A literature retrieval was performed for whole rock geochemical analyses of sedimentary, magmatic and metamorphic rocks in the catchment of River Thuringian Saale for the past 600 Ma. Considering availability and coincidence with paleontological an facies data the following indicators seem suitable to detect environmental and climatic changes: biogenic P for Paleoproductivity, STI Index for weathering intensity, Ni/Co-ratio for redox conditions, relative enrichments of Co, Ba and Rb versus crustal values for volcanic activity at varying differentiation. The Mg/Ca-ratio as proxy for salinity is applicable in evaporites. The binary plot Nb/Y versus Zr/TiO2 indicates a presently eroded volcanic level of the Bohemian Massif as catchment area for the Middle Bunter, whereas higly differentiated volcanics provided source material for Neoproterozoic greywackes. A positive Eu-anomaly is limited to the Lower Bunter and implies mafic source rocks perhaps formerly located in the Bohemian Massif.
The sampling area is located east (E-domain) and west (W-domain) of the Münchberg gneiss massif, NE Bavaria. Germany. Major and trace element compositions and Sr, Nd, and Pb isotope composition of a selected subset of Ordovician samples and post- Devonian samples of mafic igneous rocks are documented in the Table 1 'E-domain'. Sr, Nd, and Pb isotope composition of selected mafic igneous rocks from the W-domain of Ordovicician, Silurian, and Devonian age are documented together with the previously analysed Rb-Sr, Sm-Nd, U-Th-Pb concentrations (Höhn et. al., 2018, doi:10.1007/s00531-017-1497-2) in the Table 2 'W-domain'.
Ziel des Vorhabens der TBM Technologieplattform Bioenergie und Methan GmbH & Co. KG ist es, die wirtschaftliche und nachhaltige Erzeugung von elektrischer Energie und Wärme aus Biomasse mit Hilfe der neu entwickelten AER (Absorption Enhanced Reforming)-Vergasungstechnologie in einer Anlagengröße von 10 MW Brennstoffwärmeleistung zu demonstrieren. Das neue Verfahren wurde vom Zentrum für Sonnenenergie- und Wasserstoffforschung Baden-Württemberg (ZSW) entwickelt. Im Vergleich zu bereits existierenden Biomasseanlagen kommen ein neuartiges Bettmaterial und eine veränderte Betriebsweise zur Anwendung, bei der ein wasserstoffreiches Gas erzeugt wird. Das als Bettmaterial eingesetzte Kalziumoxid bewirkt, dass das entstehende Produktgas weniger unerwünschtes CO2 und Teer enthält. Geringere Vergasungstemperaturen erlauben außerdem den Einsatz von holzartigen Biomassereststoffen aus der Landschaftspflege. Dies trägt den hohen Anforderungen an den Standort in der Nähe des Biosphärenreservats Schwäbische Alb Rechnung. Das Produktgas soll in einem Gasmotor in elektrische Energie umgewandelt werden. Die Prozessabwärme soll zum einen in einem ORC-Prozess zur zusätzlichen Erzeugung elektrischer Energie dienen und zum anderen als Fernwärme abgegeben werden. Bei optimalem Betrieb und gleichzeitiger Wärmenutzung können insgesamt rund 26.000 Tonnen CO2 pro Jahr und Anlage eingespart werden.
Die ganzjährige Versorgung mit erneuerbarer thermischer Energie stellt eine zentrale Herausforderung der Energiewende dar. Die Gründe sind die saisonalen Zyklen des Energiebedarfs und die eingeschränkte Möglichkeit des Transports thermischer Energie. Das Projekt 'EEW' verfolgt das Ziel einer dezentralen, ganzheitlichen Sektorenkopplung auf Quartiersebene, die ganzjährig die Versorgung mit erneuerbarer Wärme sicherstellen kann. Die Grundlage für das Projekt bilden zwei vom Projektpartner GP Joule mitentwickelte Modellregionen - eine dominiert durch PV-Strom die andere durch Wind-Strom. Für diese Modellregionen wird der vom Projektpartner DLR entwickelte thermochemische Energiespeicher auf Basis von gebranntem Kalk und Wasser weiterentwickelt. Die Vorteile des Speichers liegen im denkbar günstigen und weltweit verfügbaren Speichermaterial 'Kalk' sowie in einer verlustfreien Speicherung. Die zentrale Herausforderung der Speichertechnologie liegt in der effizienten Reaktionsführung der Be- bzw. Entladungsreaktion die im Rahmen des Projekts auf Basis der Pflugscharmischer-Technologie des Projektpartners Lödige optimiert werden soll. Das Projektziel ist daher eine kostengünstige, ressourcenschonende und effizienten Speichertechnologie zur Kopplung des Strom- und Wärmesektors für die regenerative Wärmebereitstellung in der Nahwärmeversorgung von Wohnquartieren zu entwickeln. Das Projekt verfolgt dabei einen ganzheitlichen Lösungsansatz: Die Systemintegration, die experimentelle Hardwareentwicklung als auch die industrielle Skalierung und wirtschaftliche Verwertungsmöglichkeiten aus Hersteller- und Nutzersicht. Mit Abschluss des Projekts liegt ein Integrations- und Betriebskonzept für das Speichersystems in einem realen Nahwärmenetz vor und ist anhand belastbarer Betriebsdaten techno-ökonomisch bewertet. Damit kann im Anschluss an das Projekt die Technologie direkt im Feld demonstriert und von den Partnern wirtschaftlich verwertet werden.
Die ganzjährige Versorgung mit erneuerbarer thermischer Energie stellt eine zentrale Herausforderung der Energiewende dar. Die Gründe sind die saisonalen Zyklen des Energiebedarfs und die eingeschränkte Möglichkeit des Transports thermischer Energie. Das Projekt 'EEW' verfolgt das Ziel einer dezentralen, ganzheitlichen Sektorenkopplung auf Quartiersebene, die ganzjährig die Versorgung mit erneuerbarer Wärme sicherstellen kann. Die Grundlage für das Projekt bilden zwei vom Projektpartner GP Joule mitentwickelte Modellregionen - eine dominiert durch PV-Strom die andere durch Wind-Strom. Für diese Modellregionen wird der vom Projektpartner DLR entwickelte thermochemische Energiespeicher auf Basis von gebranntem Kalk und Wasser weiterentwickelt. Die Vorteile des Speichers liegen im denkbar günstigen und weltweit verfügbaren Speichermaterial 'Kalk' sowie in einer verlustfreien Speicherung. Die zentrale Herausforderung der Speichertechnologie liegt in der effizienten Reaktionsführung der Be- bzw. Entladungsreaktion die im Rahmen des Projekts auf Basis der Pflugscharmischer-Technologie des Projektpartners Lödige optimiert werden soll. Das Projektziel ist daher eine kostengünstige, ressourcenschonende und effizienten Speichertechnologie zur Kopplung des Strom- und Wärmesektors für die regenerative Wärmebereitstellung in der Nahwärmeversorgung von Wohnquartieren zu entwickeln. Das Projekt verfolgt dabei einen ganzheitlichen Lösungsansatz: Die Systemintegration, die experimentelle Hardwareentwicklung als auch die industrielle Skalierung und wirtschaftliche Verwertungsmöglichkeiten aus Hersteller- und Nutzersicht. Mit Abschluss des Projekts liegt ein Integrations- und Betriebskonzept für das Speichersystems in einem realen Nahwärmenetz vor und ist anhand belastbarer Betriebsdaten techno-ökonomisch bewertet. Damit kann im Anschluss an das Projekt die Technologie direkt im Feld demonstriert und von den Partnern wirtschaftlich verwertet werden.
Die ganzjährige Versorgung mit erneuerbarer thermischer Energie stellt eine zentrale Herausforderung der Energiewende dar. Die Gründe sind die saisonalen Zyklen des Energiebedarfs und die eingeschränkte Möglichkeit des Transports thermischer Energie. Das Projekt 'EEW' verfolgt das Ziel einer dezentralen, ganzheitlichen Sektorenkopplung auf Quartiersebene, die ganzjährig die Versorgung mit erneuerbarer Wärme sicherstellen kann. Die Grundlage für das Projekt bilden zwei vom Projektpartner GP Joule mitentwickelte Modellregionen - eine dominiert durch PV-Strom die andere durch Wind-Strom. Für diese Modellregionen wird der vom Projektpartner DLR entwickelte thermochemische Energiespeicher auf Basis von gebranntem Kalk und Wasser weiterentwickelt. Die Vorteile des Speichers liegen im denkbar günstigen und weltweit verfügbaren Speichermaterial 'Kalk' sowie in einer verlustfreien Speicherung. Die zentrale Herausforderung der Speichertechnologie liegt in der effizienten Reaktionsführung der Be- bzw. Entladungsreaktion die im Rahmen des Projekts auf Basis der Pflugscharmischer-Technologie des Projektpartners Lödige optimiert werden soll. Das Projektziel ist daher eine kostengünstige, ressourcenschonende und effizienten Speichertechnologie zur Kopplung des Strom- und Wärmesektors für die regenerative Wärmebereitstellung in der Nahwärmeversorgung von Wohnquartieren zu entwickeln. Das Projekt verfolgt dabei einen ganzheitlichen Lösungsansatz: Die Systemintegration, die experimentelle Hardwareentwicklung als auch die industrielle Skalierung und wirtschaftliche Verwertungsmöglichkeiten aus Hersteller- und Nutzersicht. Mit Abschluss des Projekts liegt ein Integrations- und Betriebskonzept für das Speichersystems in einem realen Nahwärmenetz vor und ist anhand belastbarer Betriebsdaten techno-ökonomisch bewertet. Damit kann im Anschluss an das Projekt die Technologie direkt im Feld demonstriert und von den Partnern wirtschaftlich verwertet werden.
Die ganzjährige Versorgung mit erneuerbarer thermischer Energie stellt eine zentrale Herausforderung der Energiewende dar. Die Gründe sind die saisonalen Zyklen des Energiebedarfs und die eingeschränkte Möglichkeit des Transports thermischer Energie. Das Projekt 'EEW' verfolgt das Ziel einer dezentralen, ganzheitlichen Sektorenkopplung auf Quartiersebene, die ganzjährig die Versorgung mit erneuerbarer Wärme sicherstellen kann. Die Grundlage für das Projekt bilden zwei vom Projektpartner GP Joule mitentwickelte Modellregionen - eine dominiert durch PV-Strom die andere durch Wind-Strom. Für diese Modellregionen wird der vom Projektpartner DLR entwickelte thermochemische Energiespeicher auf Basis von gebranntem Kalk und Wasser weiterentwickelt. Die Vorteile des Speichers liegen im denkbar günstigen und weltweit verfügbaren Speichermaterial 'Kalk' sowie in einer verlustfreien Speicherung. Die zentrale Herausforderung der Speichertechnologie liegt in der effizienten Reaktionsführung der Be- bzw. Entladungsreaktion die im Rahmen des Projekts auf Basis der Pflugscharmischer-Technologie des Projektpartners Lödige optimiert werden soll. Das Projektziel ist daher eine kostengünstige, ressourcenschonende und effizienten Speichertechnologie zur Kopplung des Strom- und Wärmesektors für die regenerative Wärmebereitstellung in der Nahwärmeversorgung von Wohnquartieren zu entwickeln. Das Projekt verfolgt dabei einen ganzheitlichen Lösungsansatz: Die Systemintegration, die experimentelle Hardwareentwicklung als auch die industrielle Skalierung und wirtschaftliche Verwertungsmöglichkeiten aus Hersteller- und Nutzersicht. Mit Abschluss des Projekts liegt ein Integrations- und Betriebskonzept für das Speichersystems in einem realen Nahwärmenetz vor und ist anhand belastbarer Betriebsdaten techno-ökonomisch bewertet. Damit kann im Anschluss an das Projekt die Technologie direkt im Feld demonstriert und von den Partnern wirtschaftlich verwertet werden.
Die Mercer Stendal GmbH betreibt am Standort Arneburg ein Zellstoffwerk zur Herstellung von gebleichtem Langfaserzellstoff aus Nadelholz nach dem Sulfatverfahren. Es ist zukünftig geplant, die Feuerung des Kalkofens umzustellen. Neben Erdgas soll als zusätzlicher Brenn-stoff auch Holzstaub eingesetzt werden. Dies beinhaltet neben den Anlagen zur Holzstaubfeuerung eben-falls Änderungen im Abgassystem und dem Brenner. Darüber hinaus ist eine Anpassung der Leistung des Kalkofens von genehmigten 580 t/d Calciumoxid (CaO) auf 700 t/d CaO geplant. Hierdurch ergibt sich ebenfalls eine Erhöhung der genehmigten Feuerungswärmeleistung (FWL) von 45 MW auf 52,5 MW.
Origin | Count |
---|---|
Bund | 119 |
Land | 26 |
Wissenschaft | 9 |
Type | Count |
---|---|
Chemische Verbindung | 9 |
Daten und Messstellen | 28 |
Förderprogramm | 67 |
Gesetzestext | 7 |
Text | 45 |
Umweltprüfung | 1 |
unbekannt | 4 |
License | Count |
---|---|
geschlossen | 23 |
offen | 73 |
unbekannt | 58 |
Language | Count |
---|---|
Deutsch | 141 |
Englisch | 38 |
Resource type | Count |
---|---|
Archiv | 39 |
Datei | 48 |
Dokument | 49 |
Keine | 79 |
Webseite | 18 |
Topic | Count |
---|---|
Boden | 136 |
Lebewesen und Lebensräume | 103 |
Luft | 96 |
Mensch und Umwelt | 154 |
Wasser | 110 |
Weitere | 142 |