API src

Found 24 results.

Related terms

Produkt- und Prozessentwicklung zur Herstellung und der thermischen Umformung von thermoplastischen faserverstärkten Betonbewehrungen aus recyclierten Carbonfasern, Teilvorhaben: Matrixmodifikation und Profilierung

Kronospan GmbH Lampertswalde - Änderung der Anlage zur Herstellung von Holzfaserplatten und Holzspanplatten durch die Optimierung der Harzküche in der Halle 19

Die Kronospan GmbH Lampertswalde, Mühlbacher Straße 1, in 01561 Lampertswalde, beantragte mit Datum vom 28. April 2022 die Genehmigung gemäß § 16 des Gesetzes zum Schutz vor schädlichen Umwelteinwirkungen durch Luftverunreinigungen, Geräusche, Erschütterungen und ähnliche Vorgänge (Bundes-Immissionsschutzgesetz) in der Fassung der Bekanntmachung vom 17. Mai 2013 (BGBl. I S. 1274; 2021 I S. 123), das zuletzt durch Artikel 2 Absatz 3 des Gesetzes vom 19. Oktober 2022 (BGBl. I S. 1792) geändert worden ist, für die wesentliche Änderung der Anlage zur Herstellung von Holzfaserplatten und Holzspanplatten in der Halle 19 am Standort Lampertswalde. Das Vorhaben umfasst im Wesentlichen die folgenden Maßnahmen: • Austausch der bestehenden Harzreaktoren R19-01 und R19-04 durch zwei neue Reaktoren mit Vergrößerung des Fassungsvermögens von je 17 m³ auf je 20 m³ bei gleichbleibender Produktionskapazität von 73.000 t/a Harz • Vergrößerung der bestehenden Hopper für Melamin (B3-01) und Harnstoff (B3-02) von 8,5 m³ auf 12 m³ • Wegfall der thermoölinduzierten Beheizung der Harzreaktoren (R19-01, R19-04) und des Laborreaktors (R19-03) und Rückbau des Thermoölsystems in der Harzküche • Anbindung der Harzreaktoren und des Laborreaktors an das Dampfnetz der Kronospan GmbH Lampertswalde mittels Dampfreduzierstation zur Beheizung der Harzreaktoren • Anbindung der Harzreaktoren und des Laborreaktors an das Dampfkondensatnetz der Kronospan GmbH Lampertswalde • Anbindung des Kühlsystems der Harzreaktoren an die Rückkühlanlage des Betriebsteils IX (Formalin- und Leimanlage) • gleichzeitiger Betrieb der Harzreaktoren R19-01 und R19-04 unter Beibehaltung der genehmigten Abluftführung in die Regenerative Nachverbrennung (RNV) • Entfall der Vakuumanlage und Ersatz selbiger durch zwei Ventilatoren an den Harzreaktoren • Entfall und Rückbau der Lagertanks für Zuckerlösung, Dosierung des Zuckers als Feststoff direkt in die Reaktoren • Aufstellung von zwei 80-m³-Silos für Melamin (B19-08 und B19-09) an der Stelle der Zuckertanks • Umwidmung des Lagertanks B2.03 auf Diethylenglykol (DEG), 32%ige Hexamethylentetraminlösung und Caprolactam in Wasser 30% (jeweils Alternativbelegung) und des Tanks B1.01 auf Harnstoffharze, • Änderung der Stofflagerung in der Halle 19 - Umnutzung des Passivlagers B von Natronlauge-Lagerung (IBC) auf Titandioxid-Suspension mit geändertem Lagerort - Schaffung zusätzlicher Passivläger C bis E • Anbindung der Abgase der Leimanlage der BE IX an die bestehende RNV (BE VII) • Entfall der Druckentlastung auf dem Melamin Hopper

8 - Chemische Erzeugnisse

8 - Chemische Erzeugnisse 81 Chemische Grundstoffe (ausgenommen Aluminiumoxid und - hydroxid) Güter- nummer Güterart Ein- leitung in das Gewässer Abgabe an Annahmestellen zur Kanalisation Abgabe an Annahmestellen zur Sonderbehandlung Bemerkungen 811 Schwefelsäure 8110 Schwefelsäure (Oleum), Abfallschwefelsäure X X S 812 Ätznatron 8120 Ätznatron (Natriumhydroxid, fest), Ätznatronlauge (Natriumhydroxid) in Lösung, Natronlauge, Sodalauge A 813 Natriumcarbonat 8130 Natriumcarbonat (kohlensaures Natrium), Natron, Soda A 814 Calciumcarbid 8140 Calciumcarbid (Vorsicht: Bei Kontakt mit Wasser Explosionsgefahr!) X X S 819 Sonstige chemische Grundstoffe (ausgenommen Aluminiumoxid und -hydroxid) 8191 Acrylnitril, Alaune, Aluminiumfluorid, Äthylenoxid, verflüssigt, Bariumcarbonat, Bariumchlorid (Chlorbarium), Bariumnitrat, Bariumnitrit, Bariumsulfat, Bariumsulfid, Benzolkohlenwasserstoffderivate ( z. B. Äthylbenzol), Bleiglätte, Bleioxid, Bleiweiß (Bleicarbonat), Calciumhypochlorit (Chlorkalk), Caprolactam, Chlor, verflüssigt (Chlorlauge), Chlorbenzol, Chloressigsäure, Chlorkohlenwasserstoffe, nicht spezifiziert, Chlormethylglykol, Chloroform (Trichlormethan), Chlorothene, Chlorparaffin, Chromalaun, Chromlauge, Chromsulfat, Cumol, Cyanide (Cyansalz), Dimethyläther (Methyläther), Dichloräthylen, EDTA (Ethylendiamintetraessigsäure), ETBE (Ethyl-tertButylether), Flusssäure, Glykole, nicht spezifiziert, Hexachloräthan, Hexamethylendiamin, Kaliumchlorat, Kaliumhypochloritlauge (Kalibleichlauge), Kaliumsilikat (Wasserglas), Kalkstickstoff (Calciumcyanamid), Kohlensäure, verdichtet, verflüssigt, Kresol, Mangansulfat, Melamin, Methylchlorid (Chlormethyl), Methylenchlorid, Monochlorbenzol, MTBE (Methyl-tertButylether), Natriumchlorat, Natriumfluorid, Natriumnitrit (salpetrigsaures Natrium), Natriumnitritlauge, Natriumsilikat (Wasserglas), Natriumsulfid (Schwefelnatrium), Natriumsulfit (schwefligsaures Natrium), Natronbleichlauge, NTA (Nitrilotriessigsäure), Perchloräthylen, Phenol, Phosphorsäure, Phtalsäureanhydrid, Retortenkohle, Ruß, Salpetersäure, -abfallsäure, Salzsäure, -abfallsäure, Schwefel, gereinigt, Schwefeldioxid, schwefelige Säure, Schwefelkohlenstoff, Styrol, Surfynol ( TMDD = 2,4,7,9-Tetramethyldec-5-in-4,7-diol), Tallöl, Tallölerzeugnisse, Terpentinöl, Tetrachlorbenzol, Tetrachlorkohlenstoff, Trichloräthylen, Trichlorbenzol, Triphenylphosphin, Vinylchlorid, Waschrohstoffe, Zinkoxid, Zinksulfat X X S 8192 Aceton, Adipinsäure, Alkohol, rein (Weingeist), Aluminiumacetat (essigsaure Tonerde), Aluminiumformiat (ameisensaure Tonerde), Aluminiumsulfat (schwefelsaure Tonerde), Ameisensäure, Ammoniakgas (Salmiakgeist), Ammoniumchlorid (Salmiak), Ammonsalpeter (Ammoniumnitrat, salpetersaures Ammoniak), Ammoniumphosphat, Ammoniumphosphatlösung, Äthylacetat, Ätzkali (Kaliumhydroxid, Kalilauge), Branntwein (Spiritus), vergällt, Butanol, Butylacetat, Calciumchlorid (Chlorcalcium), Calciumformiat (ameisensaurer Kalk), Calciumnitrat (Kalksalpeter), Calciumphosphat, Calciumsulfat (Anhydrit, synthetisch), Citronensäure, Eisenoxid, Eisensulfat, Essigsäure, Essigsäureanhydrid, Fettalkohole, Glykole (Äthylenglykol, Butylenglykol, Propylenglykol), Glyzerin, Glyzerinlaugen, Glyzerinwasser, Harnstoff, künstlich (Carbamid), Holzessig, Isopropylalkohol (Isopropanol), Kaliumcarbonat (Pottasche), Kaliumnitrat, Kaliumsulfatlauge, Magnesiumcarbonat, Magnesiumsulfat (Bittersalz), Methanol (Holzgeist, Methylalkohol), Methylacetat, Natriumacetat, (essigsaures Natrium), Natriumbicarbonat (doppelkohlensaures Natrium), Natriumbisulfat (doppelschwefelsaures Natrium), Natriumformiat, Natriumnitrat (Natronsalpeter), Natriumphosphat, Propylacetat, Titandioxid (z. B. künstliches Rutil) X A 8193 Graphit, Graphitwaren, Silicium, Siliciumcarbid (Carborundum) A 8199 Sonstige chemische Grundstoffe und Gemische, nicht spezifiziert X X S 82 Aluminiumoxid und -hydroxid Güter- nummer Güterart Ein- leitung in das Gewässer Abgabe an Annahmestellen zur Kanalisation Abgabe an Annahmestellen zur Sonderbehandlung Bemerkungen 820 Aluminiumoxid und -hydroxid 8201 Aluminiumoxid A 8202 Aluminiumhydroxid (Tonerdehydrat) A 83 Benzol, Teere u. ä. Destillationserzeugnisse Güter- nummer Güterart Ein- leitung in das Gewässer Abgabe an Annahmestellen zur Kanalisation Abgabe an Annahmestellen zur Sonderbehandlung Bemerkungen 831 Benzol 8310 Benzol X X S 839 Peche, Teere, Teeröle u. ä. Destillationserzeugnisse 8391 Nitrobenzol, Benzolerzeugnisse, nicht spezifiziert X X S 8392 Öle und andere Erzeugnisse von Steinkohlenteer, z. B. Anthracen, Anthracenschlamm, Decalin, Naphthalin, raffiniert, Tetralin, Xylenol, Solventnaphtha, Toluol, Xylol (Ortho-, Meta- und Paraxylol und Mischungen davon) X X S 8393 Pech und Teerpech aus Steinkohlen- und anderen Mineralteeren, z. B. Braunkohlenteerpech, Holzteerpech, Mineralteerpech, Petroleumpech, Steinkohlenteerpech, Teerpech, Torfpech, Torfteerpech, Kreosot X X S 8394 Pech- und Teerkoks aus Steinkohlen- und anderen Mineralteeren, z. B. Braunkohlenteerkoks, Steinkohlenpechkoks, Steinkohlenteerkoks, Teerkoks X X S 8395 Gasreinigungsmasse X X S 8396 Steinkohlen-, Braunkohlen- und Torfteer, Holzteer, Holzteeröl, z. B. Imprägnieröl, Karbolineum, Kreosotöl, Mineralteer, Naphthalin, roh X X S 8399 Sonstige Destillationserzeugnisse, z. B. Rückstände von Braunkohlen- und Steinkohlenteerschweröl X X S 84 Zellstoff und Altpapier Güter- nummer Güterart Ein- leitung in das Gewässer Abgabe an Annahmestellen zur Kanalisation Abgabe an Annahmestellen zur Sonderbehandlung Bemerkungen 841 Holzschliff und Zellstoff 8410 Holzstoff (Holzschliff), Holzzellulose, Zellulose, -abfälle X A 842 Altpapier und Papierabfälle 8420 Altpapier, Altpappe X A 89 Sonstige chemische Erzeugnisse ( einschl. Stärke) Güter- nummer Güterart Ein- leitung in das Gewässer Abgabe an Annahmestellen zur Kanalisation Abgabe an Annahmestellen zur Sonderbehandlung Bemerkungen 891 Kunststoffe 8910 Kunstharze, Kunstharzleim, Mischpolimerisat aus Acrylnitril, aus Butadien, aus Styrol, Polyester, Polyvinylacetat, Polyvinylchlorid X X S 8911 Kunststoffabfälle, Kunststoffrohstoffe, nicht spezifiziert X X S 892 Farbstoffe, Farben und Gerbstoffe 8921 Farbstoffe, Farben, Lacke, z. B. Eisenoxid zur Herstellung von Farben, Emailmasse, Erdfarben, zubereitet, Lithopone, Mennige, Zinkoxid X X S 8922 Kitte X X S 8923 Gerbstoffe, Gerbstoffauszüge, Gerbstoffextrakte X X S 893 Pharmazeutische Erzeugnisse, ätherische Öle, Reinigungs- und Körperpflegemittel 8930 Apothekerwaren (Arzneimittel), pharmazeutische Erzeugnisse X X S 8931 Kosmetische Erzeugnisse, Reinigungsmittel, Seife, Waschmittel, Waschpulver X A 894 Munition und Sprengstoffe 8940 Munition und Sprengstoffe X X S 896 Sonstige chemische Erzeugnisse 8961 Abfälle von Chemiefäden, -fasern, -garnen, von Kunststoffen, auch geschäumt, auch thermoplastisch, nicht spezifiziert, Abfallmischsäuren aus Schwefel- und Salpetersäure, Elektrodenkohlenabfälle, -reste, Kohlenstoffstampfmasse X X S 8962 Abfälle und Rückstände der chemischen Industrie, der Glasindustrie, eisenoxidhaltig, Sulfitablauge X X S 8963 Sonstige chemische Grundstoffe, Härtemittel für Eisen, für Stahl, Entkalkungsmittel für die Lederbereitung, Härtergemische für Kunststoffe, Kabelwachs, Leime, Lösungsmittel, Pflanzenschutzmittel, nicht spezifiziert, radioaktive Stoffe, nicht spezifiziert, Weichmachergemische für Kunststoffe X X S 8969 Chemikalien, chemische Erzeugnisse, nicht spezifiziert X X S Stand: 01. Januar 2018

Entwicklung, Konstruktion und Inbetriebnahme einer kontinuierlichen Wirbelschichtanlage zur Beckmann Umlagerung von Cyclohexanonoxim zu e-Caprolactam

Gruene Chemie: Die dreistufige Syntheseroute des e-Caprolactams ausgehend von Benzol verlaeuft in den beiden letzten Schritten unter starkem Anfall vom Ammoniumsulfat. Die Menge betraegt etwa 2-4.5 t Ammoniumsulfat pro t hergestellten Produkts. Alle grossen Hersteller von Caprolactam unternehmen aus diesem Grunde intensive Forschungen, um diesen Salzanfall deutlich zu reduzieren oder vollstaendig zu unterdruecken. Fuer den ersten der beiden Schritte ist dies der Firma ENICHEM in einer Fluessigphasenreaktion mit H2O2 und TS-1 bereits gelungen. Die vorgestellte Arbeit beschaeftigt sich mit dem dritten Schritt der Synthese, der sogenannten Beckmann-Umlagerung in der Gasphase an MFI Katalysatoren. Die Verwendung dieses Weges unterbindet die Entstehung des Salzes vollstaendig. Energieeinsparung: Die Kombination einer Wirbelschichtreaktion, bei der nur noch das Loesungsmittel und das eigentliche Einsatzprodukt in die Gasphase gebracht werden muss, arbeitet im Vergleich zu den erheblichen Stoffstroemen im klassischen Verfahren in vergleichbaren oder guenstigeren Bereichen. Durch das hohe Niveau der zur Verfuegung stehenden Abwaerme ist aber eine Gesamtwaermeintegration der notwendigen Anlagen einfacher zu vollziehen, als bei den vergleichsweise niedrigeren Niveau in der Fluessigphase. Einsparung von Prozessstufen: Die heterogenkatalytische Vorgehensweise bei der Beckmann-Umlagerung ermoeglicht die Einsparung der Abtrenn- und Aufbereitungsschritte des Ammoniumsulfats des klassischen Verfahrens. Produktintegrierter Umweltschutz: Die dreistufige Syntheseroute des e-Caprolactams ausgehend von Benzol verlaeuft in den beiden letzten Schritten unter starkem Anfall vom Ammoniumsulfat. Die Menge betraegt etwa 2-4.5 t Ammoniumsulfat pro t hergestellten Produkts. Alle grossen Hersteller von Caprolactam unternehmen aus diesem Grunde intensive Forschungen, um diesen Salzanfall deutlich zu reduzieren oder vollstaendig zu unterdruecken. Die vorgestellte Arbeit beschaeftigt sich mit der sogenannten Beckmann-Umlagerung in der Gasphase an MFI Heterogenkatalysatoren unter Vermeidung der im konventionellen Verfahren entstehenden Salzfracht. Chemische Verfahrenstechnik: Die Durchfuehrung einer Reaktion mit Hilfe eines heterogenen Feststoffkatalysators erfordert normalerweise die staendige Regeneration des Katalysators. Eines der bekanntesten Beispiele hierfuer sind die FCC Cracker. Auch bei deutlich hoeheren Standzeiten der Katalysatoren in anderen industriellen chemischen Reaktionen ist die Regeneration meist unumgaenglich. Dies gilt auch im Falle der Beckmann Umlagerung, die am Institut in einer Ein-Bett- und neuerdings auch in einer kontinuierlichen Zwei-Bett-Anlage durchgefuehrt wird. Organische Chemie: Die Beckmann-Umlagerung von Cyclohexanonoxim zu e-Caprolactam ist ein bekanntes, industriell genutztes Verfahren. Die Umsetzung der Umlagerung in einer Gasphasenreaktion ist allerdings neu und nicht kommerzialisiert.

Konzeption, Bau und Test eines Solar-Photoreaktors der zweiten Generation

Ziel des Vorhabens ist die Realisierung photochemischer Synthesen unter Einsatz konzentrierter Sonnenstrahlung. Hergestellt werden sollen Bulkchemikalien, die in konventionellen Verfahren auf thermischen Routen oder photochemisch mit elektrisch betriebenen Strahlern produziert werden. Der Ersatz von Lampen durch die saubere, ressourcenschonende Lichtquelle Sonne ist in geeigneten Faellen von energiewirtschaftlicher und umweltpolitischer Relevanz. Ergebnis: Ein Solarphotoreaktor wurde gebaut und im Hochflussdichte-Sonnenofen der DLR in Koeln-Porz getestet. Als Testreaktion wurde die Photonitrosierung von Cyclohexan mit Nitrosylchlorid ausgewaehlt und erfolgreiche Versuche durchgefuehrt. Die erzielten Umsaetze, Lichtbedarf und Produktqualitaet sind vergleichbar mit denen, die bei Verwendung kuenstlicher Strahlenquellen erzielt werden.

Reaktive Extrusion von Zellulosefaser gefülltem Polyamid 6

Zur Verbesserung der mechanischen Eigenschaften von Thermoplasten werden oft Verstärkungsfasern, z.B. Glasfasern, mit Doppelschneckenextrudern in den schmelzeförmigen Kunststoff eingearbeitet. In jüngster Zeit wird Holz als alternativer Füllstoff eingesetzt. Solche Holz-Kunststoff Composites (engl. Wood Plastic Composites (WPC)) sind ökologisch vorteilhafte, preisgünstige Werkstoffe mit niedriger Dichte und guten mechanischen Eigenschaften. Sie führen im Vergleich zu Glasfasern zu geringem Maschinenverschleiß und weisen Vorteile bezüglich der Rezyklierbarkeit auf. Aufgrund der geringen thermischen Stabilität der Holzfasern ist bislang ihr Einsatz auf Kunststoffe mit Verarbeitungstemperaturen von unter 200 C beschränkt, z.B. Polyethylen. Ziel dieses Forschungsvorhabens ist es, einen naturfaserverstärkten Konstruktionswerkstoff am Beispiel von Polyamid 6 (PA) zu entwickeln. Zusätzlich soll ein Herstellungsverfahren entwickelt werden, bei dem die Fasern einen sehr guten Verbund zum PA bilden. Als Naturfasern kommen aufgrund der hohen thermischen Stabilität hochreine Zellulosefasern zum Einsatz. Das Verfahren der reaktiven Extrusion wird entwickelt, um auf einem Doppelschneckenextruder Zellulosefasern mit E-Caprolactam (CL) zu imprägnieren und anschließend zu PA-Zellulose Composite zu polymerisieren. Die Entwicklung wird in 5 Schritten durchgeführt. In Schritt 1 werden kleine Mengen diskontinuierlich im Kolbenreaktor und auf einem Laborkneter hergestellt. In den Schritten 2 und 3 werden die kontinuierliche Imprägnierung und die Polymerisation auf dem Doppelschneckenextruder entwickelt. Die hergestellten PA-Zellulose Composite werden in Schritt 4 im Spritzgießprozess zu Formteilen weiterverarbeitet. Die Materialien werden bezüglich der mechanischen und morphologischen Eigenschaften sowie bezüglich ihres Restmonomergehalts charakterisiert. Als Ergebnis dieses Forschungsvorhabens stehen als neuer Werkstoff ein PA-Zellulose Composite und ein neues Verfahren zu seiner Herstellung zur Verfügung.

Innovatives Herstellungsverfahren von Polyamid 6-Nanocompounds auf Basis von Schichtsilikaten und Caprolactam, Teilvorhaben 2

Teilvorhaben 2^Innovatives Herstellungsverfahren von Polyamid 6-Nanocompounds auf Basis von Schichtsilikaten und Caprolactam, Teilvorhaben 1

Im Rahmen dieses Projektes wird auf Basis neuer Modifizierungsverfahren für Schichtsilikate ein kontinuierliches in-situ Herstellungsverfahren für Nanocompounds auf einem Doppelschneckenextruder entwickelt und unter praxisrelevanten Bedingungen getestet. Das Hauptaugenmerk der reaktiven Extrusion im Labormaßstab liegt auf der Prozessrealisierung und -optimierung (Vakuumentgasung, Schneckenkonfiguration) und auf der Modifizierung der Nanopartikel (Caprolactam) mit dem Ziel, eine optimale Exfolierung und Distribution der Nanopartikel in der Polymermatrix zu erreichen. Die Ergebnisse dieser Untersuchungen dienen als Grundlagen der Übertragung auf scale-up-Versuche. So wird im Rahmen dieses Projektes ein Herstellungsprozess von Nanocompounds realisiert. Dadurch kann dem Markt ein hochgefülltes Compound als Masterbatch zur Verfügung gestellt werden.

Produktionsintegrierter Umweltschutz bei der Phenolsynthese in der Caprolactam Leuna GmbH

Die Phenolproduktion der Caprolactam Leuna GmbH basiert auf einem weltweit angewandten Verfahren, bei dem gasfoermige, fluessige und feste Reststoffe anfallen, die entsorgt werden muessen. Im Ergebnis der F+E-Arbeiten sollen durch prozessintegrierte Massnahmen die Abwassermenge um ca. 40 Prozent, die fluessigen organischen Reststoffe um ca. 20 Prozent reduziert und der Anfall von festen Reststoffen vermieden werden. Dies wird erreicht durch Verfahrensaenderungen und Werkstoffrueckgewinnung, die zum Teil ueber den gegenwaertigen Stand der Technik und ueber das gesetzlich geforderte Mass hinausgehen werden. Zur Kostenminimierung werden die F+E-Arbeiten so weit als moeglich mit eigenem Personal durchgefuehrt. Phenol wird seit ueber 25 Jahren in Leuna produziert. Die Caprolactam Leuna GmbH verfuegt somit ueber ein hohes Mass an Fachkompetenz fuer diese Arbeiten.

Chemie mit Sonnenlicht: Solar-photochemische Prozessentwicklung - Experimentelle Erprobung und systemtechnische Bewertung

Es ist das Ziel dieses Vorhabens, denkbare Einstiegswege fuer eine industrielle Realisierung solar-photochemischer Techniken mit Ergebnissen und Fakten zu untermauern, um sie naeher an den Markt heranzufuehren. Fuer einige ausgewaehlte Prozesse sollen das technische Potential systematisch herausgearbeitet und Grenzen solar-chemischer Verfahrensweisen aufgezeigt werden. Im Vordergrund der Untersuchungen stehen potentielle Nischen fuer fruehe Anwendungen. Hierzu zaehlen die solar-photochemische Produktion von Feinchemikalien (v.a. photooxygenierter Produkte) und der Bulkchemikalie Caprolactam, die im Vergleich zur konventionellen photochemischen Synthesevariante bereits heute sogar unter wirtschaftlichen Gesichtspunkten attraktiv erscheint. Zwar ist die chemische Speicherung der Sonnenenergie auf lange Sicht wichtiger, diese spezifischen Anwendungen sollen aber zunaechst mit groesserem Nachdruck bearbeitet werden, damit die Chance einer frueheren Umsetzung in die Praxis - und somit auch die Einbindung industrieller Partner in die Technologieentwicklung - ergriffen werden kann.

1 2 3