s/carbon dioxid removal/carbon dioxide removal/gi
In dem beantragten Vorhaben soll eine bereits erprobte, effiziente und für die Synthese von eFuels ausgelegte DAC-Technologie des ZSW, die bislang als Demonstrator im Maßstab 1 kg/h CO2 (DAC1) validiert wurde, aufgegriffen in Kooperation mit den Projektpartnern ela und atmosfair industrialisiert und erstmalig in den Maßstab 100 kg/h CO2 (DAC100) umgesetzt werden. Die Wäscher-basierte Technologie zeichnet sich durch eine kontinuierliche Betriebsweise, Nutzung von Prozessabwärmen (Elektrolyse bzw. nachgelagerte Synthese) und insbesondere eine einfache Skalierbarkeit aus. Beim Engineering des DAC100-Prototypen sollen insbesondere auch für die Industrialisierung relevanten Aspekte wie Fertigbarkeit in Serie, Robustheit und Recyclingfähigkeit der eingesetzten Materialien berücksichtigt werden. Ziel des Vorhabens ist es, die Technologie im Maßstab DAC100 in realer Einsatzumgebung im e-gas-Anlagenkomplex in Werlte zu betrieben und durch Vermessung der Performancedaten zu validieren. Hierzu wird die Technologie zur CO2-Bereitstellung in den Produktionsstandort für regeneratives Methan und LNG des Projektpartners ela integriert und im Demonstrationsbetrieb über mehrere Tausend Stunden betrieben. Ziel des Projektes und der begleitenden Wirtschaftlichkeitsanalysen ist es, die Wirtschaftlichkeit des Verfahrens nachzuweisen und die nächsten Skalierungsschritte in den energietechnischen relevanten Tonnen-Maßstab vorzubereiten. Es ist geplant, dass die Anlage nach Projektende im e-gas-Anlagenkomplex in Werlte weitergetrieben und regeneratives Luft-CO2 für die dortigen Syntheseprozesse bereitstellt.
<p>Die Europäische Union hat sich zu klima- und energiepolitischen Zielen verpflichtet, unter der Maßgabe des Übereinkommens von Paris und verschiedener eigener Beschlüsse. Die EU-Mitgliedsstaaten haben die Ziele für das Jahr 2020 zwar erfüllt und teilweise übererfüllt, doch die mittel- und langfristigen Ziele können nur durch erheblich verstärkte Bemühungen erreicht werden.</p><p>Zielvereinbarungen</p><p>Bei der <a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UN#alphabar">UN</a>-Klimakonferenz in Paris 2015 einigten sich 197 Staaten, darunter auch die Europäische Union (EU) und Deutschland, unter anderem darauf, die menschengemacht globale Erderwärmung bis Ende des Jahrhunderts auf „deutlich unter“ Zwei Grad Celsius und möglichst unter 1,5 Grad Celsius zu halten. Das Übereinkommen von Paris (ÜvP) stellt eine der größten globalen klimapolitischen Errungenschaft dar. Um den Verpflichtungen des ÜvP Rechnung zu tragen, beschloss die EU 2021 das Ziel, bis 2050 zum ersten Treibhausgasneutralen Kontinent zu werden. Um dies zu erreichen weist die EU Zwischenziele für die Dekaden bis 2050 aus.</p><p>Im Rahmen des <a href="https://climate.ec.europa.eu/eu-action/climate-strategies-targets_de">Klima- und Energiepaketes</a> hat sich die EU zu Zielen für 2020 verpflichtet. Die 2009 in Kraft getretenen Regelungen enthielten folgende Verpflichtungen:</p><p>Mit dem <a href="https://ec.europa.eu/clima/eu-action/european-green-deal/european-climate-law_en">EU-Klimagesetz</a> hat die EU ihr Langfristziel für 2050 angehoben. Anstatt einer Minderung von 80 % - 95 % strebt sie nun netto-Null Treibhausgas-Emissionen („Klimaneutralität“) sowie anschließend negative Emissionen ab 2050 an. Emissionssenken können dabei Emissionsquellen ausgleichen. Um dieses langfristige Ziel zu erreichen, hat die EU ihr Zwischenziel für das Jahr 2030 von 40 % auf 55 % Emissionsminderung gegenüber 1990 angepasst. Ein Prozess zur Festlegung eines 2040-Ziels wurde auf den Weg gebracht.</p><p>Außerdem wurden zuletzt noch weitere Ziele für 2030 angepasst und die bestehenden Energieziele angehoben:</p><p>Eine detaillierte Beschreibung der Energie- und Klimastrategien der EU finden Sie <a href="https://ec.europa.eu/energy/en/topics/energy-strategy-and-energy-union/clean-energy-all-europeans">hier</a>.</p><p>Es folgen Einschätzungen, inwieweit die EU die Energie- und Klimaziele einhalten kann (Details siehe <a href="https://www.eea.europa.eu/en/analysis/publications/trends-and-projections-in-europe-2025">EEA 2025</a>).</p><p>Zielerreichung der Energie- und Klimaschutzziele</p><p>Die in Abbildung „Fortschritte der EU bei der Umsetzung der <a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klima#alphabar">Klima</a>- und Energieziele für 2020 und 2030“ dargestellten Entwicklungen werden im Hinblick auf die Zielerreichung wie folgt eingeordnet und bewertet:</p><p>Das „Fit-For-55-Paket“ soll die Erreichung dieser Ziele flankieren. Teil davon sind die Revisionen der angesprochenen Verordnungen und Regulierungen sowie zahlreicher weiterer Gesetzespakete.</p><p><a href="https://www.umweltbundesamt.de/themen/klima-energie/klimaschutz-energiepolitik-in-der-eu">Klima- und Energiepolitik in der EU</a></p><p>Mit dem Impact Assessment der EU-Kommission zu einem potentiellen Treibhausgasminderungsziel von 90 % ggü. 1990 in 2040 hat die Kommission die Grundlage für ein solches Ziel gelegt (siehe <a href="https://climate.ec.europa.eu/eu-action/climate-strategies-targets/2040-climate-target_en">EU KOM</a>). Die Aufgabe des kürzlich neu gewählten EU Kabinetts ist es nun ein solches Ziel gesetzlich zu verankern.</p><p> </p>
Vor dem Hintergrund der Diskussion über die Entnahme und Speicherung von CO 2 (Carbon Dioxide Removal) kommt die Frage auf, ob es auch Technologien gibt, um das 30-fach klimawirksamere Methan (CH 4 ) aus der Atmosphäre zu entfernen (Methane Removal). Methan wird in der Atmosphäre durch natürliche Oxidationsprozesse mit einer mittleren Verweilzeit von 9 bis 12 Jahren in CO 2 umgewandelt. In diesem Factsheet wird der Entwicklungsstand von technischen Ansätzen vorgestellt, die diesen Prozess beschleunigen und Methan bei der aktuellen atmosphärischen Konzentration von ca. 2 ppm aus der Atmosphäre entfernen sollen. Die Ansätze sind keine Alternative zu Vermeidung und Reduktion der Methanemissionen. Veröffentlicht in Fact Sheet.
This dataset comprises key carbonate chemistry parameters measured and calculated in incubation experiments under different experimental conditions. pH, water temperature, and salinity were measured with a WTW multimeter (MultiLine® Multi 3630 IDS). Total alkalinity was determined by open-cell titration with an 888 Titrando (Metrohm). Saturation state of calcite and aragonite were calculated using phreeqpython, a Python wrapper of the PhreeqC engine (Vitens 2021) with pH, water temperature, total alkalinity, and major ions as major input, and phreeqc.dat as database for the thermodynamic data (Parkhurst and Appelo 2013). As the original Elbe water was supersaturated with carbon dioxide (CO2) with respect to the atmosphere, its partial pressure of CO2 (pCO2) level decreased during the incubation period with open flasks, which caused an adjustment of calcite saturation state (ΩC) for ambient air conditions. To adapt for the impact of pCO2 variations during the experiment, saturation state of calcite and aragonite was calculated assuming an equilibrium with an atmospheric pCO2 of 415 ppm (normalized ΩC and normalized aragonite sautration state ΩA). Since ion concentrations were measured for only a small number of samples, the ion concentrations of the remaining samples were reconstructed using stoichiometry based on the initial solution composition and total alkalinity. The concentrations of conservative ions (Na+, K+, Cl-, SO42-) were assumed remain constant, while ions related to carbonate precipitation (Ca2+, Mg2+) were calculated based on changes in measured alkalinity (see Figure 5 of the associated paper). Detailed analysis and calculation procedures are described in the Method section of the associated paper.
Um die globale Erwärmung zu einzudämmen, ist der Entzug von Kohlendioxid (CDR) aus der Atmosphäre dringend in erheblichem Maßstab erforderlich. Zwei heute bereits verfügbare Negativ-Emissionstechnologien (NET) sind die beschleunigte Verwitterung von silikatischem Gestein (engl. enhanced weathering - EW) und die pyrogene Kohlenstoffabscheidung und -speicherung (engl. pyrogenic carbon capture and storage - PyCCS). Bei EW wird vulkanisches Gesteinsmehl in landwirtschaftliche Böden eingebracht, wo dieses mit CO2 reagiert und gelöstes Bicarbonat bildet, das durch weitere Reaktionen im Boden als Karbonat ausfallen kann oder über die Bodenlösung in Grund- und Oberflächengewässer gelangt und in die Ozeane transportiert wird. Bei PyCCS erfolgt der CO2-Entzug durch Photosynthese (Produktion von Biomasse). Anschließend wandelt die Pyrolyse die Biomasse und damit den pflanzlich aufgenommenen Kohlenstoff in eine stabile Form um, die, wenn sie in den Boden eingebracht wird, für Jahrhunderte stabil bleibt. Die Kombination dieser beiden NETs, d. h. pyrogene und mineralische Kohlenstoffabscheidung und -speicherung (PyMiCCS), könnte das C-Senken Potenzial pro bewirtschafteter Flächeneinheit maximieren und die positiven Effekte auf die Bodenfruchtbarkeit vereinen und verstärken. Allerdings sind systematische Untersuchungen zu den Materialeigenschaften, zur Kinetik der Verwitterung von Silikatgestein in Gegenwart von pyrogenem Kohlenstoff, zur C-Effizienz der Pyrolyse, zu möglichen Umweltrisiken und zur kombinierten Wirkung beider NETs auf das Pflanzenwachstum erforderlich. Darüber hinaus muss die CDR-Dynamik dieser kombinierten C-Senken erfasst werden, um die Bewertung von PyMiCCS gegenüber anderen NETs zu ermöglichen. Zu diesem Zweck werden sowohl Mischungen aus Pflanzenkohle und Gesteinsmehl als auch Co-Pyrolysate aus Biomasse und Gesteinsmehl experimentell im Kilogramm-Maßstab hergestellt. Diese PyMiCCS-Materialien werden in Säulen- und Gewächshausversuchen eingesetzt. Verwitterungsraten, Nährstoffauswaschung und Pflanzenwachstum werden quantifiziert. Sowohl frische als auch gealterte Pflanzenkohlen werden spektro-mikroskopisch untersucht, um den Einfluss des Gesteinsmehls auf die Speziierung des pyrogenen Kohlenstoffs zu charakterisieren. An gealterter Pflanzenkohle, die aus den Gewächshausexperimenten gewonnen wird, wird der Einfluss des Gesteinsmehls auf den Alterungsprozess untersucht, insbesondere auf die Bildung der organischen Beschichtung der Pflanzenkohle. Diese Beschichtung trägt maßgeblich zur Fähigkeit der Pflanzenkohle bei, hochmobile Pflanzennährstoffe wie Nitrat zurückzuhalten, was eine wichtige Eigenschaft von (gealterter) Pflanzenkohle ist. Basierend auf den experimentellen Daten und Literaturarbeit wird die CDR-Dynamik der PyMiCCS C-Senke beschrieben, um eine spätere Zertifizierung solcher Kohlenstoffsenken zu ermöglichen.
Für den Zeitraum ab 2030 wird die Klimaschutzarchitektur der EU einem strukturellen Evaluierungs- und Weiterentwicklungsprozess unterzogen. Insbesondere stehen in diesem Kontext auch maßgebliche Entscheidungen zur Weiterentwicklung des Emissionshandels an. Wesentlich ist u.a. die Frage einer schrittweisen oder gar vollständigen Integration des EU-ETS 1 mit dem EU-ETS 2 und in diesem Zusammenhang insbesondere der etwaigen Ausgestaltung spezifischer Regeln für die einbezogenen Sektoren (Energie; Industrie; Land-, See und Luftverkehr; Wärme). Außerdem ist der Umgang mit CCS/CCU und negativen Emissionen im Rahmen des Emissionshandels eines der wesentlichen Handlungsfelder, für das ab 2030 regulatorische Leitplanken zu erwarten sind. Weiterhin stellt sich die Frage nach der Einbeziehung weiterer Sektoren in den Emissionshandel (u.a. der Landwirtschaft). Das Projekt soll UBA und BMWK in diesem Prozess mit wirtschaftswissenschaftlichen Analysen unterstützen.
Die anthropogenen Kohlendioxidemissionen (CO2) sind für den größten Teil der jüngsten globalen Oberflächenerwärmung der Erde um etwa 1°C gegenüber dem vorindustriellen Niveau verantwortlich. Das Land und die Ozeane nehmen derzeit etwa die Hälfte unserer Emissionen durch komplexe Prozesse des Kohlenstoffkreislaufs auf. Der Klimaantrieb durch anthropogene CO2-Emissionen hört erst auf, wenn ein Gleichgewicht zwischen CO2-Quellen und -Senken erreicht ist. Da es nicht realisierbar ist, alle CO2-Emissionen bis Mitte des 21. Jahrhunderts zu eliminieren, bestehen alle plausiblen zukünftigen Emissionsszenarien, die auf eine mit dem Pariser Abkommen übereinstimmende Temperaturstabilisierung anstreben, aus einem Portfolio menschlicher Aktivitäten, die Emissionssenkungen mit Maßnahmen zur so genannten Kohlendioxidentnahme (CDR) kombinieren, die die verbleibenden positiven Emissionen kompensieren sollen.Allerdings werden CDR-Maßnahmen wie die meisten anderen menschlichen Aktivitäten durch Emissionen von andere Treibhausgase als CO2 (z.B. Methan oder Distickstoffoxid), Aerosolen oder durch Landnutzungsänderungen zusätzliche Klimaveränderungen verursachen. Gegenwärtig machen diese weiteren Treibhausgase mehr als 40% der globalen Oberflächenerwärmung aus, während Aerosole einen Teil der Erwärmung ausgleichen. Darüber hinaus beeinflussen diese zusätzlichen Klimaeinflüsse den Kohlenstoffkreislauf, der wiederum Einfluss auf die atmosphärische CO2-Konzentration und damit auf die Oberflächentemperatur nimmt (Abb. 1). Diese Wechselwirkung beeinflusst die Menge der CO2-Entnahme, die durch CDR-Maßnahmen erforderlich ist, um eine Temperaturstabilisierung zu erreichen.Es ist daher wichtig, die vollständige Reaktion des Klimas auf spezifische menschliche Aktivitäten, einschließlich CDR-Maßnahmen, zu erfassen, um gut informiert Maßnahmen zur Temperaturstabilisierung ein zu leiten. Insbesondere die Untersuchung der Reaktion des Erdsystems auf realistische Portfolios künftiger anthropogener Aktivitäten erfordert die Einbeziehung aller damit verbundenen Klimafaktoren - CO2, andere Treibhausgase als CO2, Aerosole und Landnutzungsänderungen - um bestmögliche Einschätzungen der möglichen Wege zur Temperaturstabilisierung zu erhalten.
Es ist bekannt, dass Vulkanausbrüche das Klima auf verschiedene Weise beeinflussen. Diese reichen von kurzfristigen Auswirkungen wie Sulfat-Injektionen, die die einfallende Sonnenstrahlung reduzieren und zu Abkühlung führen, bis zu mittelfristigen Auswirkungen wie Erwärmung durch Kohlendioxid-Entgasung. Langfristig können Auswirkungen wie eine verstärkte Verwitterung eingelagerter Basalte zu einer Entfernung von Kohlendioxid und damit Abkühlung führen. Lange Perioden intensiven Vulkanismus, die als Large Igneous Provinces (LIPs) bekannt sind, können besonders tiefgreifende Auswirkungen auf das Klima haben, wobei mehrere LIPs entweder mit der globalen Erwärmung oder Abkühlung in der Erdgeschichte sowie mit Massenaussterben in Verbindung gebracht werden. Das Paläozän-Eozän-Temperaturemaximum (PETM), eine 200.000 Jahre lange Periode intensiver globaler Erwärmung vor ca. 56 Millionen Jahren, ereignete sich zur gleichen Zeit wie die Entstehung eines LIP, der North Atlantic Igneous Province (NAIP). Die NAIP-Entstehung wurde als Ursache für das PETM vorgeschlagen, da während des Vulkanismus Kohlendioxid und Methan freigesetzt werden, welches zu einer schnellen Erwärmung führt. Es wurde auch vermutet, dass die Ablagerung von Vulkanasche während des NAIP das Klima abgekühlt hat. Als solches ist das PETM eine ideale Periode, um die Auswirkungen des Vulkanismus auf das Erdsystem zu untersuchen. Expedition 396 des International Ocean Discovery Program (IODP) hat erfolgreich eine Reihe von langen Sedimentsequenzen aus dem PETM-Zeitalter am norwegischen Rand geborgen. In diesem Projekt beabsichtige ich, detaillierte deskriptive, geochemische und modellbasierte Untersuchungen mit den Sedimenten der Expedition 396 durchzuführen, um die Rolle des NAIP-Vulkanismus im PETM zu dokumentieren. Erstens wird die Intensität des Vulkanismus durch neue Schätzungen der Kohlendioxid-, Methan- und Sulfatemissionen bewertet, um die Rolle der Gase auf den Klimawandel zu bestimmen. Durch detaillierte geochemische Untersuchungen werden die Auswirkungen der Ascheablagerung auf den Kohlenstoffkreislauf bewertet mit Schwerpunkt auf der Rolle der Asche als Nährstofflieferant für Phytoplankton liegt. Die potenziellen Auswirkungen der Ascheablagerung auf die Speicherung von Kohlenstoff im Sediment werden ebenfalls geochemisch und isotopisch untersucht. Abschließend werden die Ergebnisse unter Verwendung von Erdsystemmodelle kombiniert, um die genaue Rolle des Vulkanismus im PETM zu bestimmen. Die erwarteten Ergebnisse werden uns neue Erkenntnisse über die Rolle der LIP-Entstehung und der Ablagerung von Vulkanasche beim Klimawandel geben. Sedimente von Expedition 396 bieten eine einzigartige Gelegenheit, den geochemischen Abdruck des Vulkanismus hochauflösend zu untersuchen. Die Ergebnisse dieser Arbeit werden zu einer erheblichen Verbesserung unseres Verständnisses des PETM führen.
| Origin | Count |
|---|---|
| Bund | 125 |
| Land | 1 |
| Wissenschaft | 26 |
| Type | Count |
|---|---|
| Chemische Verbindung | 2 |
| Daten und Messstellen | 25 |
| Förderprogramm | 77 |
| Gesetzestext | 2 |
| Text | 26 |
| Umweltprüfung | 1 |
| unbekannt | 21 |
| License | Count |
|---|---|
| geschlossen | 42 |
| offen | 105 |
| unbekannt | 5 |
| Language | Count |
|---|---|
| Deutsch | 99 |
| Englisch | 73 |
| Resource type | Count |
|---|---|
| Archiv | 8 |
| Datei | 32 |
| Dokument | 21 |
| Keine | 90 |
| Webseite | 24 |
| Topic | Count |
|---|---|
| Boden | 119 |
| Lebewesen und Lebensräume | 121 |
| Luft | 108 |
| Mensch und Umwelt | 151 |
| Wasser | 106 |
| Weitere | 152 |