s/cis-solarzelle/CIGS-Solarzelle/gi
In Brandenburg ist das gegenwärtig größte deutsche Solarkraftwerk am 20. August 2009 offiziell eingeweiht worden. Der Solarpark Lieberose nördlich von Cottbus in der Gemeinde Turnow-Preilack hat eine maximale Leistung von 53 Megawatt auf einer Grundfläche von 162 Hektar, was einer Fläche von mehr als 210 Fußballfeldern entspricht. Das Solarkraftwerk entstand auf einem früheren sowjetischen Truppenübungsplatz.
BELECTRIC hat das nach eigenen Angaben größte und modernste Dünnschicht Freiflächen-Solarkraftwerk Europas in Templin, Brandenburg, an das Stromnetz angeschlossen. Mit 128 MWp installierter Nennleistung wird das Kraftwerk auf dem ehemals größten russischen Militärflughafen Gross Dölln eine wichtige Rolle bei der Versorgung des Großraums Berlin mit erneuerbaren Energien spielen.
Die Umicore AG & Co. KG bearbeitet Edel- und Sondermetalle und stellt metallbasiete Produkte, wie beispielsweise edelmetallhaltige Autoabgaskatalysatoren her. Das Unternehmen plant, eine neue Produktionsanlage zur Herstellung von Trimethylgallium (TMG) zu errichten. TMG wird als zentrales Vorprodukt für die Produktion von Halbleiterschichten benötigt, die wiederum in hocheffizienten Leuchtdioden, in Dünnschichtsolarzellen sowie in elektronischen Bauelementen zum Einsatz kommen. Ziel des Vorhabens ist, im Vergleich zu etablierten Verfahren die Ausbeute an TMG zu erhöhen und auf organische Lösemittel zu verzichten. Das TMG soll durch die chemische Umsetzung von Galliumtrichlorid mit einem Methylierungsmittel hergestellt werden. Entstehende Zwischenprodukte werden im Prozess rezykliert. Das resultierende Rohprodukt wird abschließend feindestilliert, um die für die Halbleitertechnik hohe Reinheit von nahezu 100 Prozent zu erreichen. Die bei der Reaktion anfallenden Restsalzschmelze werden thermisch behandelt und der verbleibende Salzkuchen entsorgt. Gegenüber dem Stand der Technik kann mit der neuen Produktionsanlage die Ausbeute an TMG, bezogen auf eingesetztes Gallium, nahezu verlustfrei realisiert werden. Weiterhin kann vollständig auf den Einsatz organischer Lösungsmittel verzichtet werden. Außerdem reduziert sich die Abfallmenge pro Kilogramm TMG um mehr als 50 Prozent. Branche: Chemische und pharmazeutische Erzeugnisse, Gummi- und Kunststoffwaren Umweltbereich: Ressourcen Fördernehmer: Umicore AG & Co. KG Bundesland: Hessen Laufzeit: 2014 - 2017 Status: Abgeschlossen
Weniger kritische Rohstoffe für Umwelttechnologien Elektromotoren, Photovoltaik, Generatoren, Batteriespeicher: Für viele nachhaltige Technologien werden seltene und teils kritische Rohstoffe benötigt. Der Ausbau solcher Umwelttechnologien droht durch Rohstoffknappheiten gedämpft zu werden. Daher gilt es, rechtzeitig auf Alternativen zu setzen, die weniger kritische Rohstoffe benötigen oder gänzlich darauf verzichten. GreenTech ist weltweit auf dem Vormarsch Technologien zur Steigerung der Ressourceneffizienz treiben weltweit die nachhaltige Entwicklung an. Der Technologie- und Industriestandort Deutschland hat diese Wachstumschancen erkannt. Der Anteil der GreenTech-Branche am Bruttoinlandsprodukt lag 2016 bei 15 Prozent und wird bis 2025 auf 19 Prozent steigen, so die Prognose im Umwelttechnologie-Atlas für Deutschland. Neue High-Tech Konzepte ermöglichen Umwelttechnologien, die konventionelle Produkte oder Verfahren mit geringer Ressourceneffizienz ersetzen. Rohstoff-Kritikalität als Hemmnis Schlüsseltechnologien für eine nachhaltige Entwicklung wie Elektromotoren, Generatoren, Photovoltaik, LED-Beleuchtung und Batteriespeicher basieren auf funktionalen Elementen wie Seltenen Erden, Zinn, Silber, Platin und Lithium. Wenn diese Technologien nicht nur in Deutschland sondern auch weltweit ausgebaut werden, wird sich die Nachfrage nach diesen Elementen vervielfachen. Für einige Rohstoffe zeichnen sich schon heute geologische, strukturelle, geopolitische, sozioökonomische und ökologische Versorgungsrisiken ab, weshalb sie als „kritische Rohstoffe“ gelten. So ist die Gewinnung und Weiterverarbeitung einiger Technologiemetalle mit starken Umwelt- und Gesundheitsbelastungen verbunden. Außerdem sind Reserven, Gewinnung und Raffination bei den meisten dieser Rohstoffe auf wenige Länder konzentriert. Daraus resultiert eine hohe Abhängigkeit der Hersteller von Umwelttechnologien vom globalen Rohstoffhandel, zumal der Markt für die meisten Technologiemetalle eher klein und wenig transparent ist. Substitutionsstrategie als Ausweg Es ist derzeit absehbar, dass Effizienz- und Recyclingstrategien allein nicht ausreichen werden, um die vielschichtigen Versorgungsrisiken entscheidend zu mindern und einen tiefgreifenden Ausbau der Umwelttechnologien weltweit zu gewährleisten. Es bedarf zusätzlich einer vorausschauenden Orientierung auf Substitutionsstrate¬gien, um die entsprechenden Rohstoffe zu ersetzen: Sei es durch Materialsubstitution, bei der partiell Werkstoffe oder Elemente ersetzt werden, technologische Substitution, bei der neue Technologien und Verfahren eingesetzt werden um den gleichen Umweltnutzen zu erzielen oder auch durch funktionale Substitution, bei der ein gänzlich neues Produkt- oder Dienstleistungskonzept eingeführt wird. Eine funktionale Substitution eines Fahrzeug-Abgas-Katalysators besteht beispielsweise in einem vollelektrischen Pkw, der keinen Katalysator mehr benötigt. Die UBA -Studie „SubSKrit“ liefert eine Roadmap Um die Substitutionspotenziale zu bestimmen und systematisch zu erschließen, hat das UBA nun in einer umfassenden Studie („ SubSKrit “) eine Roadmap erarbeiten lassen. Mit dieser Roadmap werden je nach Reifegrad und Zeithorizont der Substitutionsalternativen Anreize für Maßnahmen zur Technologieentwicklung, Markteinführung, Marktdurchdringung durch Qualifizierung und Austausch sowie Anpassung der rechtlich-regulatorische Rahmenbedingungen gegeben. Hierfür wurden 115 Umwelttechnologien und über 60 Rohstoffe einem Screening sowie einer vielschichtigen Analyse unterzogen. Zunächst wurden die Technologien in Panels von Fachleuten auf ihr relatives Umweltentlastungspotenzial, ihre Marktdynamik sowie ihre Bedeutung für die deutsche Wirtschaft untersucht. Für die 40 relevantesten Technologien wurden dann die Rohstoffbedarfe in Trend- und Green Economy-Szenarien bis 2025 sowie 2050 extrapoliert und einer Kritikalitätsanalyse unterzogen. Hierbei wurden die benötigten Rohstoffe auf ihr Versorgungsrisiko, ihr ökologisches Schadenspotenzial sowie ihre strategische Bedeutung für die Wirtschaft analysiert. 20 Umwelttechnologien mit vergleichsweise hoher Kritikalität wurden auf dieser Basis in den sieben Technologiegruppen: Elektronik, Katalysatoren, Permanentmagnete, Solartechnologie, Speichertechnologien, Generatoren und Permanentmagnete sowie Sonstige priorisiert. Diese 20 Technologien sind nicht nur von besonderem umwelt- und industriepolitischem Interesse sondern auch in hohem Maße abhängig von kritischen Rohstoffen, für die zukünftige Verfügbarkeitsengpässe sehr wahrscheinlich sind. Daher wurden diese Technologien eingehend auf Substitutionsalternativen untersucht. Dabei wurden vier Cluster deutlich: Umwelttechnologien, für die bereits heute Substitutionsalternativen auf den Markt vorhanden sind und kritische Metalle substituiert werden. Hierunter fallen bleifreie Lote, Fahrzeug-Abgas-Katalysatoren, Elektroantriebsmotoren in vollelektrischen Pkw, Hochleistungs-Permanentmagnete in der Industrie, Dünnschicht-Solarzellen, Tandemzellen, Concentrated Solar Power (CSP)-Technologie und RFID. Umwelttechnologien, die marktreife Alternativen besitzen mit deutlicher Reduzierung des Einsatzes der als kritisch identifizierten Metalle. Dazu zählen die Umwelttechnologien der Pedelec-Batterien, Hybridmotoren, Elektroantriebsmotoren der Plug-in-Hybrid-Pkw (PHEV), Lithium-Ionen-Stromspeicher und Lithium-Ionen-Batterien für Fahrzeuge. Umwelttechnologien, die Substitutionsoptionen besitzen, welche noch nicht im Markt etabliert sind, aber großes Potential für eine absehbare Marktreife besitzen. Diese Technologien sind ökonomisch noch nicht wettbewerbsfähig oder die Entwicklung ist noch nicht vollständig ausgereift. Darunter fallen weiße OLED anstelle von weißen LED sowie Permanentmagnet-Generatoren für Windkraftanlagen. Umwelttechnologien, für die keine Substitutionsmöglichkeiten im Rahmen des Projektes identifiziert werden konnten. Dazu zählen grüne Rechenzentren, Industriekatalysatoren, Pedelec-Motoren, Synchron- und Asynchron-Generatoren in Windkraftanlagen sowie GuD/Gas - Kraftwerke. Über alle Umwelttechnologien zeigt sich, dass Substitutionsalternativen deutliche Rohstoffeinsparungen von relevanten Materialien ermöglichen. Hohe Einsparpotenziale sind bei Silber, Gold, Palladium, Seltenen Erden, Lithium, Zinn, Gallium, Titandioxid, Mangan und Platin identifiziert. Beispielsweise liegt das Einsparpotential für die nur im Umfang von wenigen Tausend Tonnen pro Jahr produzierten Schweren Seltenen Erde Dysprosium 2025 bei 33 Prozent bzw. knapp 1.300 Tonnen. Dabei können die größten Einsparungen durch technologische Substitutionen bei den Elektroantriebsmotoren und bei den Hybridmotoren erzielt werden. Im Jahr 2050 liegt das Einsparpotential im Substitutionsszenario sogar bei 66 Prozent bzw. 13.300 Tonnen. Allerdings zeigte die Analyse auch auf, dass bei den Substitutionen nicht alle derzeit kritischen Rohstoffe ersetzt werden können und die Einsparung teilweise mit dem Einsatz anderer, ebenfalls kritischer Rohstoffe einhergeht. In Einzelfällen wie bei Platin kommt es auch im Substitutionsszenario unter Berücksichtigung der Elektromobilität bis 2050 zu einer Zunahme des Rohstoffbedarfs. Fazit Es ist wichtig, den Ausbau der bedeutendsten Umwelttechnologien mithilfe eines technologischen Portfolios abzusichern, das möglichst resilient gegenüber Verfügbarkeitsbeschränkungen der erforderlichen Technologiemetalle ist. Die Studie zeigt auf, dass für das Gros der Umwelttechnologien Alternativen vorhanden sind, im Besonderen in den zukunftsorientierten Technologiefeldern der Antriebssysteme, Solarenergie, Beleuchtung und Speichertechnologien. Diese können entsprechend ihrer Reifegrade zielgerichtet zu veritablen Innovationen fortentwickelt werden. Durch diese Alternativen lassen sich Rohstoffrisiken für den Ausbau der Technologien zwar nicht verhindern, aber deutlich abmildern. Mithilfe der erarbeiteten Substitutions-Roadmap sollen konzertierte Ansätze von wichtigen Akteuren des Innovationssystems aus Politik, Forschung, Wirtschaft und Verbänden unterstützt werden, um Substitutionen zu zukunftsfesten Umwelttechnologien zu ermöglichen. Die Raodmap liefert den notwendigen vorausschauenden Ansatz, der mithilfe eines regelmäßigen Monitorings fortgeschrieben werden soll. Alle vier Jahre sollten die Umwelttechnologien und dafür erforderliche Rohstoffe auf Kritikalität und Substitutionsoptionen überprüft werden. Durch die Verankerung der Roadmap lässt sich ein wichtiger Beitrag zu einer aktiven ökologischen Industriepolitik leisten, und dem besonderen Interesse Deutschlands als Nachfrager, Produzent, Exporteur und Technologieführer von Umwelttechniken gerecht werden. Linkhinweis Zusätzlich zum Abschlussbericht sind alle Arbeitsschritte der Studie „SubSKrit“ bis hin zur Roadmap in sechs zusätzlichen Arbeitsberichten dokumentiert. Wichtige Erkenntnisse und Maßnahmen sind zudem in einem englischsprachigen Empfehlungspapier sowie einer ausführlichen Summary zusammengefasst.
Das Projekt "Commercial process outline for crystalline silicon thin film solar cells and modules" wird vom Umweltbundesamt gefördert und von Fraunhofer-Institut für Solare Energiesysteme durchgeführt. General Information: Thin film technologies to fabricate solar cells offer a high potential for a breakthrough in production cost since they consume less materials and ease the introduction of mass production techniques, as compared to the currently dominating wafer-based silicon technology. One of the most promising of these thin film approaches is the crystalline silicon thin film cell. A consortium has been formed by partners from industry and from research organisations to investigate the potential of the new technology. The main goals are: - to define a cell concept appropriate to an industrial product - to show the feasibility of essential process steps - to perform a careful economic process evaluation In this project, only the high temperature approach for the silicon deposition will be discussed, and for economic reasons only chlorosilanes are discussed as silicon source. This limits the substrate materials to those that can withstand temperatures of higher than 1000 C, and which are chemically stable in contact with silicon at this high temperature. Furthermore, it has been decided to focus mainly on substrate materials based on silicon. This can be silicon itself, crystallised in form of sheets, or it can be a ceramic material based on silicon oxides, nitrides, or carbides. Expected achievements are the demonstration of: - an appropriate substrate and a low-cost fabrication technique - a fast and cost-effective deposition technique for silicon films - a cell technology which is compatible with mass fabrication - interconnection and encapsulation schemes for these new cells. An important feature of the research is the inclusion of a thorough economic evaluation. The Consortium is confident to be able to deliver data for an in-depth comparison of the new technology with other thin-film options, but also with the conventional thick silicon technique. It is the intention of this proposed work to direct research and development in the field of the crystalline silicon thin film solar cells towards the industrial perspectives. Prime Contractor: Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., Institut für Solare Energiesysteme; Freiburg im Breisgau; Germany.
Das Projekt "Super high efficiency Cu(In,Ga)Se2 thin-film solar cells approaching 25% (Sharc25)" wird vom Umweltbundesamt gefördert und von Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg durchgeführt. Prime objective of the Sharc25 project is to develop super-high efficiency Cu(In,Ga)Se2 (CIGS) solar cells for next generation of cost-beneficial solar module technology with the world leading expertise establishing the new benchmarks of global excellence. The project partners ZSW and EMPA hold the current CIGS solar cell efficiency world records of 21.7% on glass and 20.4% on polymer film, achieved by using high (approximately 650 centigrade) and low (approximately 450 centigrade) temperature CIGS deposition, respectively. Both have developed new processing concepts which open new prospects for further breakthroughs leading to paradigm shift for increased performance of solar cells approaching to the practically achievable theoretical limits. In this way the costs for industrial solar module production less than 0.35 Euro/Wp and installed systems less than 0.60 Euro/Wp can be achieved, along with a reduced Capex less than 0.75 Euro/Wp for factories of greater than 100 MW production capacity, with further scopes for cost reductions through production ramp-up. In this project the performance of single junction CIGS solar cells will be pushed from approximately 21% towards 25% by a consortium with multidisciplinary expertise. The key limiting factors in state-of-the-art CIGS solar cells are the non-radiative recombination and light absorption losses. Novel concepts will overcome major recombination losses: combinations of increased carrier life time in CIGS with emitter point contacts, engineered grain boundaries for active carrier collection, shift of absorber energy bandgap, and bandgap grading for increased tolerance of potential fluctuations. Innovative approaches will be applied for light management to increase the optical path length in the CIGS absorber and combine novel emitter, front contact, and anti-reflection concepts for higher photon injection into the absorber. Concepts of enhanced cell efficiency will be applied for achieving sub-module efficiencies of greater than 20% and industrial implementation strategies will be proposed for the benefit of European industries.
Das Projekt "Large-area Organic and Hybrid Solar Cells (LARGECELLS)" wird vom Umweltbundesamt gefördert und von Universität Bayreuth, Lehrstuhl Makromolekulare Chemie I durchgeführt. Objective: The task of developing large-area, thin film solar cells based on polymers as well as solid-state organic-inorganic (hybrid) systems will be undertaken. The required novel materials (charge transport polymers, semiconductor surfactants/compatibilizers and inorganic nanoparticles) will be synthesized and the compounds with the most potential will be scaled-up for the purpose of modern fabrication methods such as roll-to roll (R2R) processing. Additionally, the efficient devices will be tested and analyzed in out-door conditions in India and under accelerated ageing conditions in Israel to understand the degradation mechanism. Finally the basic information from stability studies will be used to design novel materials suitable for highly efficient devices of long-term stability. The programme is intensively intertwined with an Indian consortium, especially in the fields of novel materials, out-door testing, transfer and exchange of knowledge and methods.
Das Projekt "PIPV2 - Flexible CIGSe Dünnschichtsolarzellen für die Raumfahrt" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum Berlin für Materialien und Energie GmbH durchgeführt. Erstmals ist eine flexible Cu(In,Ga)Se2 Technologie auf Polyimidfolie als Trägermaterial mit einer Leistungsdichte von knapp 2000 W/kg auf Bauteilniveau national verfügbar. Um das einzigartige Potential dieser Technologie weiter zu entwickeln ist es Ziel der hier beschriebenen Aktivitäten, die im Vorläufer entwickelte Technologie weitreichenden, für Anwendungen im Weltraum relevanten Test zu unterziehen und einzelne Komponenten weiter zu entwickeln, um so deren Effizienz und Zuverlässigkeit weiter zu erhöhen. Die konkreten Ziele sind: größer als 17.5 Prozent im Labor (AM1.5, größer als 0.5cm2, tot. area) ; größer als 12.5 Prozent für standardisierte, für die industrielle Fertigung relevante (AM1.5, größer als 30cm2, tot. area, ohne AR); größer als 10.0 Prozent für ein Modul mit größer als 9 monolith. versch. Zellen (AM1.5, größer als 30cm2, tot. area) ; größer als 8.0 Prozent für ein Modul mit größer als 5 pseudom. versch. Zellen (AM1.5, größer als 30cm2, tot. area); ein testfähiger, flexibler Generator/Demonstrator mit einem spezifischen Gewicht kleiner als 1.0 kg/m2. Das HZB ist Ansprechpartner für das DLR und koordiniert den wissenschaftlichen Bereich des Vorhabens. Eine online Datenbank wird zur Archivierung/Kommunikation der Testdaten zur Verfügung gestellt. Im Bezug auf den CIGSe Herstellungsprozess wird das HZB den mehrstufigen Koverdampfungsprozess bei niedrigen Temperaturen mittels in-situ EDXRD untersuchen und weiter optimieren. Zur Reduzierung optischer Verluste wird die standardmäßig verwendete CdS Pufferschicht durch ein alternatives Material ersetzt.
Das Projekt "Large area cadmium telluride electrodeposition for thin film solar cells" wird vom Umweltbundesamt gefördert und von Fraunhofer-Institut für Solare Energiesysteme durchgeführt. General Information: The aim of this project is to develop further CdTe thin film technology and to drive the manufacturing costs for modules towards 1 ECU/Wp. Such cost targets are more easily achievable if the thin film material deposition can be scaled in size from 30 cm x 30 cm up to 60 cm x 120 cm which is an industrial objective. Thus the technical challenge is to develop and optimise large area chemical deposition methods for uniform CdS and-CdTe thin films capable of delivering large area CdTe cells with efficiencies over 8 per cent. This will require an increased fundamental understanding over the CdS/CdTe bulk material and cell properties and correlation of these to the large area deposition parameters. The objectives against the expected achievements are; - To develop, low cost, chemical methods for the deposition of large area (up to 60 cm x 120cm), uniform, CdS and CdTe thin films with solar conversion efficiencies higher than 8 per cent over the entire area. - To develop high conductivity fine line printed wires on large area tin oxide coated glass to improve the lack of conductivity for electroplating. - To develop a process for the integration of printed fine line wires on TO/glass with the large area cell interconnection. - To develop formulation chemistry for the fast electro deposition of CdTe. - To increase fundamental understanding of materials and cell operation in order to control large area thin film deposition and cell fabrication. Initially conducting fine lines (200 m wide, 60 cm long) on large area tin oxide coated glass, with good precision, will be developed. The synthesis of inks and pastes will be necessary to tailor material properties to suit TO/glass substrate and chemical deposition systems. The fine lines are expected to be alkali solution resistant (or encapsulated) for the CdS CBD process. Subsequently, large area CdTe electro deposition from an aqueous solution will be optimised. Characterisation of material properties and cell performance is expected to help control deposition and post-deposition annealing parameters for uniform performance; Cell and sub-module stability will be monitored. The summary of the partners in this project are; BP Solar, Europe's leading PV manufacturing company, PHILIPS (CFT) one of Europe's leading centre for manufacturing technologies, Ecole Nationale Superieure de Chime Analytique de Paris (ENSCP), world leaders in the chemical bath deposition of II-VI materials, Fraunhofer Institude (ISE) one of the Europe's leading PV institutes, Institut für Neu Materials (INM) one of Europe's leading research institutes in composit material science and technology, EC's research center at Ispra (JRC), Arbeitsgemeinschaft für Industrielle Forschung (AFIF)-ETH tecnopark, an industrial research expert. They are going to join their R and D efforts to develop large area CdS and CdTe thin film deposition methods and cell fabrication technology. Prime Contractor: BP Solar Ltd.; Sunbury on Thames;
Das Projekt "PIPV2 - Flexible CIGSe Dünnschichtsolarzellen für die Raumfahrt" wird vom Umweltbundesamt gefördert und von HTS GmbH durchgeführt. Erstmals ist eine flexible Cu(In,Ga)Se2 Technologie auf Polyimidfolie als Trägermaterial mit einer Leistungsdichte von knapp 2000 W/kg auf Bauteilniveau national verfügbar. Um das einzigartige Potential dieser Technologie weiter zu entwickeln ist es Ziel der hier beschriebenen Aktivitäten, die im Vorläufer entwickelte Technologie weitreichenden, für Anwendungen im Weltraum relevanten Test zu unterziehen und einzelne Komponenten weiter zu entwickeln, um so deren Effizienz und Zuverlässigkeit weiter zu erhöhen. Die konkreten Ziele sind: größer als 17.5 Prozent im Labor (AM1.5, größer als 0.5cm2, tot. area) ; größer als 12.5 Prozent für standardisierte, für die industrielle Fertigung relevante (AM1.5, größer als 30cm2, tot.l area, ohne AR); größer als 10.0 Prozent für ein Modul mit größer als 9 monolith. versch. Zellen (AM1.5, größer als 30cm2, tot. area) ; größer als 8.0 Prozent für ein Modul mit größer als 5 pseudom. versch. Zellen (AM1.5, größer als 30cm2, tot. area); ein testfähiger, flexibler Generator/Demonstrator mit einem spezifischen Gewicht kleiner als 1.0kg/m2. Der Arbeitsumfang bei der HTS GmbH umfasst vor allem die technologische Entwicklung der Verschaltung (Niettechnologie) und der Trägerstruktur. Hierbei werden für die Optimierung der Verschaltung Standard-Einzelbauteile von den Projektpartnern zur Verfügung gestellt. Weiterhin ist die Entwicklung einer entsprechend flexiblen Trägerstruktur mit einem niedrigen spezifischen Gewicht notwendig. Es werden hierfür die Testverfahren für eine Qualifikation spezifiziert und Tests (intern und extern) durchgeführt.
Origin | Count |
---|---|
Bund | 264 |
Type | Count |
---|---|
Ereignis | 2 |
Förderprogramm | 261 |
Text | 1 |
License | Count |
---|---|
geschlossen | 2 |
offen | 262 |
Language | Count |
---|---|
Deutsch | 264 |
Englisch | 20 |
Resource type | Count |
---|---|
Datei | 2 |
Dokument | 4 |
Keine | 77 |
Webseite | 184 |
Topic | Count |
---|---|
Boden | 95 |
Lebewesen & Lebensräume | 67 |
Luft | 116 |
Mensch & Umwelt | 264 |
Wasser | 52 |
Weitere | 264 |