GW (auf See) im Jahr 2030 zu erreichen, ist jeweils eine deutliche Beschleunigung des Ausbautempos notwendig. Durch die Abhängigkeit vom natürlichen Energiedargebot unterscheidet sich die Stromerzeugung der erneuerbaren Erzeugungsanlagen teilweise beträchtlich. So kann eine Windenergieanlage die vielfache Menge Strom erzeugen wie eine PV-Anlage gleicher Leistung. Ein einfacher Vergleich der installierten Leistungen lässt deshalb noch keinen Schluss über die jeweils erzeugten Strommengen zu. Neben Photovoltaik- und Windenergieanlagen mit stark witterungsabhängiger Stromerzeugung liefern Wasserkraftwerke langfristig konstant planbaren erneuerbaren Strom, sowie Biomassekraftwerke flexibel steuerbare Strommengen. Beide Energieträger haben in Deutschland aber nur ein begrenztes weiteres Ausbaupotential. Weitere Informationen und Daten zu erneuerbaren Energien finden Sie auf der Themenseite „Erneuerbare Energien in Zahlen“ . Wirkungsgrade fossiler Kraftwerke Im Brutto-Wirkungsgrad ist im Vergleich zum Netto-Wirkungsgrad der Eigenverbrauch der Kraftwerke enthalten. Insgesamt verbesserte sich der durchschnittliche Brutto-Wirkungsgrad des eingesetzten deutschen Kraftwerksparks seit 1990 um einige Prozentpunkte (siehe Abb. „Durchschnittlicher Brutto-Wirkungsgrad des fossilen Kraftwerksparks“). Diese Entwicklung spiegelt nicht zuletzt die kontinuierliche Modernisierung des Kraftwerksparks und die damit verbundene Außerbetriebnahme alter Kraftwerke wider. Der Brennstoffausnutzungsgrad von Kraftwerken kann durch eine gleichzeitige Nutzung von Strom und Wärme (Kraft-Wärme-Kopplung, KWK) gesteigert werden. Dies kann bei Großkraftwerken zur Wärmebereitstellung in Industrie und Fernwärme, aber auch bei dezentralen kleinen Kraftwerken wie Blockheizkraftwerken lokal erfolgen. Dabei müssen neue Kraftwerke allerdings auch den geänderten Flexibilitätsanforderungen an die Strombereitstellung genügen, dies kann beispielsweise über die Kombination mit einem thermischen Speicher erfolgen. Obwohl bei konventionellen Kraftwerken in den letzten Jahren technisch eine Steigerung der Wirkungsgrade erreicht werden konnte, werden die dadurch erzielbaren Brennstoffeinsparungen nicht ausreichen, um die erforderliche Treibhausgasreduktion im Kraftwerkssektor für die Einhaltung der Klimaschutzziele zu erreichen. Dafür ist ein weiterer Ausbau der erneuerbaren Stromerzeugung notwendig. Kohlendioxid-Emissionen Folgende Aussagen können zum Kohlendioxid-Ausstoß von Großkraftwerken für die Stromerzeugung getroffen werden: Braunkohlen : Die spezifischen Kohlendioxid-Emissionen von Braunkohlenkraftwerken variieren je nach Herkunft des Energieträgers aus einem bestimmten Braunkohlerevier und der Beschaffenheit der mitverbrannten Sekundärbrennstoffe (siehe „Emissionsfaktoren eingesetzter Energieträger zur Stromerzeugung“). Mit mindestens 103.153 kg Kilogramm Kohlendioxid pro Terajoule (kg CO 2 / TJ) war der Emissionsfaktor von Braunkohlen im Jahr 2023 höher als der der meisten anderen Energieträger. Steinkohlen : Der Kohlendioxid-Emissionsfaktor von Steinkohlenkraftwerken betrug im Jahr 2023 94.326 kg CO 2 / TJ. Erdgas : Erdgas-GuD-Anlagen haben mit derzeit 56.221 kg CO 2 / TJ den geringsten spezifischen Emissionsfaktor fossiler Kraftwerke (abgesehen von Kokerei-/Stadtgas): Bei der Verbrennung von Erdgas entsteht pro erzeugter Energieeinheit weniger Kohlendioxid als bei der Verbrennung von Kohle. Weitere Entwicklung des deutschen Kraftwerksparks Um die Klimaschutzziele zu erreichen, ist ein weiterer Ausbau der erneuerbaren Kraftwerkskapazitäten notwendig. Um den Herausforderungen der Energiewende begegnen zu können, wird es außerdem einen zunehmenden Fokus auf Flexibilisierungsmaßnahmen geben. Dabei handelt es sich um einen Ausbau von Speichern (etwa Wasserkraft, elektro-chemische Speicher, thermische Speicher) sowie um den Ausbau der Strominfrastruktur (Netzausbau, Außenhandelskapazitäten) und Anreize zur Flexibilisierung des Stromverbrauchs.
Die Kraft des Wassers zu nutzen hat eine lange Tradition und ist bis heute als erneuerbare Energiequelle von Bedeutung. Gleichzeitig hat die Energiegewinnung aus Flüssen vielfältige sozioökonomische und ökologische Wirkungen, die es zu beachten gilt. Vom Wasser zum Strom Das physikalische Grundprinzip der Wasserkraftnutzung ist, die Bewegungsenergie und die potenzielle Energie des Wassers in nutzbare Energie umzuwandeln. Der Energiegewinn aus Wasserkraft ist umso höher, je mehr Wasser aus möglichst großer Fallhöhe auf die Schaufeln einer Turbine oder eines Wasserrads trifft. Bergige Landschaften mit viel Wasser aus Niederschlägen sind daher besonders für die Wasserkraftnutzung geeignet. Bei der Erzeugung von Wasserkraft wird zwischen Laufwasserkraftwerken und Speicherkraftwerken unterschieden. Ein Laufwasserkraftwerk nutzt die augenblicklich verfügbare Wassermenge eines Flusses oder Bachs. Speicherkraftwerke halten das Wasser zurück. Es wird dann zu Zeiten höheren Strombedarfes durch die Turbinen geleitet. Pumpspeicherkraftwerke sind eine Sonderform der Speicherkraftwerke. Hierbei wird Wasser in ein höher gelegenes Speicherbecken gepumpt, um es bei Strombedarf nutzen zu können. Auswirkungen der Wasserkraftnutzung auf die Gewässerökologie Die Wasserkraftnutzung greift erheblich in Natur und Landschaft ein. Aus der Berichterstattung zur EU- Wasserrahmenrichtlinie ist bekannt, dass in 37 Prozent aller berichteten Wasserkörper – das sind über 51.000 Flusskilometer – die Wasserkraftnutzung Gewässer signifikant belastet. Dadurch werden die Gewässerschutzziele – der gute ökologische Zustand – nahezu vollständig verfehlt. Zu den gravierendsten Auswirkungen der Wasserkraft auf die Gewässer und Auen zählen: Die Unterbrechung der biologischen und morphodynamischen Durchgängigkeit der Fließgewässer. So können Wanderfischarten nicht mehr zu ihren Laich- oder Aufwuchslebensräumen gelangen. Die direkte Schädigung von Organismen in den Wasserkraftturbinen. Mehr als 22 Prozent der Fische, die eine Turbine passieren müssen, werden tödlich verletzt. Mehrere aufeinander folgende Wasserkraftwerke an einem Flusslauf können Populationen gefährden. Die Veränderung des Lebensraumes in der Aue und im Gewässer durch den Gewässeraufstau und unterhalb von Stauwerken durch einen zu geringen Wasserabfluss im verbleibenden Gewässerbett. Wasserkraftanlagen neu zu bauen oder zu betreiben, ist deshalb kritisch zu bewerten. Die Mehrzahl der existierenden Anlagen in Deutschland ist aus ökologischer Sicht dringend modernisierungsbedürftig. In den kommenden Jahren müssen Durchgängigkeit, Mindestwasserführung, hydrologische Situation und Fischschutz verbessert werden – auch um die gesetzlichen Ziele der Wasserrahmenrichtlinie zu erreichen. Leitplanken für die Stromerzeugung aus Wasserkraft und Erneuerbare Energien Gesetz Das Umweltbundesamt empfiehlt folgende Leitplanken für die Stromerzeugung aus Wasserkraft: Strategische Konzepte zur Nutzung der Wasserkraft können Zielkonflikte auflösen. Sie sollen sowohl erschließungswürdige Wasserkraftpotentiale als auch sensible Naturräume berücksichtigen. Nennenswerte Potenziale, um die Klimaschutzziele zu erreichen, liegen in der Modernisierung oder dem Ersatzneubau großer Wasserkraftanlagen (s.u.). In wertvollen und sensiblen Fluss- und Auenlandschaften können die negativen Folgen der Wasserkraftnutzung ihren positiven Beitrag für den Klimaschutz überwiegen. Bei der Festlegung von Maßnahmen an Wasserkraftstandorten sollte das gesamte betroffene Flussgebiet berücksichtigt werden, insbesondere wenn mehrere Wasserkraftwerke am Flusslauf aufeinander folgen. Es sollten alle geeigneten Maßnahmen umgesetzt werden, die Umweltauswirkungen mindern: Anlagen zum Fischauf- und -abstieg, zum Fischschutz , morphologische Verbesserungsmaßnahmen und die Sicherstellung eines ökologisch wirksamen Mindestwasserabflusses. Die Bund-Länderarbeitsgemeinschaft Wasser hat dazu eine „ Empfehlung zur Ermittlung einer ökologisch begründeten Mindestwasserführung in Ausleitungsstrecken von Wasserkraftanlagen “ veröffentlicht. Mit dem „Gesetz zu Sofortmaßnahmen für einen beschleunigten Ausbau der erneuerbaren Energien und weiteren Maßnahmen im Stromsektor“ wurde dem Ausbau der erneuerbaren Energien ein überragendes öffentliches Interesse eingeräumt. Im Rahmen der Abwägung verschiedener Interessen und Schutzgüter erhalten die erneuerbaren Energien damit ein besonders hohes Gewicht. Insgesamt verfolgt das EEG dennoch einen einheitlichen Ansatz, um Klima -, Umwelt- und Naturschutz miteinander zu verbinden. Wichtige Belange sollen nicht gegeneinander ausgespielt werden. Zur Frage wie weit das überragende Interesse reicht hat das Umweltbundesamt ein Factsheet erstellt. Wasserkraftnutzung in Deutschland Die Wasserkraft ist mit einem Anteil von etwa 15 Prozent an der weltweiten Stromversorgung eine bedeutende erneuerbare Energiequelle. Im globalen Vergleich zählen China, Kanada, Brasilien, USA, Russland und Indien zu den größten Erzeugern von Strom aus Wasserkraft. In Europa sind Norwegen, Frankreich, Schweden, Türkei und Italien die größten Produzenten. In Deutschland wird Wasserkraft vorwiegend in den abfluss- und gefällereichen Regionen der Mittelgebirge, der Voralpen und Alpen sowie an allen größeren Flüssen genutzt. Daher werden über 80 Prozent des Wasserkraftstroms in Bayern und Baden-Württemberg erzeugt. Etwa 86 Prozent des gesamten Leistungsvermögens der großen Wasserkraftanlagen liegt an neun großen Flüssen vor: Inn, Rhein, Donau, Isar, Lech, Mosel, Main, Neckar und Iller. Wasserkraftanlagen in Deutschland Gegenwärtig werden in Deutschland etwa 8.300 Wasserkraftanlagen betrieben. Vor allem kleine Anlagen mit einer installierten Leistung von höchstens einem Megawatt dominieren den Anlagenbestand mit 95 Prozent; ihr Anteil an der Stromerzeugung ist jedoch gering (s.u.). Den verbleibenden Anteil teilen sich große Wasserkraftanlagen mit einer installierten Leistung über einem Megawatt (436 Anlagen) und Pumpspeicherkraftwerke (31 Anlagen). Die Nutzung der Wasserkraft erfolgt in Deutschland vor allem über Laufwasserkraftwerke. Speicherkraftwerke haben demgegenüber einen viel geringeren Anteil von etwa 2,5 Prozent. Stromproduktion aus Wasserkraft in Deutschland In das öffentliche Stromnetz speisen etwa 7.300 Wasserkraftanlagen ein. Sie decken über die Jahre je nach Wasserführung 2,9 bis 3,8 Prozent des jährlichen Bruttostromverbrauchs bei. Über 90 Prozent des Wasserkraftstromes stammt aus großen Wasserkraftanlagen. Der Anteil der Wasserkraft an der Stromerzeugung aus erneuerbaren Energien ist über die Jahre gesunken und liegt gegenwärtig noch bei ca. 8 Prozent. Dieser Anteil wird in Zukunft weiter sinken, da die Potenziale der Wasserkraftnutzung in Deutschland weitgehend erschlossen sind, während andere erneuerbare Energieträger größere Potenziale aufweisen und weiter ausgebaut werden. Darüber hinaus kann sich die durch den Klimawandel bedingte Zunahme von Trockenperioden negativ auf den Energieertrag von Wasserkraftanlagen auswirken. Aktuelle Zahlen zur Wasserkraftnutzung werden regelmäßig von der Arbeitsgruppe Erneuerbare Energien-Statistik (AGEE-Stat) veröffentlicht. Über die Umsetzung des Erneuerbare-Energien-Gesetzes (EEG) im Bereich Wasserkraft unterrichten die EEG-Erfahrungsberichte . Anlagendaten sind über das Marktstammdatenregister der Bundesnetzagentur recherchierbar. Wasserkraftpotenzial in Deutschland Das technisch-ökologische Potenzial der Wasserkraftnutzung in Deutschland wird auf etwa 25 Terawattstunden ( TWh ) Strom pro Jahr beziffert. In den vergangenen zehn Jahren wurden bereits bis zu 23 TWh Strom pro Jahr aus Wasserkraft gewonnen. Damit ist das Wasserkraftpotenzial zu großen Teilen erschlossen. Zwischenzeitlich haben viele Bundesländer die Potenziale der Energiegewinnung aus Wasserkraft weiter konkretisiert. Dafür wurden fast 40.000 Standorte bestehender Querbauwerke und Wasserkraftanlagen sowie auch frei fließende Gewässerstrecken in Hinblick auf noch zu erschließende Wasserkraftpotenziale analysiert. Auf dieser Basis gehen die Länder derzeit von einem grundsätzlich noch erschließbaren Wasserkraftpotenzial von 1,3 bis 1,4 TWh aus. Etwa 70 Prozent dieses Potenzials entfallen auf die Modernisierung bestehender Wasserkraftanlagen. Die Rolle der Wasserkraft bei der Energiewende In den letzten Jahren wurden die Rahmenbedingungen einer vollständig auf erneuerbaren Energien basierenden Stromversorgung in Deutschland in verschiedenen Studien analysiert, so auch in der Studie " RESCUE – Wege in eine ressourcenschonende Treibhausgasneutralität " des Umweltbundesamtes. Sowohl die progressiven als auch die konservativen Szenarien unterscheiden sich hinsichtlich der künftigen Entwicklung der Wasserkraft nur geringfügig. Demnach wird die Wasserkraft keinen großen Beitrag zur deutschen Bruttostromerzeugung leisten. Alle Szenarien zeigen einheitlich, dass die Wasserkraft ihr technisch-ökologisches Potenzial im Großen und Ganzen bereits ausschöpft. Wasserkraft und Klimawandel Bei der Abschätzung der zukünftigen Stromerzeugung aus Wasserkraft ist der Klimawandel mit zu betrachten, denn die Höhe des Stromertrags hängt u.a. von der Wassermenge ab. Das Umweltbundesamt hat die möglichen Effekte des Klimawandels auf die Ertragssituation der Wasserkraft untersuchen lassen . Demnach kann bis zur Hälfte des 21. Jahrhunderts mit einer Mindererzeugung aus Wasserkraft um ein bis vier Prozent und für den Zeitraum danach um bis zu 15 Prozent gerechnet werden. So zeigen Berechnungen an ausgewählten Wasserkraftanlagen an Hochrhein, Lech und Main Schwankungen in der Stromerzeugung von plus/minus neun Prozent in Abhängigkeit des Wasserdargebots. Um mögliche Mindererzeugungen der Wasserkraft zu kompensieren, empfiehlt es sich, die Anlagen zu optimieren und die Vorhersagemodelle für den Oberflächenabfluss weiter zu verbessern. Kraftwerk Griesheim 1 Wasserkraftwerk bei Griesheim im Main von oberstrom fotografiert. Quelle: Stephan Naumann / UBA Wasserkraftwerk bei Griesheim im Main von oberstrom fotografiert. Kraftwerk Griesheim 2 Wasserkraftwerk bei Griesheim im Main von unterstrom fotografiert. Quelle: Stephan Naumann / UBA Wasserkraftwerk bei Griesheim im Main von unterstrom fotografiert. Kraftwerk Unkelmühle Wasserkraftanlage in der Sieg (Unkelmühle). Quelle: Stephan Naumann / UBA Wasserkraftanlage in der Sieg (Unkelmühle). Wasserkraft Demo Demonstration der Nutzung von Wasserkraft. Quelle: Stephan Naumann / UBA Demonstration der Nutzung von Wasserkraft. Wasserkraftanlage Öblitz Wasserkraftanlage in der Saale bei Öblitz. Quelle: Stephan Naumann / UBA Wasserkraftanlage in der Saale bei Öblitz. Wasserkraftanlage Saale Wasserkraftanlage in der Saale unterhalb von Jena. Quelle: Stephan Naumann Wasserkraftanlage in der Saale unterhalb von Jena. Wasserkraftwerk Bayerischer Wald Wasserkraftnutzung im Bayerischen Wald. Quelle: Stephan Naumann Wasserkraftnutzung im Bayerischen Wald. Wehranlage Tuebingen Ausleitungswehr für die Wasserkraftnutzung bei Tübingen. Quelle: Stephan Naumann Ausleitungswehr für die Wasserkraftnutzung bei Tübingen. Kraftwerk Griesheim 1 Kraftwerk Griesheim 2 Kraftwerk Unkelmühle Wasserkraft Demo Wasserkraftanlage Öblitz Wasserkraftanlage Saale Wasserkraftwerk Bayerischer Wald Wehranlage Tuebingen Literatur Anderer Pia, Dumont Ulrich, Linnenweber Christof, Schneider Bernd (2009): Das Wasserkraftpotenzial in Rheinland-Pfalz. In: KW Korrespondenz Wasserwirtschaft 2009 (2) Nr. 4. 223-227. Anderer, Pia; Heimerl, Stephan; Raffalski, Niklas; Wolf-Schumann, Ulrich (2018): Potenzialstudie Wasserkraft in Nordrhein-Westfalen. WasserWirtschaft 5 – 2018. 33-39. BMU (Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit) (2010): Potentialermittlung für den Ausbau der Wasserkraftnutzung in Deutschland als Grundlage für die Entwicklung einer geeigneten Ausbaustrategie. Aachen. 2010. Helbig, Ulf; Stiller, Felix (2020): Potentialstudie WKA Brandenburg. Institut für Wasserbau und technische Hydromechanik TU Dresden. Vortrag. (Unveröffentlicht). International Hydropower Association (IHA) 2022: Hydropower Status Report. Sector trends and insights. Kraus Ulrich, Kind Olaf, Spänhoff Bernd (2011): Wasserkraftnutzung in Sachsen – aktueller Stand und Perspektiven. 34. Dresdner Wasserbaukolloquium 2011: Wasserkraft – mehr Wirkungsgrad + mehr Ökologie = mehr Zukunft. Dresdner Wasserbauliche Mitteilungen. 11-18. LANUV (Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen) [Hrsg.] (2017): Potenzialstudie Erneuerbare Energien NRW Teil 5 – Wasserkraft. LANUV-Fachbericht 40. Pia Anderer, Edith Massmann (Ingenieurbüro Floecksmühle GmbH), Dr. Stephan Heimerl, Dr. Beate Kohler (Fichtner Water & Transportation GmbH), Ulrich Wolf-Schumann, Birgit Schumann (Hydrotec Ingenieurgesellschaft für Wasser und Umwelt mbH). Recklinghausen 2017. LfU - Bayerisches Landesamt für Umwelt (2020). Energieatlas Bayern. https://www.energieatlas.bayern.de/thema_wasser/daten.html . Zugriff am 04.05.2021. MWAG - Ministerium für Wirtschaft, Arbeit und Tourismus Mecklenburg-Vorpommern [Hrsg.] (2011): Landesatlas Erneuerbare Energien Mecklenburg-Vorpommern 2011. Projektbearbeitung: Energie-Umwelt-Beratung e.V./Institut Rostock. Schwerin – Neubrandenburg. Naumann, S. (2022): Aktueller Gewässerzustand und Wasserkraftnutzung. In Korrespondenz Wasserwirtschaft 2022 (15) Nr. 12. 743-748. Radinger, J., van Treeck R., Wolter C. (2021). Evident but context-dependent mortality of fish passing hydroelectric turbines. conservation biology. Volume36, Issue3. DOI: 10.1111/cobi.13870. Reiss, J.; Becker, A.; Heimerl S. (2017): Ergebnisse der Wasserkraftpotenzialermittlung in Baden-Württemberg. In: WasserWirtschaft 10/2017. 18-23. Theobald, Stephan (2011): Analyse der hessischen Wasserkraftnutzung und Entwicklung eines Planungswerkzeuges „WKA-Aspekte“. Universität Kassel. Fachgebiet Wasserbau und Wasserwirtschaft. Erläuterungsbericht i.A. Hessisches Ministerium für Umwelt, Energie, Landwirtschaft und Verbraucherschutz, Wiesbaden. August 2011. TMWAT - Thüringer Ministerium für Wirtschaft, Arbeit und Technologie [Hrsg.] (2011): Neue Energie für Thüringen Ergebnisse der Potenzialanalyse. Thüringer Bestands- und Potenzialatlas für erneuerbare Energien. Studie im Auftrag des Thüringer Ministeriums für Wirtschaft, Arbeit und Technologie 2010–2011. UBA - Umweltbundesamt [Hrsg.] (1998): Umweltverträglichkeit kleiner Wasserkraftwerke – Zielkonflikte zwischen Klima - und Gewässerschutz. Meyerhoff J., Petschow U.. Institut für ökologische Wirtschaftsforschung GmbH, Berlin, UFOPLAN 202 05 321, UBA-FB 97-093, In: UBA Texte 13/98, 1-150. UBA -Umweltbundesamt [Hrsg.] (2001): Wasserkraftanlagen als erneuerbare Energiequelle –rechtliche und ökologische Aspekte. BUNGE T. et. al.. In: UBA Texte 01/01, 1-88.
Sachsen-Anhalt zählt nicht nur beim Ausbau von Windkraft und Photovoltaik bundesweit zu den Vorreitern. Rund drei Millionen Megawattstunden Strom werden bereits heute im Land mit Bioenergie erzeugt; hinzu kommen 1,9 Terrawattstunden (TWh) Biomethaneinspeisung. In den vergangenen Monaten wurde jedoch zwischen Bund und Ländern um die Förderhöhe und damit um die Perspektiven der Bioenergie gerungen. Mit dem vorläufigen Ergebnis ist Sachsen-Anhalts Energieminister Prof. Dr. Armin Willingmann zufrieden, denn Bundestag und Bundesrat haben einer Erhöhung der Förderung in den Jahren 2025 und 2026 zugestimmt. „Ich freue mich, dass die Intervention der Länder beim Bund dazu geführt hat, dass wir die wirtschaftlichen Perspektiven für die Bioenergie in Deutschland noch vor der Bundestagswahl zumindest kurzfristig absichern konnten“, erklärte Willingmann am Mittwoch. „Ich bin davon überzeugt, dass Bioenergie in den kommenden Jahren einen wichtigen Beitrag für das Gelingen der Energie- und Wärmewende leisten kann“, so Willingmann weiter. „Bioenergie hat den großen Vorteil, dass sie im Gegensatz zu Windkraft und Photovoltaik steuerbar ist. Deshalb hoffe ich, dass die künftige Bundesregierung gemeinsam mit den Ländern auch dauerhaft verlässliche Rahmenbedingungen für Bioenergie schaffen wird.“ Zuletzt lag der Anteil der Biomasse an der gesamten Bruttostromerzeugung in Sachsen-Anhalt bei 12,4 Prozent. Mit Gestehungskosten von 18 Cent pro Kilowattstunde ist Biomasse jedoch teurer als Windstrom mit acht Cent oder Sonnenstrom mit vier Cent pro Kilowattstunde. Aus diesem Grund wollte das Bundeswirtschaftsministerium (BMWK) die Förderung von Bioenergie im vergangenen Jahr begrenzen. Nach den Plänen des BMWK sollte die deutschlandweit installierte Leistung von aktuell rund 10.500 Megawatt auf 8.400 Megawatt im Jahr 2030 sinken. Weniger Förderung hätte in diesem Fall zu einem erheblichen Rückgang der Bioenergie in Sachsen-Anhalt führen können, da in den kommenden fünf Jahren 170 der landesweit 482 Biogasanlagen nach zwanzigjähriger Betriebslaufzeit aus der EEG-Förderung herausfallen. „Insoweit bin ich froh, dass es dazu nicht kommt“, erklärte Willingmann. „Es hat sich ausgezahlt, dass die Energieministerinnen und -minister der Länder Bundeswirtschaftsminister Robert Habeck im vergangenen November bei der Energieministerkonferenz in Brunsbüttel darauf hingewiesen haben, dass Bioenergie als steuerbare Energie neben wasserstofffähigen Gaskraftwerken gebraucht wird. Aufgabe der neuen Bundesregierung wird es nun sein, über die Jahre 2025 und 2026 hinaus vernünftige Rahmenbedingungen für Bioenergie zu schaffen. Dazu zählt für mich auch, dass Bioenergie einen höheren Stellenwert in der Kraftwerksstrategie der Bundesregierung einnehmen muss.“ Für das laufende Jahr wurde das Ausschreibungsvolumen von 400 auf 1.000 Megawatt erhöht, für 2026 von 300 auf 800 Megawatt. Ab 2027 plant der Bund vorerst weiterhin mit niedrigen Volumina (2027: 326 MW; 2028: 76 MW), so dass sich hier bereits abzeichnet, dass die Diskussion über die Rolle der Bioenergie im Rahmen der Energie- und Wärmewende weitergehen wird. Gegenstand des Energiepakets war zudem die Erhöhung der Flexibilitätsprämie von 65 auf 100 Euro pro Kilowatt (kW). Die Flexibilitätsprämie ist als finanzieller Anreiz gedacht, damit Biogasanlagen so aufgerüstet werden, dass sie netzdienlich betrieben werden können; also insbesondere zu wind- oder sonnenarmen Zeiten. „Die Prämie zielt insoweit schon auf die Rolle ab, die Bioenergie in den nächsten Jahren spielen sollte“, so Willingmann. Impressum: Ministerium für Wissenschaft, Energie, Klimaschutz und Umwelt des Landes Sachsen-Anhalt Pressestelle Leipziger Str. 58 39112 Magdeburg Tel: +49 391 567-1950, E-Mail: PR@mwu.sachsen-anhalt.de , Facebook , Instagram , LinkedIn , Mastodon und X
Ausbau von Photovoltaik und Windenergie erneut bei über einem Gigawatt – Positiver Trend auch bei Dauer von Genehmigungsverfahren „In Rheinland-Pfalz sind wir mit einem erneuten Netto-Zubau von über einem Gigawatt beim Ausbau der Erneuerbaren Energien auf einem guten Weg und haben unser Gesamtjahresziel zum zweiten Mal in Folge übertroffen“, sagte Klimaschutz- und Energieministerin Katrin Eder bei der Bilanzvorstellung im Ausschuss für Klima, Energie und Mobilität. Zum Jahresende 2024 waren in Rheinland-Pfalz 1.783 Windenergieanlagen mit einer Gesamtleistung von 4.151 Megawatt (MW) in Betrieb. Im Solarbereich war der Netto-Zubau – ähnlich wie im Vorjahr – mit 907,4 MW erneut fast doppelt so hoch wie das ausgegebene Ziel von 500 MW. 2024 wurden in Rheinland-Pfalz 42 Windenergieanlagen mit einer kumulierten Leistung von 205,8 MW neu in Betrieb genommen. Die neu installierte Bruttoleistung lag damit 2024 um 48 Prozent höher als noch im Jahr 2023. Auch der Nettozubau steigerte sich auf rund 154 MW Leistung im Jahr 2024 und lag damit etwa 20 Prozent über dem Wert von 2023. Rheinland-Pfalz will bis spätestens 2040 klimaneutral sein. Um dieses Ziel zu erreichen, müssen Erneuerbare Energien im Land massiv ausgebaut werden. „Die globale Durchschnittstemperatur lag 2024 zum ersten Mal über der 1,5-Grad-Marke. Die Vorboten einer langfristigen Klimaerwärmung haben wir im vergangenen Jahr mit einer Zunahme an Extremwetterereignissen in Rheinland-Pfalz und weltweit einmal mehr beobachten können“, ergänzte Katrin Eder. „Auch bei den Genehmigungsverfahren für Windenergieanlagen nehmen wir weiter Tempo auf. Im Jahr 2024 wurden in Rheinland-Pfalz erstmals deutlich mehr als 500 Megawatt an Windenergieleistung neu genehmigt und damit so viel wie noch nie zuvor in einem Jahr“, so Katrin Eder. Bei der Genehmigungsdauer für Windenergieanlagen zeichnet sich laut Fachagentur Windenergie derzeit eine Reduzierung um durchschnittlich zehn Monate von 32,3 Monaten auf 22,3 Monate ab. Auch bei der Bruttostromerzeugung aus Erneuerbaren Energien ist Rheinland-Pfalz auf dem Vormarsch. Das zeigen Zahlen, die das Statistische Landesamt jetzt für das Jahr 2023 veröffentlicht hat. So stieg die Bruttostromerzeugung in Rheinland-Pfalz im Jahr 2023 um 5,8 Prozent auf insgesamt 20,717 Terawattstunden (TWh) an. Der Anteil an Erneuerbaren Energieträgern erreicht hierbei mit 65,6 Prozent einen neuen Rekordwert. Maßgeblich hierfür war die im Vergleich zum Vorjahr um 37 Prozent gestiegene Stromerzeugung aus Windenergie – die im Jahr 2023 mit 8,921 TWh einen absoluten Höchstwert erreichte. „Der Trend beim Ausbau der Windenergie in Rheinland-Pfalz zeigt nach oben und wir sind zuversichtlich, dass er dank unserer Maßnahmen auch in Zukunft weiter an Fahrt aufnehmen wird“, fasste Klimaschutz- und Energieministerin Katrin Eder die Entwicklungen zusammen.
Ziel der Energiewende ist es, Versorgungssicherheit, Wirtschaftlichkeit und Umweltverträglichkeit in einen neuen Einklang zu bringen, um eine zuverlässige, nachhaltige und bezahlbare Energieversorgung zu gewährleisten. Dabei spielen die erneuerbaren Energien (EE) wie z.B. Wind, Sonne und Biomasse eine entscheidende Rolle für eine klimaneutrale und nachhaltige Energieversorgung. Schon heute kommen mehr als 61,5 % der Bruttostromerzeugung in Sachsen-Anhalt aus erneuerbaren Energien. Neben der Energieerzeugung werden die Energieversorgungsnetze angepasst, um- und ausgebaut, verschiedene Sektoren intelligent miteinander verbunden und die Möglichkeiten der Digitalisierung genutzt. Dabei ist es wichtig sicherzustellen, dass der Strom aus erneuerbaren Energien effizient genutzt wird, beispielsweise durch die Flexibilisierung des Energiesystems. Zentrale Flexibilitätsoptionen sind Sektorenkopplung, Wärme-, Strom- und Gasspeicher.
Origin | Count |
---|---|
Bund | 35 |
Land | 20 |
Type | Count |
---|---|
Förderprogramm | 11 |
Strukturierter Datensatz | 2 |
Text | 31 |
Umweltprüfung | 1 |
unbekannt | 9 |
License | Count |
---|---|
geschlossen | 41 |
offen | 13 |
Language | Count |
---|---|
Deutsch | 54 |
Englisch | 4 |
Resource type | Count |
---|---|
Datei | 4 |
Dokument | 18 |
Keine | 23 |
Unbekannt | 1 |
Webdienst | 2 |
Webseite | 24 |
Topic | Count |
---|---|
Boden | 42 |
Lebewesen & Lebensräume | 41 |
Luft | 41 |
Mensch & Umwelt | 54 |
Wasser | 33 |
Weitere | 54 |