API src

Found 645 results.

Similar terms

s/cls/CLC/gi

Assessment of formal, natural and social insurances: how to cope best with impacts of extreme events on grasslands for sustainable farming systems?

The impacts of climate change pose one of the main challenges for agriculture in Central Europe. In particular, an increase of extreme and compound extreme climate events is expected to strongly impact economic revenues and the provision of ecosystem services by agroecosystems. A highly relevant, still open question is how grassland farming systems can cope best with these climate risks to adapt to climate change. A prominently discussed economic instrument to relieve income risks is the formal insurance, but natural and social insurances are newly under discussion as well. Natural insurances include specific grassland management practises such as maintaining species-rich grasslands. Social insurances, in our terminology, comprise all forms of societal support for farmers’ climate risk management. This includes in particular arrangements of community-supported agriculture that reduce income risks for farmers, or payments for ecosystem services if their design takes risk into account. Formal, natural and social insurances may be substitutes or complements, and affect farmer behaviour in different ways. Thus, policy support for any of the three forms of insurance will have effects on the others, which need to be understood. InsuranceGrass takes an innovative interdisciplinary view and assesses formal, natural and social insurances: on how to cope best with impacts of climate extremes on grasslands, integrating social and natural sciences perspectives and feedbacks between them. Based on this holistic analysis, InsuranceGrass will provide recommendations for policy and insurance design to ensure effective risk-coping of farmers and to enhance sustainable grassland farming, considering economic, environmental and social aspects. Impacts of extreme and compound extreme events on the provision of ecosystem services (e.g. magnitude and quality of yield, climate regulation via carbon sequestration, plant diversity) by permanent grasslands in Germany and Switzerland are quantified based on long-term observations and field experiments. Cutting-edge model-based approaches will be based on behavioural theories and empirically calibrated. With the help of social-ecological modelling, InsuranceGrass explicitly incorporates feedbacks between farmers’ and households’ decision, grassland management options, and ecosystem service provision in a dynamic manner. The contributions of different insurance types are developed, discussed and evaluated jointly with different groups of stakeholders (i.e., farmers, insurance companies, public administration). A scientifically sound and holistic assessment of the role of formal, natural, and social insurances for the sustainability of grassland farming under extreme events requires both disciplinary excellence and seamless interdisciplinary collaboration. InsuranceGrass brings together four groups from Zürich and Leipzig, with unique disciplinary expertise and a track record of successful collaboration.

Net Zero Industry Act (NZIA) Dokumente

Der Net Zero Industry Act ist am 29. Juni 2024 in Kraft getreten. Der NZIA hat zum Ziel, den Produktionshochlauf von Netto-Null-Technologien (z.B. Produktion von Windkraftanlagen, Solarzellen, Batteriezellen etc.) in der europäischen Union zu beschleunigen. Dieses Ziel soll v.a. durch die Straffung von Genehmigungsverfahren und die Bündelung von Informationen vorangetrieben werden. Der NZIA unterstützt geplante gewerbliche Anlagen oder die Erweiterung oder Umwidmung bestehender Anlagen, um folgende Netto-Null-Technologien herstellen zu können: Solartechnologien, einschließlich photovoltaische, thermoelektrische und thermische Solartechnologien, Technologien für Onshore-Windkraft und erneuerbare Offshore-Energie, Batterie- und Energiespeichertechnologien, Wärmepumpen und Technologien für geothermische Energie, Wasserstofftechnologien, einschließlich Elektrolyseure und Brennstoffzellen, Technologien für nachhaltiges Biogas und Biomethan, Technologien zur Abscheidung und Speicherung von CO2, Stromnetztechnologien, einschließlich elektrischer Ladetechnologien für den Verkehr und Technologien zur Digitalisierung des Netzes, Technologien für Kernspaltungsenergie, einschließlich Technologien für den Kernbrennstoffkreislauf, Technologien für nachhaltige alternative Kraftstoffe, Wasserkrafttechnologien, Technologien für erneuerbare Energie, die nicht unter die vorstehenden Kategorien fallen, energiesystembezogene Energieeffizienztechnologien, einschließlich Wärmenetztechnologien, Technologien für erneuerbare Kraftstoffe nicht biogenen Ursprungs, biotechnologische Klimaschutz- und Energielösungen, transformative industrielle Technologien für die Dekarbonisierung, die nicht unter die vorstehenden Kategorien fallen, Technologien zum Transport und zur Nutzung von CO2, Windantriebs- und Elektroantriebstechnologien für den Verkehr, Nukleartechnologien, die nicht unter die vorstehenden Kategorien fallen. Der NZIA sieht zur Unterstützung beim Aufbau oder der Erweiterung von neuen Produktionsanlagen für Netto-Null-Technologie oder von Investitionen in die Umstellung von Produktionsanlagen zur Herstellung von Netto-Null-Technologien die Einrichtung von zentralen Kontaktstellen vor (Art.6 NZIA). Hier geht es zur Zentralen Kontaktstelle .

Untersuchungen zum universellen Skalenverhalten von Residualgasphasen mittels micro-Computer-Tomographie

Das Kapillare Einfangen von CO2-Gas und deren nachfolgende Auflösung sind zwei wichtige Speicherprozesse der CCS (Carbon Capture Storage)-Technologie, die im Rahmen des beantragtes Projektes untersucht werden sollen. Das zentrale Ziel ist ein Upscaling von porenskaligen Eigenschaften getrappter Gascluster mittels universellen Skalengesetzen, wie sie von der Perkolationstheorie vorhergesagt werden. Erstmals wird ein analytisches Näherungsverfahren zur Berechnung der effektiven Auflösungsrate angewendet und durch vergleichende Makroskala-Modellierungen (MIN3P und TOUGH2) getestet. Von grundlegendem Interesse ist die Frage, unter welchen Bedingungen, die im Projekt untersuchten porösen Medien zur gleichen Universalitätsklasse gehören, und welchen Einfluss, Porenstruktur, Mikrostruktur der Festkörperoberfläche und heterogene Benetzbarkeit auf den Trapping-Prozess haben. Methodisch wird mittels micro-Computertomographie und Bildanalyse sowohl die Porenstruktur, Porenraumtopologie und mittels Clusteranalyse die Geometrie und statische Verteilung getrappter Gascluster analysiert und quantifiziert. Die Dynamik des Trapping-Verhaltens wird mittels optischer Visualisierung in Glaskugel-Monolayer untersucht. Die Fluide werden so gewählt, dass sie Proxies für die CO2-Injektion in Tiefenaquifere darstellen. Die zu erwartenden Ergebnisse sind sowohl von grundlegendem Interesse als auch von großer praktischer Relevanz, da sie Prognose-Modellierungen zur CCS-Technologie und zur Grundwasserreinigung (Auflösung residualer NAPL (non aqueous phase liquid) bzw. von Mischgasphasen) verbessern.

Energie- und Kohlenstoff-Roadmap für die europäische Chemieindustrie

Ecofys unterstützte den CEFI, bei der Entwicklung und Ausarbeitung der Energie- und Kohlenstoff-Roadmap 2050 . Die Roadmap untersucht, welche Rolle die Chemieindustrie langfristig betrachtet in einem energieeffizienten und emissionsarmen Europa der Zukunft spielen kann. In vier versch. Szenarien werden die zukünftige Nachfrage nach und damit die Produktion von Produkten der chemischen Industrie bis 2050 sowie die Entwicklung und der Einsatz von Energieeffizienz- und kohlenstoffarmen Technologien bewertet. Die Szenarien unterscheiden sich dabei hinsichtlich ihrer Annahmen zum energie- und klimapol. Umfeld in Europa und dem Rest der Welt, zur Entwicklung von Energie- und Rohstoffpreisen sowie der Geschwindigkeit, mit welcher relevante Innovationen voranschreiten. Die Studie untersucht ebenfalls, welche Rolle der europäischen Chemieindustrie in der Bereitstellung von Energieeffizienz- und kohlenstoffarmen Lösungen für andere Wirtschaftsbranchen zukommen kann. Die Studie kommt zu dem Schluss, dass Produkte der chemischen Industrie in allen Wirtschaftsbereichen Verbesserungen in der Energieeffizienz und der Minderung von Treibhausgasemissionen ermöglichen, wobei sich diese Rolle der Chemieindustrie künftig noch verstärken dürfte. Weiterhin wird in der Studie deutlich, dass die Preisdifferenzen, welche für Energie und Rohstoffe im Vergleich zu den wichtigsten Wettbewerbsregionen bestehen, die globale Wettbewerbsfähigkeit der europäischen Chemieindustrie gefährden. Eine auf Europa beschränkte und nicht global abgestimmte Energie- und Klimapolitik, welche zu höheren Kosten der europäischen Produktion führt, würde die Wettbewerbsfähigkeit weiter schwächen und zu einer geringeren Produktion in Europa und damit zu vermehrten Importen von chemischen Produkten nach Europa führen. Die Verbesserung der Energieeffizienz wird den größten Beitrag leisten, die zukünftigen Treibhausgasemissionen der europäischen Chemieindustrie zu reduzieren. Des Weiteren können alternative Brennstoffe zur Erzeugung von Prozesswärme sowie die Vermeidung von Lachgasemissionen sich positiv auf die Emissionsminderung auswirken. Darüber hinaus bergen die Dekarbonisierung des Stromsektors und nach 2030 auch die CCS-Technologie zusätzliche Emissionsminderungspotentiale. Wachstum und Innovation wird dabei in den kommenden Jahren bei der Erzielung realer Emissionsminderungen eine entscheidende Rolle zukommen. Angesichts dieser Ergebnisse appelliert die Studie an die politischen Entscheidungsträger, die energie- und klimapolitische Rahmenbedingungen derart zu gestalten, dass Anreize für ein nachhaltiges und effizientes Wachstum der chemischen Industrie geschaffen werden, um die Attraktivität für Investitionen zu steigern und weitere Innovationen zu fördern. Die Studie liefert wertvollen Input für die Diskussion zur europäischen Energieversorgung sowie der post 2020 Klima und Industriepolitik. Ecofys kam die Rolle der Projektkoordination zu und lieferte zudem unabhängige analyt. Beiträge.

CO2-Entnahme durch Alkalinitätserhöhung - Potenzial, Nutzen und Risiken, Vorhaben: Verstärkte Verwitterung in warmen Küstengewässern

Copernicus-Daten für Energy Sharing, Teilvorhaben: Stadt Oldenburg

Sonderforschungsbereich Transregio 129 (SFB TRR): Oxyflame - Entwicklung von Methoden und Modellen zur Beschreibung der Reaktion fester Brennstoffe in einer Oxyfuel-Atmosphäre, Sonderforschungsbereich Transregio 129 (SFB TRR): Oxyflame - Entwicklung von Methoden und Modellen zur Beschreibung der Reaktion fester Brennstoffe in einer Oxyfuel-Atmosphäre

Zur nachhaltigen Sicherung der Energie- und Stromversorgung wird zukünftig neben Kernenergie und regenerativer Energiebereitstellung weiterhin der Rückgriff auf fossile Brennstoffe, wie Kohle, Öl und Erdgas, unverzichtbar bleiben. Bei konventionellen Kraftwerkstechnologien werden jedoch Treibhausgase freigesetzt, während gleichzeitig deren Reduzierung weltweit hohe Priorität hat. Zur Lösung dieses Zielkonflikts werden 'Carbon Capture and Storage' (CCS)-Methoden diskutiert, wobei die Oxyfuel-Verbrennung eine der vielversprechendsten Technologien zur CO2-Abscheidung darstellt. Bei diesem Verfahren wird der Brennstoff anstelle von Luft mit einem Gemisch aus Sauerstoff und rezirkuliertem Rauchgas verbrannt, um so ein hoch CO2-haltiges Abgas zu erzeugen, das nach weiteren sekundären Reinigungsschritten abgetrennt werden kann. Der Ersatz des Stickstoffanteils der Luft durch CO2 und H2O führt zu einem völlig neuen Verbrennungsverhalten, das auch zu Instabilitäten sowie zum örtlichen Verlöschen der Flamme führen kann. Die korrekte Beschreibung dieses Verbrennungsverhaltens erfordert entsprechende physikalisch und chemisch motivierte Modelle für diese spezielle Gasatmosphäre. Deshalb sollen bis zum Projektende des Sonderforschungsbereichs/Transregio die folgenden Erkenntnisse, Daten und Modelle zur Verfügung stehen: (1) Belastbare Modelle durch grundlegendes Verständnis der beteiligten Prozesse und deren Abhängigkeit von den jeweiligen Einflussparametern, von der Mikroskala bis hin zur skalenübergreifenden Interaktion, (2) Basisdaten zur Vorhersage der Wärmeübertragung von der Flamme an die Wände und Einbauten in Kraftwerkskesseln mit Oxyfuel-Atmosphäre, (3) Verlässliche Berechnungsgrundlagen für die Entwicklung und Auslegung von Brennern und Feuerräumen für Oxyfuel-Kraftwerke mit Feststoffverbrennung. Im Sonderforschungsbereich/Transregio arbeiten Wissenschaftlerinnen und Wissenschaftler der RWTH Aachen, Ruhr-Universität Bochum und TU Darmstadt zusammen.

Optimierung der landwirtschaftlichen Produktion in Österreich unter Berücksichtigung der natürlichen Widerstandsfähigkeit von Böden gegen Veränderungen der Umweltbedingungen (OLPAT)

Zielsetzung: Das Hauptziel dieses Forschungsvorhabens ist es die natürliche Produktivität und Resilienz von Österreichs Ackerböden zu erheben. Dies ist von großer Bedeutung da der Ernährungsbedarf in den kommenden Jahren steigen wird, die Auswirkungen des Klimawandels in Österreich verstärkt spürbar werden und negative Auswirkungen der Landwirtschaft vermindert werden sollen. Vor allem der Aspekt der Resilienz, der Widerstandskraft von Böden gegen Umwelteinflüsse, steht im Mittelpunkt. Ein weiteres Ziel dieses Forschungsvorhabens ist es, eine Grundlage zu erstellen welche für Öffentliche Aktivitäten seitens des BMNT benutzt werden kann. Es sollen dafür Empfehlungen für die Bodennutzung der österreichischen Ackerflächen auf regionaler sowie lokaler Ebene konkret und klar verständlich dargestellt werden. Bedeutung des Projekts für die Praxis: Aufgrund des weltweit ansteigenden Ernährungsbedarfes und dem Druck auf Böden z.B. durch Versiegelung, ist es wichtig, Böden, die für die Ernährungssicherheit eines Landes notwendig sind, speziell auszuweisen. Bisher wurde dies in Österreich vor allem im Hinblick auf die Ertragsfähigkeit von landwirtschaftlichen Flächen durchgeführt. Die negativen Umweltauswirkungen durch intensive Landwirtschaft wurden dabei bisher jedoch weniger berücksichtigt. Eine europaweite Studie hat die Ertragsfähigkeit (Produktivität) und Resilienz gegenüber Umweltbelastungen anhand von sechs Indikatoren definiert. Dabei wurde gezeigt, dass in der EU-25 nur knapp 40% der landwirtschaftlichen Böden eine hohe Produktivität UND Resilienz aufweisen und daher für eine nachhaltige Intensivierung nutzbar sind (Schiefer et al. 2016). Für Österreich wurden 44 % der analysierten Flächen mit einer solch hohen Resilienz und Produktivität ausgewiesen. Weitere knapp 40% der analysierten agrarischen Flächen könnten mit gewissen Einschränkungen für eine nachhaltige Intensivierung genutzt werden, wenn hier Verbesserungen der Bodenqualität z.B. durch entsprechende Maßnahmen, z.B. Humusbewirtschaftung, erzielbar wären. Außerdem müssten hierbei auch die zu erwartenden Klimaänderungen (bzgl. Wasser- und Wärmehaushalt) berücksichtigt werden. Insgesamt besitzt Österreich im EU Vergleich einen sehr hohen Prozentsatz an resilienten und fruchtbaren landwirtschaftlichen Böden. Dies konnte auf der Basis des benutzten Datensatzes (LUCAS 2009, Corine Land Cover) bereits festgestellt werden. Jedoch wurden dabei kleinstrukturierte (kleiner als 25 ha) und höher als 1000 m Seehöhe gelegene Flächen nicht berücksichtigt und daher nur ca. 60% der österreichischen Ackerflächen analysiert. Gerade in Österreich spielen jedoch kleinstrukturierte Flächen und solche in Lagen über 1000 Meter Seehöhe eine wichtige Rolle für die Ernährungssicherheit. (Text gekürzt)

CO2-Sequestrierung kleinerer Emittenten in kalzium- und magnesiumhaltigen Rohstoffen/Produkten - Seq-kalz

Gesetz zu dem Übereinkommen vom 23. Juni 1979 zur Erhaltung der wandernden wildlebenden Tierarten (WildTArtÜbkG)

Nichtamtliches Inhaltsverzeichnis Art 1 Dem in Bonn am 23. Juni 1979 von der Bundesrepublik Deutschland unterzeichneten Übereinkommen zur Erhaltung der wandernden wildlebenden Tierarten wird zugestimmt. Das Übereinkommen wird nachstehend veröffentlicht.

1 2 3 4 563 64 65