Der Klimawandel gehört zu den größten Herausforderungen des 21. Jahrhunderts. Das Landesklimaschutzgesetz vom 19.August 2014 (GVBl. S. 188), zuletzt geändert durch §48 des Gesetzes vom 6.Oktober 2015 (GVBl. S. 283), BS 2129-3, trat am 23.August 2014 in Kraft. Das Gesetz bedarf aufgrund der veränderten Rahmenbedingungen auf internationaler, europäischer sowie Bundesebene einer umfassenden Novellierung. Hierbei handelt es sich insbesondere um das am 12.Dezember 2015 geschlossene und von der Bundesrepublik Deutschland sowie der Europäischen Union ratifizierte „Übereinkommen von Paris“ sowie das zur Umsetzung dieses Übereinkommens mehrfach novellierte Bundesklimaschutzgesetz. Darüber hinaus werden die entsprechenden Ziele des Zukunftsvertrags Rheinland-Pfalz 2021- 2026 umgesetzt.
Der Entwurf normiert insbesondere ambitionierte Klimaschutz- und Sektorziele bis hin zur Treibhausgasneutralität 2040, das Ziel bis 2030 100Prozent des Bruttostromverbrauchs in Rheinland-Pfalz bilanziell mit Strom aus erneuerbaren Energien zu decken sowie das Ziel der treibhausgasneutralen Landesverwaltung bis 2030.
Zielsetzung und Anlass:
Der Bau von Projekten für erneuerbare Energien nimmt als Reaktion auf die Nachfrage nach erneuerbarem Strom zu (IEA, 2020). Häufig wird dadurch auch die Landschaft deutlich verändert (Pasqualetti & Stremke, 2018). Insbesondere der Bau von Solarparks, die durch die Anordnung von Photovoltaikmodulen entstehen (Armstrong et al., 2016), erfordert angesichts ihrer geringen Energiedichte pro Flächeneinheit große Flächenausdehnungen (Smil, 2016). In Deutschland erzeugten Photovoltaikanlagen 50 TWh und deckten 9,3% des Bruttostromverbrauchs und 10,5% der Nettostromerzeugung im Jahr 2020 ab (Burger, 2021; Wirth, 2021). Obwohl der große Flächenbedarf von Solarparks eine Herausforderung darstellt, gibt es auch positive Synergieeffekte.
Durch das Vorhandensein und die Verteilung von Photovoltaik-Modulen und die damit verbundene geänderte Bodenbedeckung ändert sich die Verteilung von Niederschlag, Verdunstung, Temperatur und Strahlung an der Bodenoberfläche (Armstrong et al., 2014). Auch das Abflussvolumen und der Spitzenabfluss können sich je nach Bodenbeschaffenheit und -eigenschaften erheblich verändern (Cook & McCuen, 2013). Einige Studien haben gezeigt, dass zu den hydrologischen Auswirkungen von Solarparks auch die Veränderung des Oberflächenabflusses und der Bodenerosion gehört (Lambert et al., 2021). Die Installation von Solarparks erzeugt daher nicht nur Energie, sondern kann auch bei günstiger Anordnung der Module die Grundwasserneubildung erhöhen, die Grundwasserqualität und weitere Ökosystemleistungen verbessern (z. B. die Bodenerosion verringern, einen geschützten Lebensraum für Tiere und Pflanzen bieten und den Einsatz von Düngemitteln und Pestiziden verhindern). Mikroklimamessungen haben gezeigt, dass Solarenergiesysteme dazu beitragen, die tatsächliche Evapotranspiration durch ihren Schattenwurf zu verringern (Marrou et al., 2013) und durch ihre extensive Bewirtschaftung die Pflanzenvielfalt erhöhen und dadurch einen höheren Kohlenstoffeintrag in den Boden ermöglichen (Armstrong et al., 2016). Aktuelle Studien haben auch einige wichtige Erkenntnisse zur Verbesserung mehrerer Ökosystemleistungen (z. B. Nahrungsmittel- und Energieversorgung, Bestäubung, Kohlenstoffspeicherung sowie Bildungs- und Erholungsnutzen) durch nachhaltige Solarenergiesysteme aufgrund von Landaktivitäten und Biomasseumwandlungsprozessen hervorgebracht (Hanes et al., 2018; Randle-Boggis et al., 2020; Semeraro et al., 2018).
In diesem Projekt entwickeln wir einen konzeptionellen Rahmen und eine Software, um die hydrologischen Auswirkungen und die wasserbezogenen Ökosystemleistungen im Zusammenhang mit dem Bau von Solarparks zu ermitteln und zu quantifizieren. Das Hauptziel des Projekts ist die Programmierung einer Software zur Unterstützung der Planung und Verwaltung von Solarparks, um die Grundwasserneubildung, die Wasserqualität und andere ökohydrologische Bedingungen (z. B. Bereitstellung von Nahrung und Wasser, Reduktion von Oberflächenwasserabfluss, Lebensraum für Tiere und Pflanzen verbessern, Einsatz von Düngemitteln und Pestiziden verhindern) zu optimieren. Das Projekt umfasst den Aufbau eines konzeptionellen Rahmens zur Bewertung und Quantifizierung spezifischer Ökosystemleistungen von Solarparkprojekten durch die Verknüpfung der Auswirkungen der Infrastruktur mit ökologischen und hydrologischen Daten. Die Ziele dieses Projekts werden durch die Zusammenarbeit des Lehrstuhls für Hydrologie und Flussgebietsmanagement der TU München mit der Firma MaxSolar GmbH während der Planung und des Baus eines ihrer Solarparkprojekte in Darstadt (Bayern) erreicht. Der Solarpark in Darstadt wird als Pilotstudie dienen, um die Software zu entwickeln, zu testen und einzusetzen.
Dieses Projekt bringt den Stand der Technik voran, indem es eine neuartige Software entwickelt, mit der die Auswirkungen der Infrastruktur von Solarparks quantitativ und in einem räumlichen Kontext analysiert werden können. (Text gekürzt)
Der Klimawandel gehört zu den größten Herausforderungen des 21. Jahrhunderts. Das Landesklimaschutzgesetz vom 19. August 2014 (GVBl. S. 188), zuletzt geändert durch § 48 des Gesetzes vom 6. Oktober 2015 (GVBl. S. 283), BS 2129-3, trat am 23. August 2014 in Kraft. Das Gesetz bedarf aufgrund der veränderten Rahmenbedingungen auf internationaler, europäischer sowie Bundesebene einer umfassenden Novellierung. Hierbei handelt es sich insbesondere um das am 12. Dezember 2015 geschlossene und von der Bundesrepublik Deutschland sowie der Europäischen Union ratifizierte „Übereinkommen von Paris“ sowie das zur Umsetzung dieses Übereinkommens mehrfach novellierte Bundesklimaschutzgesetz. Darüber hinaus werden die entsprechenden Ziele des Zukunftsvertrags Rheinland-Pfalz 2021-2026 umgesetzt.
Der Entwurf normiert insbesondere ambitionierte Klimaschutz- und Sektorziele bis hin zur Treibhausgasneutralität 2040, das Ziel bis 2030 100 Prozent des Bruttostromverbrauchs in Rheinland-Pfalz bilanziell mit Strom aus erneuerbaren Energien zu decken sowie das Ziel der treibhausgasneutralen Landesverwaltung bis 2030.
Dem stetig wachsenden Anteil erneuerbarer Energien an der Bruttostromerzeugung steht ein Rückgang der konventionellen Stromerzeugung gegenüber. Erneuerbare Energien wie Wind, Sonne und Biomasse sind zusammen inzwischen die wichtigsten Energieträger im Strommix und sorgen für sinkende Emissionen. Zeitliche Entwicklung der Bruttostromerzeugung Die insgesamt produzierte Strommenge wird als Bruttostromerzeugung bezeichnet. Sie wird an der Generatorklemme vor der Einspeisung in das Stromnetz gemessen. Zieht man von diesem Wert den Eigenverbrauch der Kraftwerke ab, erhält man die Nettostromerzeugung . In den Jahren 1990 bis 1993 nahm die Bruttostromerzeugung ab, da nach der deutschen Wiedervereinigung zahlreiche, meist veraltete Industrie- und Kraftwerksanlagen in den neuen Bundesländern stillgelegt wurden. Seit 1993 stieg die Stromerzeugung aufgrund des wachsenden Bedarfs wieder an. In der Spitze lag der deutsche Bruttostromverbrauch im Jahr 2007 bei 624 Terawattstunden (Milliarden Kilowattstunden). Gegenüber diesem Stand ist der Verbrauch bis heute wieder deutlich gesunken. Im Jahr 2009 gab es einen stärkeren Rückgang in der Stromerzeugung. Ursache dafür war der stärkste konjunkturelle Einbruch der Nachkriegszeit und die folgende geringere wirtschaftliche Leistung (siehe Abb. „Bruttostromerzeugung und Bruttostromverbrauch“). Seit 2017 nimmt die inländische Stromerzeugung ab. Gründe dafür sind ein rückläufiger Stromverbrauch, die Außerbetriebnahme von konventionellen Kraftwerken und mehr Stromimporte. Entwicklung des Stromexportes Importe und Exporte im europäischen Stromverbund gleichen die Differenzen zwischen Stromverbrauch und -erzeugung aus. Die Abbildung „Bruttostromerzeugung und Bruttostromverbrauch“ zeigt, dass die Bruttostromerzeugung in den Jahren 2003 bis 2022 stets größer war als der Verbrauch. Entsprechend wies Deutschland in diesem Zeitraum beim Stromaußenhandel einen Exportüberschuss auf. Im Jahr 2017 erreichte der Überschuss mit etwa 52 TWh einen Höchststand, damals wurden 8 Prozent der Stromerzeugung exportiert. In den folgenden Jahren ging der Netto-Export zurück. Seit dem Jahr 2023 ist Deutschland wieder Nettoimporteur - mit einem Nettoimport von etwa 24 TWh wurden im Jahr 2024 knapp 5 Prozent des inländischen Stromverbrauchs gedeckt. Der Netto-Stromimport ist Ergebnis des europäischen Strombinnenmarktes, der es im Rahmen der vorhandenen Interkonnektor-Kapazitäten erlaubt, einen grenzüberschreitenden Ausgleich zwischen Erzeugung und Verbrauch herzustellen und insofern nationale Schwankungen abzufedern. Die inländische Erzeugung hätte in bestimmten Bedarfsfällen zu höheren Kosten geführt als der Import von Strom aus unseren Nachbarländern. Bruttostromerzeugung aus nicht erneuerbaren Energieträgern Die Struktur der Bruttostromerzeugung hat sich seit 1990 deutlich geändert (siehe Abb. „Bruttostromerzeugung nach Energieträgern“). Im Folgenden werden die nicht-erneuerbaren Energieträger kurz dargestellt. Erneuerbare Energieträger werden im darauffolgenden Abschnitt näher erläutert. Der Anteil der Energieträger Braunkohle , Steinkohle und Kernenergie an der Bruttostromerzeugung hat stark abgenommen. 2024 hatten die drei Energieträger zusammen nur noch einen Anteil von 21 %. Im Jahr 2000 waren es noch 80 %. Der Einsatz von Steinkohle zur Stromerzeugung ist gegenüber früheren Jahren deutlich zurückgegangen. Die Kosten für CO 2 -Emissionszertifikate machten und machen den Betrieb von Kohlekraftwerken zunehmend unwirtschaftlicher. Im Jahr 2024 trugen Steinkohlekraftwerke noch etwa 5% zur gesamten Bruttostromerzeugung bei, im Jahr 2000 waren es noch 25 %. Auch die Stromerzeugung aus Braunkohle verringerte sich in den letzten Jahren deutlich. 2024 lag die Stromerzeugung aus Braunkohle auf dem niedrigsten Wert seit 1990. Mit nur mehr 79 TWh halbierte sich die Stromerzeugung aus Braunkohle innerhalb der letzten 10 Jahre. Ihr Anteil an der Bruttostromerzeugung lag 2024 bei 16 %. Die deutliche Abnahme der Kernenergie seit 2001 erfolgte auf der Grundlage des Ausstiegsbeschlusses aus der Kernenergie gemäß Atomgesetz (AtG) in der Fassung von 2002, 2011 und 2022. Die Stromerzeugung aus Kernenergie betrug 2023 nur noch einen Bruchteil der Erzeugung von Anfang der 2000er Jahre. Im Frühjahr 2023 wurde die Stromerzeugung aus Kernkraft gemäß AtG vollständig eingestellt. Der Anteil von Mineralöl an der Stromerzeugung hat sich nur wenig geändert und bleibt marginal. Er schwankt seit 1990 zwischen 1 % und 2 % der gesamten Stromerzeugung. Die Stromerzeugung auf Basis von Erdgas lag 2024 höher als im Jahr 2000, insbesondere durch den Zubau neuer Gaskraftwerke mit Kraft-Wärme-Kopplung. Der Höhepunkt der Erzeugung wurde im Jahr 2020 erreicht (95 TWh). Seitdem ist die Erzeugung auf Basis von Erdgas wieder gefallen. Ein Grund waren insbesondere auch die in Folge des russischen Angriffskrieges in der Ukraine stark gestiegenen Gaspreise und der voranschreitende Ausbau erneuerbarer Energien. Bruttostromerzeugung auf Basis von erneuerbaren Energieträgern Der Strommenge, die auf Basis erneuerbarer Energien (Windenergie, Photovoltaik, Wasserkraft, Biomasse , biogener Anteil des Abfalls, Geothermie) erzeugt wurde, hat sich in den letzten Jahrzehnten vervielfacht. Im Jahr 2023 machte grüner Strom erstmals mehr als 50 % der insgesamt erzeugten und verbrauchten Strommenge aus. Diese Entwicklung setzte sich auch im Jahr 2024 fort. Angestoßen wurde das Wachstum der erneuerbaren Energien maßgeblich durch die Einführung des Erneuerbare-Energien-Gesetzes (EEG) im Jahr 2000 (siehe Abb. „Stromerzeugung aus erneuerbaren Energien im Jahr 2024“). Das EEG hat ganz wesentlich zum Rückgang der fossilen Stromerzeugung und dem damit verbundenen Ausstoß von Treibhausgasen beigetragen (vgl. Artikel „ Erneuerbare Energien – Vermiedene Treibhausgase “). Die verschiedenen erneuerbaren Energieträger tragen dabei unterschiedlich zum Anstieg der Erneuerbaren Strommenge bei. Die Stromerzeugung aus Wasserkraft war bis etwa zum Jahr 2000 für den größten Anteil der erneuerbaren Stromproduktion verantwortlich. Danach wurde sie von Photovoltaik -, Windkraft - und Biomasseanlagen deutlich überholt. Im Jahr 2024 wurden auf Basis der Wasserkraft noch etwa 8 % des erneuerbaren Stroms erzeugt – und ca. 4 % der insgesamt erzeugten Strommenge. In den letzten Jahren stieg die Bedeutung der Windenergie am schnellsten: Im Jahr 2024 wurde knapp die Hälfte des erneuerbaren Stroms und etwa 28 % des insgesamt in Deutschland erzeugten Stroms durch Windenergieanlagen an Land und auf See bereitgestellt (siehe Abb. „Stromerzeugung aus erneuerbaren Energien“). Bemerkenswert ist zudem die Entwicklung der Stromerzeugung aus Photovoltaik , die im Jahr 2024 26 % des erneuerbaren Stroms beisteuerte und inzwischen 15 % der gesamten Bruttostromerzeugung ausmacht. Ausführlicher werden die verschiedenen erneuerbaren Energieträger im Artikel „ Erneuerbare Energien in Zahlen “ beschrieben. Stromerzeugung aus erneuerbaren Energien im Jahr 2024 Quelle: Umweltbundesamt auf Basis AGEE-Stat Diagramm als PDF Stromerzeugung aus erneuerbaren Energien Quelle: Umweltbundesamt auf Basis AGEE-Stat Diagramm als PDF
Der Stromverbrauch in Deutschland ging seit dem Höhepunkt im Jahr 2007 bis 2023 zurück. Den meisten Strom verbraucht die Industrie, gefolgt vom Gewerbe-, Handels- und Dienstleistungssektor, den privaten Haushalten und dem Verkehrssektor. Entwicklung des Stromverbrauchs Der Höhepunkt des deutschen Stromverbrauchs war im Jahr 2007 mit 624 Terawattstunden ( TWh ) erreicht. Die Bundesregierung hat sich 2010 in ihrem Energiekonzept zum Ziel gesetzt, den Stromverbrauch bis zum Jahr 2020 um 10 % gegenüber dem Verbrauch des Jahres 2008 zu senken. Dieses Ziel wurde im Jahr 2020 mit einem Rückgang von etwa 10,5 % erreicht. Allerdings war der Stromverbrauch in diesem Jahr von den Auswirkungen der Corona-Pandemie geprägt. Nach einem vorübergehenden Anstieg im Jahr 2021 sank der Stromverbrauch in den Jahren 2022 und 2023 schließlich auf den niedrigsten Wert seit der Wiedervereinigung. Allerdings waren beide Jahre von Sondereffekten durch den Krieg in der Ukraine gekennzeichnet (allgemeine Sparbemühungen wegen eines erwarteten Erdgas-Mangels 2022, Rückgang der Industrieproduktion) (siehe Abb. „Bruttostromverbrauch“). Künftig ist mit einer Zunahme des Stromverbrauchs zu rechnen, da Effekte der sogenannten „Sektorkopplung“ einzuplanen sind. Dazu zählt, dass sowohl Fahrzeugantriebe als auch die Wärmebereitstellung in Gebäuden (Stichwort Wärmepumpe) verstärkt elektrisch erfolgen sollen. Maßnahmen: Energieeffizienz... Die wichtigsten Maßnahmen in den Sektoren Haushalte und Kleinverbrauch sind die Ausweitung und Verbesserung von Effizienzstandards für elektrische Geräte und energieverbrauchsrelevante Produkte im Rahmen der Umsetzung der Ökodesign-Richtlinie (2009/125/EG) sowie eine wirksame Energieverbrauchskennzeichnung. Innovative Querschnittstechniken in der Industrie – etwa effizientere Elektromotoren und Druckluftsysteme – können darüber hinaus ebenfalls einen Beitrag leisten. Ein verpflichtendes Energiemanagement und die verbindliche Umsetzung von identifizierten wirtschaftlichen Einsparmaßnahmen können den Unternehmen dabei helfen, Kosten zu sparen. … und Erneuerbare Energien Im Verkehrssektor strebt die Politik eine Steigerung der Elektromobilität an. Dies geht einher mit einem stetig wachsenden Anteil erneuerbarer Energien am Stromverbrauch (siehe Abb. „Anteil erneuerbarer Energien am Bruttostromverbrauch“). Eine vorübergehende Ausnahme von diesem Trend war das Jahr 2021 mit einem deutlichen Rückgang des erneuerbaren Anteils auf Grund sehr ungünstiger Witterung und geringen Zubaus neuer erneuerbarer Kapazitäten. Hintergründe zu dieser Entwicklung sind auf folgender Webseite zu finden ( Link ). Im Jahr 2024 stieg der Anteil der erneuerbaren Energien am Bruttostromverbrauch auf einen neuen Höchstwert von 54,4 %. Wesentlich dafür war unter anderem ein neuer Höchststand bei der Einspeisung von Strom aus Wind- und Photovoltaikanlagen (siehe Artikel „ Erneuerbare Energien in Zahlen “) bei einem wieder leicht steigenden Bruttostromverbrauch. Die Erneuerbaren leisten damit im Bereich der Stromversorgung einen großen Anteil zum Erreichen der deutschen Klimaschutzziele. Im Erneuerbare-Energien-Gesetz hat der Gesetzgeber im Jahr 2022 verankert, dass der Anteil der erneuerbaren Energien am Stromverbrauch bis 2030 auf mindestens 80 % steigen soll.