API src

Found 322 results.

Schwerpunktprogramm (SPP) 1488: Planetary Magnetism (PlanetMag), Structure and electronic transport properties of metallic liquids at conditions of planetary cores

Electrical conductivity is a key parameter in models of magnetic field generation in planetary interiors through magneto-hydrodynamic convection. Measurements of this key material parameter of liquid metals is not possible to date by experiments at relevant conditions, and dynamo models rely on extrapolations from low pressure/temperature experiments, or more recently on ab-initio calculations combining molecular dynamics and linear response calculations, using the Kubo-Greenwood formulation of transport coefficients. Such calculations have been performed for Fe, Fe-alloys, H, He and H-He mixtures to cover the interior of terrestrial and giant gas planets. These simulations are computationally expensive, and an efficient accurate scheme to determine electrical conductivities is desirable. Here we propose a model that can, at much lower computational costs, provide this information. It is based on Ziman theory of electrical conductivity that uses information on the liquid structure, combined with an internally consistent model of potentials for the electron-electron, electron-atom, and atom-atom interactions. In the proposal we formulate the theory and expand it to multi-component systems. We point out that fitting the liquid structure factor is the critical component in the process, and devise strategies on how this can be done efficiently. Fitting the structure factor in a thermodynamically consistent way and having a transferable electron-atom potential we can then relatively cheaply predict the electrical conductivity for a wide range of conditions. Only limited molecular dynamics simulations to obtain the structure factors are required.In the proposed project we will test and advance this model for liquid aluminum, a free-electron like metal, that we have studied with the Kubo-Greenwood method previously. We will then be able to predict the conductivities of Fe, Fe-light elements and H, He, as well as the H-He system that are relevant to the planetary interiors of terrestrial and giant gas planets, respectively.

Sonderforschungsbereich (SFB) 1357: MIKROPLASTIK - Gesetzmäßigkeiten der Bildung, des Transports, des physikalisch-chemischen Verhaltens sowie der biologischen Effekte: Von Modell- zu komplexen Systemen als Grundlage neuer Lösungsansätze; MICROPLASTICS - Understanding the mechanisms and processes of biological effects, transport and formation: From model to complex systems as a basis for new solut, Teilprojekt C 05: Abbau und Verhalten von Kunststoffen und deren Mikroplastik-Partikeln in technischen Systemen der Wasser- und Abfallwirtschaft

Teilprojekt C05 hat zum Ziel, den wichtigen Eintragsweg für Kunststoffe, in Form von Mikroplastik, in die Umwelt aus technischen Anlagen (MP) mechanistisch aufzuklären. Gleichzeitig sollen neue Ansätze verfolgt werden, die zur Vermeidung bzw. Reduktion von MP aus Standardkunststoffen maßgeblich beitragen sollen. Zu diesem Zweck sollen Polyethylen, Polypropylen, Polystyrol, Nylon, Polyethylenterephthalat, Polyisopren und Polyvinylchlorid durch Beschleuniger (in situ) in ihren Oberflächeneigenschaften für die Biofilmbildung modifiziert und dadurch unter Prozessbedingungen biologisch angreifbar und abbaubar gemacht werden. So können auch Standardkunststoffe umweltverträglicher bezüglich der MP-Partikel Bildung werden. Damit geht TP C05 weit über die bislang üblichen eher deskriptiven Studien zu MP in technischen Anlagen und der Umwelt hinaus. Folgende zentrale Fragen sollen in TP C05 in Hinblick MP-Partikel in technischen Anlagen der Abfall- und Abwasserwirtschaft beantwortet werden: 1. Kommt es in den Anlagen zu spezifischen (biologischen) Abbau- und Degradationsvorgängen? 2. Wie hängen die zu beobachtenden Prozesse von MP-Charakteristika (Materialsorte, Zusammensetzung, Größe, Morphologie, Beschichtung) ab, ? 3. Lassen sich die Vorgänge ('Bioabbaubarkeit') durch gezielte Modifikation der Partikeloberfläche vor oder in den Anlagen beschleunigen? 4. Welche ökologischen Konsequenzen einer Ausbringung der (modifizierten) Partikel in die Umwelt und hier vor allem in den Boden lassen sich postulieren?

Schwerpunktprogramm (SPP) 1685: Ecosystem nutrition: forest strategies for limited phosphorus resources; Ökosystemernährung: Forststrategien zum Umgang mit limitierten Phosphor-Ressourcen, Dynamik der Phosphor- und Wasserflüsse im Abfluss und bei der Pflanzenaufnahme in bewaldeten Kopfeinzugsgebieten

Hydrologische Fließwege bilden die kritische Verbindung zwischen der Quelle der P Mobilisierung und des P Exports zu den Flüssen. Die Prozesse der P Mobilisierung auf der Standortskale ist vergleichsweise gut verstanden, jedoch ist die Kenntnis des P Transportes in Hängen und Einzugsgebieten durch die Komplexität der Transport-Skalen und Fließprozesse begrenzt. In Hängen können große P Flüsse zum dynamischen P Export beitragen, da P oft in schnellen Fließwegen transportiert wird, insbesondere in bewaldeten Systemen wo präferentielle Fließwege häufig auftreten. Ein adäquates Prozesswissen der Hanghydrologischen Dynamik ist daher wichtig um die P Transport Dynamik zu beurteilen und vorherzusagen. Jedoch wurden bisher solche Studien fast ausschließlich in Einzugsgebieten mit landwirtschaftlicher Nutzung durchgeführt. In dieser experimentellen und modellierungs-basierten Studie über hanghydrologische Prozesse und Phosphortransport werden wir die Auswirkungen der Abflussprozesse auf den P-Transport in bewaldeten Hängen entlang des grundlegenden Hypothesen des SPP untersuchen. Wir werden die Auswirkungen unterschiedlicher Fließwege und Verweilzeiten auf den P Transport und den damit verbundenen hydrologischen Bedingungen untersuchen. Die Hypothese wird getestet, dass die P-Signaturen im Abfluss im Zusammenhang stehen mit den bodenökologischen P-Gradienten und dass die P-Signaturen durch die Verweilzeiten des Wassers im Hang bestimmt werden, die insbesondere durch präferentielle Fließwege bei Niederschlagsereignissen dominiert werden. Diese Hypothesen werden an den vier SPP Standorte im Gebirge mit einem innovativen, kontinuierliche Monitoring-System für unterirdische Hangabflüsse und P-Transport bei hoher zeitlicher Auflösung untersucht. Event-basierte und kontinuierliche Probenahmen für die verschiedenen P Spezies, stabile Wasserisotope und andere geogene Tracer in Niederschlag, Abfluss und Grundwasser werden es uns ermöglichen, Verweilzeiten von Wasser mit den P Flüsse und P Transportprozessen zu verknüpften. Schließlich werden wir ein prozessorientierten hydrologischen Hang-Modell weiterentwickeln um die verschiedenen Fließ-und Transportwege zu simulieren, um die Dynamik von Abfluss und P Transport zwischen der Hang- und Einzugsgebietsskala zu verknüpfen. Die Modellierung wird sich darauf fokussieren die Altersverteilung von Wasser und die bevorzugte Fließwege die durch 'hot spots' bei der Infiltration und P Mobilisierung entstehen in bewaldeten Hängen adäquat darzustellen.

Bio-optische Eigenschaften als Echtzeittracer für die Transformation des organischem Materials in der SML (SP 1.3)

Die Sea-Surface Microlayer (SML) als dünne Grenzschicht trennt Hydrosphäre und Atmosphäre. Häufig sind die Konzentrationen bestimmter Verbindungen in der SML höher, entweder durch physikalische Konzentration aus dem darunter liegenden Wasser, durch Produktion in der SML oder durch atmosphärische Ablagerungen. Ein bekannter Aspekt ist die durchweg höhere Konzentration von chromophoren gelösten organischen Stoffen (CDOM) in der SML im Vergleich zum darunter liegenden Wasser. Kürzlich haben wir gezeigt, dass die inhärenten optischen Eigenschaften (IOP) â€Ì d.h. die Lichtstreu- und Absorptionseigenschaften von Wasser und seinen Bestandteilen â€Ì der SML genutzt werden können Komponenten in der SML zu charakterisieren und nützliche Informationen für den Strahlungstransfer und für Fernerkundungsstudien zu liefern. Darüber hinaus war unsere frühere Forschung zu optischen Eigenschaften in der SML unsere Motivation hier vorzuschlagen, IOPs und apparente optischen Eigenschaften (AOPs) â€Ì abgeleitet aus spektralradiometrischen Messungen des Lichtfeldes â€Ì sowie die Fluoreszenz zur Charakterisierung von organischen Stoffen (OM) und deren Transformation für die Echtzeitbewertung der SML als biologischen und chemischen Lebensraum zu nutzen. Hiermit können wir in außergewöhnlicher Weise die Kurzzeitdynamik relevanter biologischer und chemischer Treiber in der SML untersuchen.

Schwerpunktprogramm (SPP) 1569: Erzeugung multifunktioneller anorganischer Materialien durch molekulare Bionik

norganische Funktionsmaterialien spielen innerhalb der Schlüsseltechnologien des 21. Jahrhunderts, etwa im Bereich der Informationstechnik oder der Energieerzeugung und -speicherung, eine zentrale Rolle. Dabei sind komplex strukturierte multifunktionelle Materialien auf rein anorganischer Basis sowie im Verbund mit organischen Anteilen zur Weiterentwicklung dieser Technologien von wesentlicher Bedeutung. Die Erzeugung solcher Materialien mit definierter Struktur und Stöchiometrie über die konventionelle Prozesstechnik, die in der Regel bei erhöhten Temperaturen und/oder Drücken sowie unter erheblichem verfahrenstechnischen Aufwand abläuft, stößt hierbei jedoch an ihre Grenzen. Demgemäß ist die Suche nach neuen Verfahren, die eine Generierung von diesen Materialien bei Umgebungsbedingungen und mit reduziertem prozesstechnischen Aufwand ermöglichen, derzeit Gegenstand weltweiter Forschungsanstrengungen. Für die Bildung von komplex strukturierten anorganischen Festkörpern bei Umgebungsbedingungen liefert die belebte Natur eindrucksvolle Beispiele. So entstehen durch Biomineralisationsprozesse Stoffe wie etwa Calciumphosphat oder -carbonat, deren Bildung genetisch determiniert ist und durch die Wechselwirkung mit Biomolekülen gesteuert wird, wobei unter anderem Selbstorganisationsprozesse eine Rolle spielen. Die hierdurch entstehenden anorganischen Materialien besitzen multifunktionelle Eigenschaften, wobei deren Eigenschaftsspektrum durch den Einbau von bioorganischen Komponenten erweitert wird. Wenngleich viele technisch relevante Materialien bei diesen natürlichen Prozessen keine Rolle spielen, ergeben sich hieraus unmittelbar aussichtsreiche Perspektiven zur Generierung neuer anorganischer Funktionsmaterialien durch spezifische molekulare Interaktionen zwischen bioorganischen und anorganischen Stoffen. Das Hauptziel dieses Schwerpunktprogramms ist daher die Übertragung von Prinzipien der Biomineralisation auf die Generierung von anorganischen Funktionsmaterialien und von deren Hybriden mit bioorganischen Anteilen. Zur Erreichung dieses Ziels werden Arbeiten durchgeführt (1) zur In-vitro- und In-vivo-Synthese anorganischer Funktionsmaterialien und deren Hybride mit bioorganischen Molekülen in Form von Schichten oder 3D-Strukturen, (2) zur Charakterisierung der Bildungsprozesse und der Struktur der Materialien sowie (3) zur Bestimmung und zum Design von deren physikalischen und chemischen Eigenschaften. Diese experimentellen Untersuchungen werden weiterhin durch Arbeiten zur Modellierung der Materialbildung, -struktur und -eigenschaften begleitet.

Schwerpunktprogramm (SPP) 1488: Planetary Magnetism (PlanetMag), Ground-truthing magnetic recording in meteorites

Whether primordial bodies in the solar system possessed internally-generated dynamos is a fundamental constraint to understand the dynamics and timing of early planetary formation. Paleointensity studies on several meteorites reveal that their host planets possessed magnetic fields within an order-of magnitude of the present Earths field. Interpretation of paleointensity data relies heavily on fundamental knowledge of the magnetic properties of the magnetic carriers, such as the single to multidomain size threshold or how the saturation magnetization varies as a function of grain size, yet very little knowledge exists about these key parameters for some of the main magnetic recorders in meteorites: the iron-nickel alloys. Moreover, most meteorites have experienced some amount of shock during their histories, yet the consequence of even very small stresses on paleointensity data is poorly known.We wish to fill these gaps by magnetically characterizing Fe-Ni alloys as a function of grain size and by determining how absolute and relative paleointensity data are biased by strain levels lower than those petrologically observable (less than 4-5 GPa). For example, our preliminary work shows that an imposed stress of 0.6 GPa will reduce absolute paleointensity estimates by 46Prozent for single domain magnetite-bearing rocks. In general, paleointensity determinations possess inherent disadvantages regarding measurement precision and the inordinate amount of human time investment. We intend to overcome these limitations by extending and improving our fully automated magnetic workstation known as the SushiBar.

Niederschlagslebenszyklus in Passatwindkumuli

Passatwindkumuli spielen eine essentielle Rolle im Strahlungshaushalt der Erde und sind verantwortlich für bis zu 20 % des tropischen Niederschlags. Noch ist nicht bekannt, wie Passatwindkumuli auf die globale Erwärmung reagieren werden. Durch Niederschlag verändern sich Wolkeneigenschaften, aber auch die Grenzschichtstruktur und -dynamik. Aufgrund der Vielzahl der beteiligten Prozesse ist die Niederschlagsentwicklung in Modellen ist unsicher. Die Konfiguration der Simulationen und Wahl der Parameterisierung, wie das Autokonversionsschema, beeinflussen Niederschlagsfluss, Wolkenstruktur und â€Ìorganisation. Bisher konnten Vergleiche mit Beobachtungen noch nicht zur Reduktion der Unsicherheit des Autokonversionsschemas beitragen. Radarreflektivität, die mit Standardmethoden aus bodengebundenen Messungen abgeleitet wird, erkennt Niederschlag erst in einem fortgeschrittenen Stadium, was es schwierig macht, die verschiedenen, den Regen verursachenden Faktoren zu entflechten. Durch die Verdunstung des Niederschlags unterhalb der Wolkenunterkante (WUK) bestimmt dieser die Stärke der Coldpools und ist so bedeutend für die Organisation von Konvektion und somit die Klimasensitivität: Daher ist es essentiell Verdunstungsraten zu bestimmen und deren räumlich-zeitliche Variabilität zu verstehen. Zwar gibt es Parameterisierungen der Verdunstung unterhalb der WUK, allerdings sind diese von der Größe der Regentropfen abhängig, welche jedoch schlecht direkt zu beobachten ist.Ziel dieses Antrages ist die Bestimmung von Faktoren, welche die Niederschlagsformation in Passatwindkumuli beeinflussen. Dazu werden neuartige Radarbeobachtungen dieser Prozesse zur genaueren Beschreibung der Niederschlagsentwicklung in Grobstruktursimulationen (LES) herangezogen. Die räumlich-zeitliche Verdunstungsverteilung wird unterhalb der WUK in den Passatwindkumuli untersucht und treibende Faktoren identifiziert. Das Forschungsvorhaben ergänzt die bevorstehende EUREC4A (A Field Campaign to Elucidate the Couplings Between Clouds, Convection and Circulation) Kampagne und nutzt die langjährige Datenreihe des Barbados Cloud Observatory (BCO).Die synergetischen bodengebundenen Beobachtungen und der neue Ansatz, Niederschlag in Wolken mit Hilfe höherer Momente des Wolkenradardopplerspektrums zu bestimmen, werden erstmalig zur Beobachtungen von Passatwindkumuli und der Charakterisierung des Niederschlagslebenszyklus zu angewendet. Damit wird es möglich die Niederschlagsentwicklung in den hochauflösenden ICON-LEM und DHARMA-LES Modellen zu evaluieren. Für einen statistischen Vergleich der Simulationen und der Beobachtungen wird der Vorwärtsoperator PAMTRA verwendet, so dass im Beobachtungsraum untersucht werden kann, inwiefern die Modelle die beobachteten, mittleren Werte und Abhängigkeiten reproduzieren können und systematischen Fehler identifiziert werden. Damit trägt das Vorhaben zum Grand Challenge on Cloud Circulation and Climate Sensitivity des Weltklimaforschungsprogramm WRCP bei.

Sonderforschungsbereich (SFB) 1357: MIKROPLASTIK - Gesetzmäßigkeiten der Bildung, des Transports, des physikalisch-chemischen Verhaltens sowie der biologischen Effekte: Von Modell- zu komplexen Systemen als Grundlage neuer Lösungsansätze; MICROPLASTICS - Understanding the mechanisms and processes of biological effects, transport and formation: From model to complex systems as a basis for new solut, Teilprojekt A 04: Zelluläre Aufnahme von Mikropartikeln in Abhängigkeit von elementaren Partikeleigenschaften

Verschiedene Modell-MP-Partikel sowie Modellpartikel für natürlich vorkommendes partikulares Material werden in Süßwasser und Boden inkubiert und daraus resultierende Oberflächenveränderungen werden biomolekular und physikalisch-chemisch charakterisiert. Daraufhin werden unterschiedliche Polyelektrolyt-Multilagen-beschichtete Modellpartikel hergestellt, welche in jeweils einer Eigenschaft (z.B. identische Mechanik oder Ladungsdichte) den inkubierten Partikeln gleichen. Durch einen Vergleich der verschiedenen Partikel wird daraufhin die Relevanz dieser Eigenschaft für die Adhäsion der Partikel an Zellen und die Internalisierung in Zellen quantitativ untersucht.

Micro-scaled hydraulic heterogeneity in subsoils

Nutrient and water supply for organisms in soil is strongly affected by the physical and physico-chemical properties of the microenvironment, i.e. pore space topology (pore size, tortuosity, connectivity) and pore surface properties (surface charge, surface energy). Spatial decoupling of biological processes through the physical (spatial) separation of SOM, microorganisms and extracellular enzyme activity is apparently one of the most important factors leading to the protection and stabilization of soil organic matter (SOM) in subsoils. However, it is largely unknown, if physical constraints can explain the very low turnover rates of organic carbon in subsoils. Hence, the objective of P4 is to combine the information from the physical structure of the soil (local bulk density, macropore structure, aggregation, texture gradients) with surface properties of particles or aggregate surfaces to obtain a comprehensive set of physical important parameters. It is the goal to determine how relevant these physical factors in the subsoil are to enforce the hydraulic heterogeneity of the subsoil flow system during wetting and drying. Our hypothesis is that increasing water repellency enforces the moisture pattern heterogeneity caused already by geometrical factors. Pore space heterogeneity will be assessed by the bulk density patterns via x-ray radiography. Local pattern of soil moisture is evaluated by the difference of X-ray signals of dry and wet soil (project partner H.J. Vogel, UFZ Halle). With the innovative combination of three methods (high resolution X-ray radiography, small scale contact angle mapping, both applied to a flow cell shaped sample with undisturbed soil) it will be determined if the impact of water repellency leads to an increase in the hydraulic flow field heterogeneity of the unsaturated sample, i.e. during infiltration events and the following redistribution phase. An interdisciplinary cooperation within the research program is the important link which is realized by using the same flow cell samples to match the spatial patterns of physical, chemical, and biological factors in undisturbed subsoil. This cooperation with respect to spatial pattern analysis will include the analysis of enzyme activities within and outside of flow paths and the spatial distribution of key soil properties (texture, organic carbon, iron oxide content) evaluated by IR mapping. To study dissolved organic matter (DOM) sorption in soils of varying mineral composition and the selective association of DOM with mineral surfaces in context with recognized flow field pattern, we will conduct a central DOM leaching experiment and the coating of iron oxides which are placed inside the flow cell during percolation with marked DOM solution. Overall objective is to elucidate if spatial separation of degrading organisms and enzymes from the substrates may be interconnected with defined physical features of the soil matrix thus explaining subsoil SOM stability and -dynami

Transformation of organic carbon in the terrestrial-aquatic interface

The overarching goal of our proposal is to understand the regulation of organic carbon (OC) transfor-mation across terrestrial-aquatic interfaces from soil, to lotic and lentic waters, with emphasis on ephemeral streams. These systems considerably expand the terrestrial-aquatic interface and are thus potential sites for intensive OC-transformation. Despite the different environmental conditions of ter-restrial, semi-aquatic and aquatic sites, likely major factors for the transformation of OC at all sites are the quality of the organic matter, the supply with oxygen and nutrients and the water regime. We will target the effects of (1) OC quality and priming, (2) stream sediment properties that control the advective supply of hyporheic sediments with oxygen and nutrients, and (3) the water regime. The responses of sediment associated metabolic activities, C turn-over, C-flow in the microbial food web, and the combined transformations of terrestrial and aquatic OC will be quantified and characterized in complementary laboratory and field experiments. Analogous mesocosm experiments in terrestrial soil, ephemeral and perennial streams and pond shore will be conducted in the experimental Chicken Creek catchment. This research site is ideal due to a wide but well-defined terrestrial-aquatic transition zone and due to low background concentrations of labile organic carbon. The studies will benefit from new methodologies and techniques, including development of hyporheic flow path tubes and comparative assessment of soil and stream sediment respiration with methods from soil and aquatic sciences. We will combine tracer techniques to assess advective supply of sediments, respiration measurements, greenhouse gas flux measurements, isotope labeling, and isotope natural abundance studies. Our studies will contribute to the understanding of OC mineralization and thus CO2 emissions across terrestrial and aquatic systems. A deeper knowledge of OC-transformation in the terrestrial-aquatic interface is of high relevance for the modelling of carbon flow through landscapes and for the understanding of the global C cycle.

1 2 3 4 531 32 33