API src

Found 3256 results.

Related terms

Effiziente Wärmepumpenquartiere: Effizienter, erneuerbarer und netzdienlicher Betrieb von Wärmepumpenquartieren, Teilvorhaben: Ergebnistransfer und Unterstützung des Handwerks

Wärmepumpen (WP) sind eine Schlüsseltechnologie der Energiewende im Wärmebereich, da sie mit einem hohen Anteil erneuerbarer Energien betrieben werden können und zur Reduktion der CO2-Emissionen beitragen. Im Rahmen des Forschungsprojekts werden die Umsetzung und der Betrieb von bis zu vier WP-Quartieren begleitet und die folgenden Ziele verfolgt. 1.Effizienz von Wärmepumpen steigern und sicherstellen: Mittels energetischem Monitoring werden Betriebsdaten in mehr als 100 Gebäuden erfasst, analysiert und bewertet. Darauf aufbauend ist eine kostengünstige Überführung des Betriebsmonitorings in die Praxis geplant, sodass auch WP außerhalb von Forschungsprojekten unkompliziert und nachhaltig überwacht und optimiert werden können. 2. Wärmepumpenquartiere erneuerbar und netzdienlich betreiben: Es werden netzentlastende Betriebsstrategien mit hoher Nutzung lokaler erneuerbarer Energien entwickelt und die Hardware- und kommunikationstechnische Umsetzung der Betriebsführung erprobt. Dabei wird auch der Einfluss von Energieprognosen untersucht. 3.Transfer ins Handwerk: Das Handwerk stellt eine Schlüsselposition für die Transformation des Energieversorgungssystems im Gebäudebereich dar, für die ein umfangreiches Schulungskonzept erarbeitet wird.

Effiziente Wärmepumpenquartiere: Effizienter, erneuerbarer und netzdienlicher Betrieb von Wärmepumpenquartieren

Wärmepumpen (WP) sind eine Schlüsseltechnologie der Energiewende im Wärmebereich, da sie mit einem hohen Anteil erneuerbarer Energien betrieben werden können und zur Reduktion der CO2-Emissionen beitragen. Im Rahmen des Forschungsprojekts werden die Umsetzung und der Betrieb von bis zu vier WP-Quartieren begleitet und die folgenden Ziele verfolgt. 1.Effizienz von Wärmepumpen steigern und sicherstellen: Mittels energetischem Monitoring werden Betriebsdaten in mehr als 100 Gebäuden erfasst, analysiert und bewertet. Darauf aufbauend ist eine kostengünstige Überführung des Betriebsmonitorings in die Praxis geplant, sodass auch WP außerhalb von Forschungsprojekten unkompliziert und nachhaltig überwacht und optimiert werden können. 2. Wärmepumpenquartiere erneuerbar und netzdienlich betreiben: Es werden netzentlastende Betriebsstrategien mit hoher Nutzung lokaler erneuerbarer Energien entwickelt und die Hardware- und kommunikationstechnische Umsetzung der Betriebsführung erprobt. Dabei wird auch der Einfluss von Energieprognosen untersucht. 3.Transfer ins Handwerk: Das Handwerk stellt eine Schlüsselposition für die Transformation des Energieversorgungssystems im Gebäudebereich dar, für die ein umfangreiches Schulungskonzept erarbeitet wird.

EnEff:Wärme: Quartiers-Wärme-Kraft-Kälte-Kopplung, Teilvorhaben: 'Aufbau einer Groß- und Hochtemperaturwärmepumpe für die Einbindung in das Berliner Stadtwärmenetz'

EnEff:Wärme: Quartiers-Wärme-Kraft-Kälte-Kopplung, Teilvorhaben: 'Demonstration und Erprobung der Einbindung einer Groß- und Hochtemperaturwärmepumpe in das Berliner Stadtwärmenetz'

Tunnelgeothermieanlage Rosensteintunnel in Stuttgart + Messprogramm

Die Landeshauptstadt Stuttgart (Baden-Württemberg) plant, in der Nähe des Stuttgarter Zoos 'Wilhelma' eine Tunnelgeothermieanlage in den neu zu errichtenden Rosensteintunnel zu implementieren. Ziel des Vorhabens ist, die geothermische Wärme und die Abwärme des Straßenverkehrs zum Beheizen des benachbarten, neu zu errichtenden Gebäudes (z.B. Elefantenhaus), zur Wassertemperierung der Elefantenduschen und der Außenbecken im Zoo 'Wilhelma' zu nutzen sowie gleichzeitig die Tunnelbetriebstechnik zu kühlen. Übertragen wird die Wärme durch neuartige fluiddurchflossene Absorberleitungen, die in dem Teil des Tunnels zwischen dessen Innen- und der Außenschale verlegt werden. Die Wärmetauscherflüssigkeit nimmt die in der Erde und die in der Tunnelluft enthaltene Wärme auf und gibt diese über eine Wärmepumpe reguliert ab. Der jährliche Wärmebedarf für das Elefantenhaus wird mit 1.382 Megawattstunden und der jährliche Strombedarf für die Kühlung der Tunnelbetriebstechnik mit 219 Megawattstunden prognostiziert. Die zu erwartende CO2-Minderung durch die Versorgung des Elefantenhauses und die Eigenversorgung des Tunnels beträgt jährlich insgesamt 201 Tonnen CO2 bzw. 51 Prozent der Gesamtemissionen. Darüber hinaus werden weitere Luftschadstoffe, wie Staub, Kohlenmonoxid und flüchtige organische Kohlenwasserstoffe (VOC), vermieden.

Optimierung der biologischen Abfallbehandlung in Hessen

Mit der Studie sollen An-satzpunkte für ein optimiertes Stoffstrommanagement für getrennt gesammelte Bio- und Grünabfälle in Hessen aufgezeigt werden. Neben den ökologischen Belangen des Klimaschutzes und der Ressourcenschonung sollen konkrete Lösungsvorschläge für einzelne Gebietskörper-schaften in Hessen entwickelt werden. Die Bearbeitung der Studie erfolgt im 4. Quartal 2007 mit Mitteln für Vorhaben zur 'Energetischen und stofflichen Nutzung von Biorohstoffen'. Bioabfälle aus privaten Haushalten und öffentlichen Einrichtungen werden in Hessen seit 1990 getrennt gesammelt und kompostiert; durchschnittlich fallen etwa 700.000 t/a Abfälle an. Nach dem Konzept der flächendeckenden Bioabfallkompostierung in Hessen werden die eingesammelten Bioabfälle kompostiert. Entgegen dem ursprünglichen Konzept werden nicht alle Abfälle in Hessen kompostiert, sondern vielfach aus Kostengründen in benachbarten Bundesländern behandelt und verwertet. Da nicht alle Kompostierungsanlagen, die seit etwa 15 Jahren betrieben werden, dem heutigen Stand der Technik entsprechen, sind einzelne Anlagen entsprechend den Anforderungen der TA Luft umzubauen bzw. umzurüsten. Vor diesem Hintergrund wird geprüft, wie die biologische Abfallbehandlung in Hessen unter Berücksichtigung der in der Biomassepotenzialstudie aufgezeigten Entwicklungspfade im Hin-blick auf eine alternative Biomassenutzung optimiert werden kann. Modernes Management bio-gener Stoffströme optimiert stoffliche und energetische Verwertungswege mit dem Ziel eines idealen Zusammenwirkens von Nährstoff- und Kohlenstoff-Recycling, Energiebereitstellung (Strom und Wärme), CO2-Reduzierung durch Ersatz fossiler Energieträger sowie günstiger Behandlungskosten bei erweiterter regionaler Wertschöpfung. Durch die Förderungsmöglichkeiten des Erneuerbaren Energien Gesetzes (EEG) sowie stetig steigender Kosten für fossile Energieträger verbessert sich z.B. die Wirtschaftlichkeit der energetischen Verwertung (Biogaserzeugung oder Verbrennung) von getrennt gesammelten Bio- und Grünabfällen nachhaltig.

Verschränkung der hochintegrierten Elektrochemischen Konversion von Kraftlignin mit biotechnologischen und chemischen Prozessen zu drop-in Chemikalien und Intermediaten für stoffliche Anwendungen, Teilvorhaben 4: Biotechnologische Konversionen

Das Gesamtziel von IntElek-to 2.0 ist die Entwicklung einer nachhaltigen Wertschöpfungskette zur Darstellung und stofflichen Nutzung monomerer und oligomerer Oxidationsprodukte des Kraftlignins, das bislang einer nahezu ausschließlichen thermischen Verwertung zugeführt wird. Dieses Projekt umfasst hierbei die Optimierung der elektrochemischen, anodischen und kathodischen, kontinuierlichen Verfahren und Prozesstechnologien zur Darstellung von o.g. monomeren und weiteren entschwefelten, funktionalen lignin-stämmigen Verbindungen, Pinacol-Kopplungsprodukten und anderen biphenylischen Intermediaten und oligomeren Verbindungen. Die Kopplung mit biotechnologischen Verfahren zur Funktionalisierung, mit nachhaltiger organischer Polymersynthesechemie (aromatische gesättigte und ungesättigte Polyester, NIPU, PU, PIR und Polyharnstoff, Epoxydharze) und konventioneller katalytischer Chemie zu Polymeranwendungen (Klebstoffe, Beschichtungen, additive Fertigung, Schäume, Abformmassen) erweitert die Wertschöpfungskette im Hinblick auf marktorientierte Anwendungen. Unter anderem wird der Einsatz der innovativen Bio-Monomere für bedeutende Massenmärkte wie die Herstellung von PUR/PIR Isolationsschäumen erforscht. PIR/PU Isolationsschäume mit einem Marktanteil von über 30% des weltweiten PU-Verbrauchs, leisten einen erheblichen Beitrag zur CO2-Minderung in der Bauindustrie. Dies soll durch eine Verschränkung der o.g. Sektoren (Elektrochemie, Biotechnologie, nachhaltige Synthese- und Polymersynthese-Chemie) zur stofflichen Nutzung des nachwachsenden Rohstoffes Kraftlignin erreicht werden.

Strukturoptimierte Leichtbauwerke durch Additive Fertigung im Pulverbett, Teilvorhaben: Aufbau aus 3 D-Pulverbettgedruckten Bauteilen

Leichtbauten aus Carbonbeton in vollständig digitaler Wertschöpfungskette für Städte der Zukunft inkl. Planungswerkzeug, Teilvorhaben: Planungsmethodik

Verschränkung der hochintegrierten Elektrochemischen Konversion von Kraftlignin mit biotechnologischen und chemischen Prozessen zu drop-in Chemikalien und Intermediaten für stoffliche Anwendungen

Das Gesamtziel von IntElek-to 2.0 ist die Entwicklung einer nachhaltigen Wertschöpfungskette zur Darstellung und stofflichen Nutzung monomerer und oligomerer Oxidationsprodukte des Kraftlignins, das bislang einer nahezu ausschließlichen thermischen Verwertung zugeführt wird. Dieses Teilprojekt umfasst hierbei die Optimierung der elektrochemischen, anodischen und kathodischen, kontinuierlichen Verfahren und Prozesstechnologien zur Darstellung von o.g. monomeren und weiteren entschwefelten, funktionalen lignin-stämmigen Verbindungen, Pinacol-Kopplungsprodukten und anderen biphenylischen Intermediaten und oligomeren Verbindungen. Die Kopplung mit biotechnologischen Verfahren zur Funktionalisierung, mit nachhaltiger organischer Polymersynthesechemie (aromatische gesättigte und ungesättigte Polyester, NIPU, PU, PIR und Polyharnstoff, Epoxydharze) und konventioneller katalytischer Chemie zu Polymeranwendungen (Klebstoffe, Beschichtungen, additive Fertigung, Schäume, Abformmassen) erweitert die Wertschöpfungskette im Hinblick auf marktorientierte Anwendungen. Unter anderem wird der Einsatz der innovativen Bio-Monomere für bedeutende Massenmärkte wie die Herstellung von PUR/PIR Isolationsschäumen erforscht. PIR/PU Isolationsschäume mit einem Marktanteil von über 30% des weltweiten PU-Verbrauchs, leisten einen erheblichen Beitrag zur CO2-Minderung in der Bauindustrie. Dies soll durch eine Verschränkung der o.g. Sektoren (Elektrochemie, Biotechnologie, nachhaltige Synthese- und Polymersynthese-Chemie) zur stofflichen Nutzung des nachwachsenden Rohstoffes Kraftlignin erreicht werden.

1 2 3 4 5324 325 326