API src

Found 9 results.

Related terms

Autoklimaanlage

<p>Klimaanlage im Auto richtig bedienen und Energie sparen</p><p>Was Sie für eine nachhaltige Klimatisierung im Auto tun können</p><p><ul><li>Achten Sie schon beim Kauf des Pkw auf den Kraftstoffverbrauch der Klimaanlage.</li><li>Beachten Sie Tipps zum sparsamen und gesunden Klimatisieren.</li><li>Denken Sie an eine regelmäßige Wartung in einer Werkstatt.</li></ul></p><p>Gewusst wie</p><p>Die Autoklimaanlage ist neben dem Motor der größte Verbraucher im Auto. Ein durchschnittlicher Mehrverbrauch von zehn bis 15 Prozent gegenüber der Fahrt ohne Klimaanlage ist zu erwarten.</p><p><strong>Worauf Sie beim Kauf achten sollten: </strong></p><p><strong>Tipps zum Energiesparen und Gesundbleiben:</strong></p><p><strong>In der Werkstatt:</strong></p><p>Messergebnisse des Mehrverbrauchs in Liter bei einem Testfahrzeug (Skoda Octavia)</p><p>Hintergrund</p><p><strong>Umweltsituation:</strong> Neben dem Energieverbrauch ist das in der Klimaanlage enthaltene Kältemittel umweltrelevant. Viele ältere Pkw-Klimaanlagen enthalten das Kältemittel R134a (Tetrafluorethan), das ein hohes Treibhauspotenzial hat. Seit 2017 dürfen in Europa neue Pkw und kleine Nutzfahrzeuge nur noch zugelassen werden, wenn die Klimaanlagen mit einem Kältemittel mit einem kleinen Treibhauspotential befüllt sind. Die europäische Pkw-Industrie verwendet heute hauptsächlich das brennbare Kältemittel R1234yf (Tetrafluorpropen) als Ersatz für R134a. R134a wird jedoch auch heute in bestehenden Pkw-Klimaanlagen und auch weltweit verwendet.</p><p>Kältemittel werden aus Pkw-Klimaanlagen technisch bedingt bei der Erstbefüllung, beim Betrieb und bei der Wartung freigesetzt. Auch durch Leckagen im Kältekreis durch Alterung oder Steinschlag und bei Unfällen gelangen Kältemittel aus der Klimaanlage in die ⁠Atmosphäre⁠. In der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/a?tag=Atmosphre#alphabar">Atmosphäre</a>⁠ wirkt 1 kg des fluorierten Treibhausgases R134a so stark auf die Erderwärmung wie 1.430 kg CO2.</p><p>Fluorierte Gase (wie R134a oder R1234yf) werden in der Atmosphäre zu Fluorverbindungen abgebaut. Bedenkliches Abbauprodukt ist zum Beispiel die persistente, d.h. sehr schwer abbaubare <a href="https://www.umweltbundesamt.de/themen/klima-energie/fluorierte-treibhausgase-fckw/emissionen/abbauprodukte-fluorierter-treibhausgase">Trifluoressigsäure</a> (TFA). Das brennbare Ersatzkältemittel R1234yf (Tetrafluorpropen) ist zwar weniger klimaschädlich als R134a, bildet in der Atmosphäre aber noch 4 bis 5 Mal mehr Trifluoressigsäure als R134a. Fluorfreie Kältemittel wie Kohlendioxid (CO2 ) oder einfache Kohlenwasserstoffe wie Propan würden im Gegensatz zu R1234yf keine solchen Abbauprodukte bilden.</p><p>Seit dem Spätsommer 2020 bietet die Volkswagen AG für bestimmte Elektroautos eine&nbsp;<a href="https://www.volkswagen.de/de/modelle/id5-gtx.html/__layer/layers/models/id_5_gtx/waermepumpe-und-e-routenplaner/master.layer">CO2-Anlage mit Wärmepumpenfunktion</a> als Sonderausstattung an. Mittlerweile (September 2025) sind 1 Millionen Fahrzeuge mit CO2-Anlagen ausgerüstet. Die Anlagen werden technisch noch weiter verbessert. Auch Systeme mit einfachen Kohlenwasserstoffen wie Propan werden in Betracht gezogen, wobei die Brennbarkeit beherrscht werden muss.</p><p><strong>Gesetzeslage:</strong>&nbsp;Zur Begrenzung der Treibhausgasemissionen erließ die Europäische Union bereits im Jahr 2006 die&nbsp;<a href="https://eur-lex.europa.eu/legal-content/DE/TXT/PDF/?uri=CELEX:32006L0040">Richtlinie</a>&nbsp;2006/40/EG über Emissionen aus Klimaanlagen in Kraftfahrzeugen. Diese Richtlinie fordert, dass in Europa Klimaanlagen neuer Pkw und kleiner Nutzfahrzeuge seit 2017 nur noch Kältemittel mit einem relativ geringen Treibhauspotenzial (kleiner 150) enthalten dürfen. Das bedeutet, dass das bisherige Kältemittel R134a mit einem Treibhauspotenzial von 1.430 in Klimaanlagen neuer Pkw und kleiner Nutzfahrzeuge in Europa nicht mehr eingesetzt werden darf. Das Treibhauspotenzial (GWP) beschreibt, wie stark ein ⁠<a href="https://www.umweltbundesamt.de/service/glossar/s?tag=Stoff#alphabar">Stoff</a>⁠ zur Erderwärmung beiträgt im Vergleich zur gleichen Menge Kohlendioxid (GWP=1).</p><p><strong>Hinweis:&nbsp;</strong>Eine Klimaanlage ist jeweils nur für ein bestimmtes Kältemittel zugelassen. Ein Wechsel des Kältemittels einer bestehenden Klimaanlage ist zu unterlassen. Dies kann zu technischen und Sicherheits-Problemen führen, ebenso sprechen rechtliche Gründe dagegen, es sei denn, die Umstellung wird vom Pkw-Hersteller ausdrücklich unterstützt und sachkundig begleitet.</p><p><strong>Marktbeobachtung:</strong>&nbsp;Bereits seit dem Verbot der für die Ozonschicht schädlichen ⁠<a href="https://www.umweltbundesamt.de/service/glossar/f?tag=FCKW#alphabar">FCKW</a>⁠ in den 1990er Jahren (bei Pkw war es das FCKW R12) begann die Suche nach geeigneten Ersatzstoffen. Als umweltfreundliche Lösung waren Klimaanlagen mit dem natürlichen Kältemittel CO2&nbsp;(Kohlendioxid, Kältemittelbezeichnung R744) im Jahr 2003 CO2&nbsp;als Lösung für die Pkw-Klimatisierung identifiziert worden. An der Umsetzung wurde bis 2009 in Europa aktiv gearbeitet. Parallel dazu bot seit 2007 die chemische Industrie das brennbare, fluorierte Kältemittel R1234yf – Tetrafluorpropen an. Durch seine chemische Ähnlichkeit mit dem herkömmlichen R134a versprach R1234yf weniger Aufwand bei der Umstellung und setzte sich daher durch, und die Entwicklung von CO2&nbsp;Klimaanlagen wurde zunächst eingestellt.</p><p>Die Brennbarkeit von R1234yf wurde schon länger, auch vom Umweltbundesamt, als kritisch für die Sicherheit im Pkw eingeschätzt. Im Herbst 2012 zeigten Versuche von Autoherstellern, dass sich R1234yf im Pkw bei Unfällen entzünden kann und dabei vor allem giftige Flusssäure freigesetzt wird. Die Daimler AG und die AUDI AG boten daraufhin ab den Jahr 2016 einzelne Modelle mit CO2-Klimaanlagen an, stellten dies Produktion aber wieder ein, da der übrige Markt der Entwicklung nicht folgte. Damit wurde der brennbare Stoff R1234yf zum neuen Standardkältemittel.</p><p>Seit dem Spätsommer 2020 bietet die Volkswagen AG für bestimmte Elektroautomodelle CO2-Anlagen mit Wärmepumpenfunktion&nbsp;als Sonderausstattung an. Das Kältemittel CO2 ist für Pkw-Klimaanlagen eine nachhaltige Lösung. Es ist weder brennbar noch toxisch, hat keine umweltbedenklichen Abbauprodukte und ist weltweit zu günstigen Preisen verfügbar. CO2-Klimaanlagen kühlen das Fahrzeug schnell ab und sind energieeffizient zu betreiben. Im Sommer ist der Mehrverbrauch in Europa geringer. Im Winter kann die Klimaanlage als Wärmepumpe geschaltet werden und so effizient bis zu tieferen Temperaturen heizen. Dies bietet sich insbesondere für die Anwendung in Fahrzeugen mit elektrischen Antrieben an. Eine interessante Entwicklung ist, dass für Elektro-Pkw jetzt auch ein Klimatisierungskonzept mit einfachen Kohlenwasserstoffen wie <a href="https://www.pressebox.de/pressemitteilung/zf-friedrichshafen-ag/Weltmeisterliche-Drehmomentdichte-ZF-stellt-kompaktesten-E-Antrieb-fuer-Pkw-vor/boxid/1163539">Propan</a> zum Kühlen und Heizen vorgestellt wurde.</p><p>&nbsp;</p><p>Die Protoptyp-Klimaanlage im UBA-Dienstwagen wurde 2015 ertüchtigt. Seit dem Frühsommer 2015 kühlte der UBA-Dienstwagen mit einem neuen CO₂-Kompressor. Mittlerweile wurde er ausgesondert.</p>

KMU-innovativ - Klimaschutz: Entwicklung eines Kältemittelverdichters für das Kältemittel CO2 zur Klimatisierung von Omnibussen

Nachhaltige Klimatisierung bei Bussen

Obwohl Klimaanlagen auch bei Bussen mittlerweile zum Standard gehören, werden die Umweltwirkungen von Heizungs- und Klimaanlagensystemen bislang zu wenig beachtet. Mittels des natürlichen Kältemittels CO2 (R744) lassen sich die direkten Treibhausgasemissionen von Klimaanlagen um über 99% im Vergleich zur gängigen R134a-Technik reduzieren. Zu den weiteren Vorteilen der Busklimatisierung mit CO2 gehören eine höhere Anlageneffizienz sowie geringere Wartungskosten. Das Projekt soll dazu beitragen, dass mehr Verkehrsbetriebe die CO2-Klimatechnik in ihren Fahrzeugen nutzen. Im Jahr 2012/2013 waren die Vorzeichen für natürliche Kältemittel im Fahrzeugbereich alles andere als positiv. Dies hat sich geändert: Mittlerweile beabsichtigen Daimler und VW den Einsatz natürlicher Kältemittel sowohl im Pkw- als auch im Busbereich. Wenngleich bis zur serienmäßigen Ausstattung von Bussen mit CO2-Klimatechnik noch einige Hürden zu nehmen sind, konnten durch die Projektarbeit wichtige Grundlagen für die weitere Marktdurchdringung der innovativen Technik gelegt werden.

Entwicklung eines CO2-Ejektorkreislaufs für eine umschaltbare Wärmepumpen-Klimaanlage für Omnibusse

Bei Omnibussen mit herkömmlichen R134a-Klimaanlagen werden durch Leckagen, Unfälle oder Wartungsarbeiten aufgrund der großen Kältemittelfüllmenge erhebliche Mengen des synthetischen Kältemittels freigesetzt. Dies stellt einen beachtlichen Beitrag zur direkten Emission von Treibhausgasen dar, der durch den Einsatz des alternativen Kältemittels CO2 vermieden werden kann. Allerdings treten beim Kältemittel CO2 üblicherweise hohe Drosselverluste auf, die sich jedoch durch die Verwendung eines Ejektors anstelle eines herkömmlichen Expansionsventils reduzieren ließen. Neue Herausforderungen an zukünftige Klimatisierungssysteme für Omnibusse bestehen aber nicht nur in der Kühlung, sondern auch in der bedarfsgerechten Bereitstellung von Heizleistung, da durch die Optimierung der Dieselmotoren im Winter oftmals nicht mehr ausreichend Motorabwärme zur Beheizung des Fahrgastraums zur Verfügung steht. Neben der Verwendung von Brennstoffzuheizern ist die Beheizung des Businnenraums auch durch einen Betrieb der Klimaanlage im Wärmepumpenmodus möglich. Gegenstand des beantragten Projekts ist daher die Erforschung, Entwicklung und Optimierung einer umschaltbaren CO2-Klima-Wärmepumpenanlage für Stadtbusse, wobei erstmals untersucht werden soll, wie ein Ejektor in einer solchen Anlage effizient eingesetzt werden kann. Die optimale Auslegung der Anlagenkomponenten und die Untersuchung ihrer gegenseitigen Beeinflussung, sowie die Optimierung des Heizkonzepts stellen dabei wesentliche Teilaspekte des Projekts dar. In theoretischen Studien konnte gezeigt werden, dass Ejektorkreisläufe großes Potential besitzen, die Kälte- und Heizleistung von CO2-Klima- und Wärmepumpenanlagen zu erhöhen, bzw, bei gleicher Leistung diese effizienter bereitzustellen. Die Diskrepanz zwischen theoretisch ermittelten und experimentell bestimmten Ejektoreffizienzen erfordern aber weitere detaillierte experimentelle Untersuchungen zu Ejektorkreisläufen. Aufgrund der gegenseitige Beeinflussung aller Anlagenkomponenten erfordert die technische Umsetzung von Ejektorkreisläufen in Stadtbussen zudem eine neue Dimensionierung und Optimierung aller Anlagenkomponenten, und gegebenenfalls auch des Anlagendesigns.

Untersuchung eines CO2-Ejektorkreislaufes für Omnibusklimaanlagen

Bei Omnibussen wird jährlich durchschnittlich 23 Prozent der Kältemittelfüllmenge der Klimaanlage in die Atmosphäre freigesetzt. Serienklimaanlagen mit dem Kältemittel R134a leisten somit einen beachtlichen Beitrag zur direkten Emission von Treibhausgasen, der durch die Verwendung des alternativen Kältemittels CO2 vermieden werden könnte. Der so genannte indirekte Beitrag einer Klimaanlage an der Emission von Triebhausgasen entsteht durch den Kraftstoffmehrverbrauch zum Antrieb der Anlage. Somit wäre bei einer Optimierung einer CO2-Klimaanlage auch eine Reduzierung der indirekten Emission von Treibhausgasen möglich. Im Rahmen des geförderten (Gesamt-) Projekts wird daher erstmals untersucht, wie durch Verwendung eines Ejektors eine COP-Verbesserung für eine CO2-Omnibus-Klimaanlage erzielt, und ein entsprechender CO2-Ejektorkreislauf für Busklimaanlagen optimiert werden kann. Durch das Vorhaben konnte grundsätzlich gezeigt werden, dass durch den Einsatz eines Ejektors eine Erhöhung des COPs einer CO2-Omnibusklimaanlage möglich ist. Systemsimulationen für verschiedene Verschaltungen haben verdeutlicht, dass der Ejektor insbesondere bei Mehrverdampferanlagen vorteilhaft ist, da er dort eine geschickte Kopplung der Teilströme ermöglich. Durch den Einsatz des Ejektors ließen sich CO2-Klimaanlagen realisieren, die in ihrer Energieeffizienz mit modernen und hocheffizienten R134a-Anlagen vergleichbar sind. Zudem ist eine weitere deutliche Effizienzsteigerung der CO2-Ejektor-Klimaanlage möglich, wenn alle Anlagenkomponenten für die gewählte Verschaltung optimiert werden. Würde man in allen Omnibussen in Deutschland die R134a- durch CO2-Ejektor-Anlagen ersetzen, ließe sich die direkte Emission des Treibhausgases R134a um mindestens (76-83,6) t/a reduzieren, ohne dass die indirekte Emission durch den Kraftstoffverbrauch zum Antrieb der Klimaanlage zunehmen würde. Allerdings sind derzeit bei den Kunden der Konvekta AG nicht mehr reine Klimaanlagen, sondern vielmehr umschaltbare Kreisläufe gefragt sind, die im Sommer als Klimaanlagen, im Winter jedoch als Wärmepumpen betrieben werden können. Es wird daher erforderlich sein, die im Projekt gewonnen Erkenntnisse zur optimalen Integration eines Ejektors und zu dessen optimaler Gestaltung auf diesen Anwendungsfall zu übertragen und zu überprüfen. Die Anlagenkomponenten sind dann auch für diese Anwendung zu optimieren.

Umweltbundesamt für Kohlendioxid in Klimaanlagen

Das Umweltbundesamt (UBA) empfiehlt auch nach neueren technischen Untersuchungen, künftig in Fahrzeugklimaanlagen Kohlendioxid einzusetzen. Das von der Automobilindustrie favorisierte Kältemittel Tetrafluorpropen - chemisch abgekürzt als HFKW-1234yf - hält zwar die neuen EU-Vorgaben ein, ist aber gleichwohl klimaschädlicher als das Kältemittel CO2.

Umweltfreundlichere Autoklimaanlagen müssen jetzt kommen

Auf dem 79. Genfer Autosalon - vom 5. bis 15. März - weisen zahlreiche Minis, Hybrid- und Elektroautos auf den Trend der Zukunft: Weniger Emissionen und geringerer Verbrauch - die Automobilindustrie reagiert auf die Kundenwünsche. Vergeblich jedoch sucht der Kunde nach einem Pkw mit umweltfreundlicher Klimaanlage. Immerhin entweichen in Deutschland jährlich rund drei Millionen Tonnen Treibhausgase aus Pkw-Klimaanlagen. „Die Industrie muss mit Hochdruck an der Serieneinführung der CO2-Klimaanlagen arbeiten, sie ist ein hervorragendes Beispiel für Klimaschutz mittels Innovation”, sagt Prof. Dr. Andreas Troge, Präsident des Umweltbundesamtes (UBA). „Die Serieneinführung zu verzögern, bedeutete einen Verlust an Expertenwissen und Marktchancen. Das schwächt die internationale Position der europäischen Automobil- und Zulieferindustrie”, so Troge.

Entwicklung eines Air-Condition- und Heizungssystems für Stadtbusse

Zielsetzung und Anlass des Vorhabens: Stadtbusse haben aufgrund der hohen Luftwechselraten - bedingt durch sich permanent öffnende Türen - einen besonders hohen Heizwärmebedarf, der insbesondere durch die moderne effiziente Dieselmotoren-technik nicht mehr ausreichend durch das Kühlwasser gedeckt werden kann. Deshalb werden fast 100% der neu ausgelieferten Stadtbusse in Deutschland mit einem Zusatzheizsystem ausgeliefert, welches im Allgemeinen aus einem mit Diesel oder Heizöl betriebenen Heizbrenner besteht. Zusätzlich sind ca. 50% der Stadtbusse in Deutschland mit einer HFKW-134a Klimaanlage ausgestattet. Ziel dieses Forschungs-vorhabens ist deshalb die Klimaanlagen von Stadtbussen durch den Einsatz von CO2 als Kältemittel in den Wärmepumpenbetrieb umschaltbar zu machen, um damit den Zusatzbrenner einzusparen und durch eine höhere energetische Effizienz CO2 -Emissionen zu vermeiden. Es wird erwartet, dass bei vergleichbaren Investitionskosten jährlich ca. 350 Liter Kraftstoff pro Stadtbus weniger verbraucht werden. Darüber hinaus können erhebliche Mengen des klimawirksamen Kältemittels HFKW-134a eingespart werden. Fazit: Die im Rahmen dieser Studie durchgeführte Untersuchung ergab, dass durch die Verwendung einer um-schaltbaren R744 Wärmepumpe fast 50% des für die konventionelle Heizung anfallenden Diesel-verbrauchs eingespart werden können. Bei einem typischen Jahresverbrauch für eine konventionelle An-lage von 625 Litern ergibt sich eine jährliche Einsparung von rund 295 Litern. Würden alle Stadtbusse in Deutschland mit einer R744 Wärmepumpe beheizt, könnten 21.107 Tonnen CO2-Emissionen pro Jahr eingespart werden. Hinzu käme eine zusätzliche Emissionsreduktion durch den Ersatz des HFKW-134a durch das natürliche Kältemittel R744. Eine Wirtschaftlichkeitsberechnung über einen Zeithorizont von 10 Jahren ergibt, dass unter Berücksichtigung des aktuellen Dieselpreises bei Verwendung einer R744-Klimaanlage die zusätzlichen Gesamtkosten für den Einbau und Betrieb der Wärmepumpe um 20 bis 50% niedriger liegen als für ein herkömmliches System mit Brennstoffzuheizer. Damit ist dieses System nicht nur ökologisch sondern auch ökonomisch sinnvoll.

Natürliches Kältemittel für Pkw-Klimaanlagen

Dass die bisher in Autoklimaanlagen enthaltenen synthetischen Kältemittel unser Klima schädigen, ist inzwischen weltweit anerkannt. Im Juni beraten Experten auf zwei internationalen Treffen in den USA erneut über Alternativen zu den bisher in Klimaanlagen verwendeten klimaschädlichen Kältemitteln. Die klimafreundlichste Lösung ist aus Sicht des Umweltbundesamtes (UBA) der Ersatz der synthetischen Kältemittel - wie R134a - durch das natürliche Kältemittel Kohlendioxid (R744). „Um die Atmosphäre wirksam zu entlasten, reicht eine europäische oder gar deutsche Insellösung mit Kohlendioxid nicht aus. Wir müssen weltweit handeln”, betont UBA-Präsident Prof. Dr. Andreas Troge. Das UBA unterstützt diese klimaschonende Technik, indem es ein Fahrzeug mit einer R744-Klimaanlage ausrüsten lässt, um die Praxistauglichkeit der innovativen Technik zu demonstrieren.

1