Die Karte der nutzbaren Feldkapazität im effektiven Wurzelraum in Deutschland gibt einen Überblick über das Vermögen der Böden pflanzenverfügbares Wasser zu speichern. Die Größe des Wasserspeichers des Bodens hängt von der Bodenart, der Lagerungsdichte und dem Humusgehalt ab. Der effektive Wurzelraum wird anhand von Landnutzungs- und Bodendaten bestimmt. Die Karte basiert auf der Auswertung der nutzungsdifferenzierten Bodenübersichtskarte 1:1.000.000 (BUEK1000N) und zeigt die klassifizierte nutzbare Feldkapazität. Die Methode ist in der Bodenkundlichen Kartieranleitung (KA4) und in der Methodendokumentation Bodenkunde der Ad-hoc-AG Boden veröffentlicht. Als Landnutzungsinformation und zur nutzungsabhängigen Differenzierung der Profildaten werden Daten des CORINE Land Cover Projektes (2006) genutzt.
- Dargestellt sind die in drei Klassenstufen unterteilten modellierten Vogelzugdichten für Singvögel innerhalb Mecklenburg-Vorpommerns. - die Einteilung der Klassen erfolgte durch Quantilbildung über die Modellergebnisse und entspricht einer geringen bis mittleren (Zone C), mittleren bis hohen (Zone B) sowie hohen bis sehr hohen (Zone A) Vogelzugdichte. - eine detaillierte Beschreibung zur Methodik findet sich in Tenhaeff M., 2024, Überprüfung und Aktualisierung des Gutachtens „Modell der Dichte des Vogelzugs“ (ILN Greifswald 1996). Abschlussbericht Datengrundlage: - Digitales Geländemodell Gitterweite 200 m (DGM200) © GeoBasis-DE / BKG 2023 - Verwaltungsgebiete 1:2 500 000, Stand 31.12.2023 (VG2500) © GeoBasis-DE / BKG 2023 - FIS Gewässer MV, Stand 2023 © LUNG M-V (27.04.2024) - CORINE Land Cover 5 ha, Stand 2018 (CLC5-2018) © Geo-Basis-DE / BKG 2023
- Dargestellt sind die in drei Klassenstufen unterteilten modellierten Vogelzugdichten für Thermiksegler (z. B. Greifvögel, Störche, Kraniche) innerhalb Mecklenburg- Vorpommerns. - die Einteilung der Klassen erfolgte durch Quantilbildung über die Modellergebnisse und entspricht einer geringen bis mittleren (Zone C), mittleren bis hohen (Zone B) sowie hohen bis sehr hohen (Zone A) Vogelzugdichte. - eine detaillierte Beschreibung zur Methodik findet sich in Tenhaeff M., 2024, Überprüfung und Aktualisierung des Gutachtens „Modell der Dichte des Vogelzugs“ (ILN Greifswald 1996). Abschlussbericht Datengrundlage: - Digitales Geländemodell Gitterweite 200 m (DGM200) © GeoBasis-DE / BKG 2023 - Verwaltungsgebiete 1:2 500 000, Stand 31.12.2023 (VG2500) © GeoBasis-DE / BKG 2023 - FIS Gewässer MV, Stand 2023 © LUNG M-V (27.04.2024) - CORINE Land Cover 5 ha, Stand 2018 (CLC5-2018) © Geo-Basis-DE / BKG 2023
- Dargestellt sind die in drei Klassenstufen unterteilten modellierten Vogelzugdichten für Wasservögel innerhalb Mecklenburg-Vorpommerns. - die Einteilung der Klassen erfolgte durch Quantilbildung über die Modellergebnisse und entspricht einer geringen bis mittleren (Zone C), mittleren bis hohen (Zone B) sowie hohen bis sehr hohen (Zone A) Vogelzugdichte. - eine detaillierte Beschreibung zur Methodik findet sich in Tenhaeff M., 2024, Überprüfung und Aktualisierung des Gutachtens „Modell der Dichte des Vogelzugs“ (ILN Greifswald 1996). Abschlussbericht Datengrundlage: - Digitales Geländemodell Gitterweite 200 m (DGM200) © GeoBasis-DE / BKG 2023 - Verwaltungsgebiete 1:2 500 000, Stand 31.12.2023 (VG2500) © GeoBasis-DE / BKG 2023 - FIS Gewässer MV, Stand 2023 © LUNG M-V (27.04.2024) - CORINE Land Cover 5 ha, Stand 2018 (CLC5-2018) © Geo-Basis-DE / BKG 2023
- Dargestellt sind die in drei Klassenstufen unterteilten modellierten Vogelzugdichten für die Zugvögel innerhalb Mecklenburg-Vorpommerns. - die Einteilung der Klassen erfolgte durch Quantilbildung über die Modellergebnisse und entspricht einer geringen bis mittleren (Zone C), mittleren bis hohen (Zone B) sowie hohen bis sehr hohen (Zone A) Vogelzugdichte. - eine detaillierte Beschreibung zur Methodik findet sich in Tenhaeff M., 2024, Überprüfung und Aktualisierung des Gutachtens „Modell der Dichte des Vogelzugs“ (ILN Greifswald 1996). Abschlussbericht Datengrundlage: - Digitales Geländemodell Gitterweite 200 m (DGM200) © GeoBasis-DE / BKG 2023 - Verwaltungsgebiete 1:2 500 000, Stand 31.12.2023 (VG2500) © GeoBasis-DE / BKG 2023 - FIS Gewässer MV, Stand 2023 © LUNG M-V (27.04.2024) - CORINE Land Cover 5 ha, Stand 2018 (CLC5-2018) © Geo-Basis-DE / BKG 2023
Ziel ist die Reduktion des Einsatzes von mineralischem Phosphor in der Tierernaehrung (eventuell auch von Spurenelementen) bei gleichzeitiger Verbesserung der Verfuegbarkeit des nativen Phytinphosphors durch Phytasezusatz zum Futter. Damit kann insgesamt eine wesentliche Reduktion des P-Austrages in der Guelle erreicht werden.
Die anthropogenen Kohlendioxidemissionen (CO2) sind für den größten Teil der jüngsten globalen Oberflächenerwärmung der Erde um etwa 1°C gegenüber dem vorindustriellen Niveau verantwortlich. Das Land und die Ozeane nehmen derzeit etwa die Hälfte unserer Emissionen durch komplexe Prozesse des Kohlenstoffkreislaufs auf. Der Klimaantrieb durch anthropogene CO2-Emissionen hört erst auf, wenn ein Gleichgewicht zwischen CO2-Quellen und -Senken erreicht ist. Da es nicht realisierbar ist, alle CO2-Emissionen bis Mitte des 21. Jahrhunderts zu eliminieren, bestehen alle plausiblen zukünftigen Emissionsszenarien, die auf eine mit dem Pariser Abkommen übereinstimmende Temperaturstabilisierung anstreben, aus einem Portfolio menschlicher Aktivitäten, die Emissionssenkungen mit Maßnahmen zur so genannten Kohlendioxidentnahme (CDR) kombinieren, die die verbleibenden positiven Emissionen kompensieren sollen.Allerdings werden CDR-Maßnahmen wie die meisten anderen menschlichen Aktivitäten durch Emissionen von andere Treibhausgase als CO2 (z.B. Methan oder Distickstoffoxid), Aerosolen oder durch Landnutzungsänderungen zusätzliche Klimaveränderungen verursachen. Gegenwärtig machen diese weiteren Treibhausgase mehr als 40% der globalen Oberflächenerwärmung aus, während Aerosole einen Teil der Erwärmung ausgleichen. Darüber hinaus beeinflussen diese zusätzlichen Klimaeinflüsse den Kohlenstoffkreislauf, der wiederum Einfluss auf die atmosphärische CO2-Konzentration und damit auf die Oberflächentemperatur nimmt (Abb. 1). Diese Wechselwirkung beeinflusst die Menge der CO2-Entnahme, die durch CDR-Maßnahmen erforderlich ist, um eine Temperaturstabilisierung zu erreichen.Es ist daher wichtig, die vollständige Reaktion des Klimas auf spezifische menschliche Aktivitäten, einschließlich CDR-Maßnahmen, zu erfassen, um gut informiert Maßnahmen zur Temperaturstabilisierung ein zu leiten. Insbesondere die Untersuchung der Reaktion des Erdsystems auf realistische Portfolios künftiger anthropogener Aktivitäten erfordert die Einbeziehung aller damit verbundenen Klimafaktoren - CO2, andere Treibhausgase als CO2, Aerosole und Landnutzungsänderungen - um bestmögliche Einschätzungen der möglichen Wege zur Temperaturstabilisierung zu erhalten.
Mise au point et application d'une methode de qualification phyto-ecologique des rives lacustres. Proposition de mesures de conservation et de protection des rives. Seize lacs sont impliques dans le projet. (FRA)
Zielsetzung: Die Maßnahmen und Eingriffe, die im Rahmen der Realisierung eines fischereilichen Managementplanes zur Durchführung kommen, müssen in ihrer Wirkungsweise überprüft werden. Zu diesem Zwecke ist ein Monitoring unerlässlich. Die Ziele eines solchen Monitorings sind: - Semiquantitative/qualitative Bestandserhebung: CPUE (catch per unit effort) - Fänge mittels Kiemennetzen unterschiedlicher Maschenweiten (10, 15, 18, 20, 24, 30 mm); 1 x pro Monat (April - Oktober) in der Bucht der Biologischen Station und im freien See. Elektrobefischung (4 x pro Jahr) an ausgewählten Punkten im Schilfgürtel (in Übereinstimmung mit jenen aus der vorangegangenen Managementstudie). - Ringwadenbefischung (Methodenabstimmung mit Echolotung). - Erfassen der Populationsstruktur: Vermessen der Fische, Altersbestimmung, Gonadenanalyse. - Trophische Einmischung: Nahrungsanalysen; Erfassen der planktischen und benthischen Nährtiere. - Quantitative Erfassung des Fischbestandes mittels Echolotung. Zwischenergebnisse: Die Dichte der Freilandtermine erlaubte für die meisten Arten eine Analyse der Fortpflanzungsstrategie, der Populationsentwicklung im Jahresverlauf und eine Unterscheidung verschiedener Altersklassen. So weisen die Längenverteilungen der YOY (young of the year) den Zander und Flussbarsch als 'single spawner/Einmallaicher mit einer vergleichsweise kurzen Laichzeit aus, während Laube, Blaubandbärbling und Sonnenbarsch 'multiple spawner/Mehrfachlaicher sind, d.h. mehrmals und über einen längeren Zeitraum ablaichen. Die Dauer der Laichzeit von Rotauge, Rotfeder und Güster liegt dazwischen. Für Rotauge und Rotfeder konnten markante Wachstumsunterschiede zwischen den verschiedenen Untersuchungsjahren aufgezeigt werden. Zur Beurteilung der trophischen Einnischung der Fischarten des Schilfgürtels wurden detaillierte Nahrungsanalysen von Sonnenbarsch, Blaubandbärbling, Flussbarsch, Rotauge und Rotfeder sowie einer geringeren Zahl von Giebel, Karpfen und Schleie durchgeführt. Die Ergebnisse deuten auf eine Überlappung der Nahrungsansprüche von Karpfen, Giebel und Schleie hin. Bei Betrachtung der Großgruppen der aufgenommenen Beutetiere scheinen Sonnenbarsch, Flussbarsch und die drei übrigen Cypriniden die gleichen Nahrungsquellen zu nutzen. Die Analyse der Beutetiere auf Artniveau offenbarte jedoch teilweise deutliche Unterschiede in der Wahl der Nahrungsgründe. Die Echolotung (Horizontalbeschallung) erfuhr ihren Ersteinsatz im Sommer 1996. Seither wird Ende August/Anfang September der Fischbestand der Freiwasserzone des Sees mit dieser Methode erhoben. Die gewonnenen Verteilungsbilder (z.B. Abb.1) lassen einen deutlichen Zusammenhang zwischen Strukturen im See (Schilfinseln, Makrophyten) und höherer Fischbiomasse erkennen. Im offenen See findet man vor allem kleinere Fische und die Fischbiomasse ist gering. Mehr und größere Fische werden in windgeschützten und/oder strukturierten Bereichen des Sees gefunden.
Die Wirkung der 1985 begonnenen technischen Eingriffe am Hallwilersee auf die Biologie/Oekologie wird intensiv verfolgt. Bisherige Erfahrungen (Greifensee, Vierwaldstaettersee) lassen erkennen, dass die Restaurierung des Oekosystems der technischen Sanierung zeitlich verzoegert folgt. Die Entwicklung einiger Seen in Richtung eines weniger eutrophen fokussiert die Aufmerksamkeit auf die dadurch provozierten hydrobiologischen Probleme. Spezielle Aspekte: Einfluss der kuenstlich erzwungenen Sauerstoffverhaeltnisse auf Planktonoekologie, auf die Biomasse des Planktons und die Sedimentation, auf das benthale Oekosystem und auf den Fischbestand und dessen oekologische Rolle im restaurierten Oekosystem. Allgemeine Themen ueber Seenrestaurierung: Oekosystemreaktionen auf sanierungsbedingte Milieuveraenderungen, zeitl. Verlauf der Artenzusammensetzung und der Biomasseproduktion im Vergleich zur Eutrophierung (Greifensee, Vierwaldstaettersee). Verlauf des langzeitlichen chemischen Zustandes dieser Seen. Ursachenanalyse, Ueberpruefung von Prognosen.
Origin | Count |
---|---|
Bund | 636 |
Europa | 24 |
Kommune | 1 |
Land | 220 |
Wissenschaft | 53 |
Type | Count |
---|---|
Chemische Verbindung | 2 |
Daten und Messstellen | 28 |
Ereignis | 7 |
Förderprogramm | 498 |
Kartendienst | 2 |
Text | 54 |
Umweltprüfung | 1 |
unbekannt | 293 |
License | Count |
---|---|
geschlossen | 254 |
offen | 569 |
unbekannt | 62 |
Language | Count |
---|---|
Deutsch | 690 |
Englisch | 248 |
andere | 1 |
Resource type | Count |
---|---|
Archiv | 40 |
Bild | 5 |
Datei | 41 |
Dokument | 194 |
Keine | 424 |
Unbekannt | 2 |
Webdienst | 35 |
Webseite | 243 |
Topic | Count |
---|---|
Boden | 706 |
Lebewesen und Lebensräume | 798 |
Luft | 473 |
Mensch und Umwelt | 884 |
Wasser | 534 |
Weitere | 877 |