Die verstärkte Umwandlung von Biomasse in hochwertige Energieträger und hier vor allem in Wasserstoff wird in den nächsten Jahren eine entscheidende Rolle in der Erreichung der nationalen Ziele zur Emissionsreduktion spielen. Durch die Verwendung von biogenen Rest- und Abfallstoffen zur Produktion von Biogas wird bereits ein wichtiger Beitrag geleistet. Das resultierende Biogas wird durch seine Verbrennung jedoch fast ausschließlich für die Erzeugung von Strom und Wärme verwendet, wodurch somit erneut CO2 freigesetzt wird. Ein entscheidender Beitrag für die Reduktion der Treibhausgasemission kann mithilfe dieses Vorgehens folglich nicht geleistet werden. Aus diesem Grund ist das Ziel des Projekts die Entwicklung eines energieautarken Plasma-Pyrolyse Moduls zur Erzeugung von grünem Wasserstoff aus Biomasse mit gleichzeitiger CO2-Entnahme in Form von immobilisiertem Kohlenstoff. Hierfür wird innerhalb der Projektarbeiten eine innovative Verfahrenskette aus Biogasaufbereitung, Umsetzung des Biomethans zu Wasserstoff über einen Mikrowellen-Pyrolysereaktor und die Reinigung des Wasserstoffs entwickelt. Zusätzlich wird die Stromerzeugung für den Spaltungsprozess über ein angegliedertes BHKW entwickelt und dieses Gesamtverfahren zu einer Pilotanlage zusammenführt. Durch die Kopplung des Reaktors an Biogasanlagen wird erstmals die Möglichkeit einer dezentralen Wasserstoff-Produktion mit negativem CO2-Fußabdruck geschaffen und praxisnah demonstriert.
Global efforts to reduce emissions remain inadequate which resulted in an increasing need for negative emission technologies that actively remove and permanently sequester CO₂ from the atmosphere.We highlight the rapid growth of commercial mCDR start-ups, despite limited research and potential irreversible harm to marine ecosystems. These activities appear uncoordinated, lack oversight, and show no evidence of compliance with international frameworks such as the London Protocol. Our study underscores the urgent need for its ratification.
Enhanced benthic weathering has been proposed to serve as a efficient negative emission strategy. The precise weatherig behaviour of calcite and dunite was investigated in leng-term experiments in benthocosms. These experiments were conducted between Sept. 2022 and Sept. 2023 ashore at the Kiel Fjord. The latter are large plastic containers (~0.8 m²) that are partly filled with sediments, with constant flow-through of Baltic Sea bottom water. The sediments, obtained from Boknis Eck in the Eckernförde Bay in March 2022, were amended with calcite and dunite in triplicate (22 mol/m² equivalent) . Three additional benthocosms were left unamended to serve as controls. The used materials were obtained from Sibelco (dunite) and from the german Lime Stone Association (calcite). Samples were obtained using benthic chambers (chamber volume of 400 ml) that were placed on the sediment for three hours. Samples were taken at the beginning (_in) and at the end of the deployment (_out). All samples were filtered through a 0.2 µm cellulose membrane filter and refrigerated in 25 ml ZinsserTM scintillation vials. Acidified sub-samples (30 μl suprapure HNO3- + 3 ml sample) were prepared for analyses of major and trace elements (Si, Na, K, Li, B, Mg, Ca, Sr, Mn, Ni and Fe) by inductively coupled plasma optical emission spectroscopy (ICP-OES, Varian 720-ES).