s/carbon dioxid removal/carbon dioxide removal/gi
<p>Pflanzenkohle möglichst umweltfreundlich kaufen oder herstellen</p><p>Was Sie bei Pflanzenkohle beachten sollten</p><p><ul><li>Kaufen Sie nur zertifizierte Pflanzenkohle (EBC-Siegel). Dies garantiert, dass Schadstoffgehalte geprüft und Grenzwerte eingehalten werden.</li><li>Wenn Sie selbst Pflanzenkohle herstellen wollen, nutzen Sie dafür geeignete Behälter und halten Sie sich streng an die Herstellervorgaben, um gesundheitsschädliche Emissionen gering zu halten.</li><li>Geben Sie Gehölzschnitt in die öffentliche Grünschnittabfuhr und legen Sie nach Möglichkeit Totholzhecken in ihrem Garten an.</li></ul></p><p>Gewusst wie</p><p>Pflanzenkohle entsteht durch die unvollständige Verbrennung ("Verkohlung" bzw. "Pyrolyse") von Pflanzenmaterial wie z.B. Gehölzschnitt. Durch ihre poröse Struktur und ihre große innere Oberfläche kann sie Wasser und Nährstoffe speichern und Schadstoffe binden, d.h. die Wasser- und Nährstoffspeicherkapazität des Bodens wird durch Einbringung von Pflanzenkohle erhöht. Im Gegensatz zu Kompost wird der Kohlenstoff von Pflanzenkohle beim Einbringen in den Boden kaum zu CO2 umgewandelt. Dadurch kann der Einsatz von Pflanzenkohle unter bestimmten Bedingungen zur CO2-Bindung beitragen und die Humusbildung unterstützen. Allerdings enthält Pflanzenkohle selbst kaum pflanzenverfügbare Nährstoffe. Sie muss in einem weiteren Schritt mit Nährstoffen beladen werden.</p><p>Bei der <strong>Herstellung von Pflanzenkohle</strong> können Luftschadstoffe wie Feinstaub und Kohlenmonoxid, aber auch klimaschädliches Methan entstehen. Dies kann durch einen sachgemäßen Umgang weitestgehend reduziert werden. Daher ist es wichtig, beim Erwerb von Pflanzenkohle auf zertifizierte Produkte zu achten oder sich bei der eigenen Herstellung streng an die Herstellervorgaben zu halten. Denn bei unsachgemäßer Herstellung können neben erhöhten Emissionen auch Grenzwerte für Schadstoffe in der Pflanzenkohle überschritten werden, die sich dann permanent im Boden befinden.</p><p><p><strong>Siegel beachten:</strong> Kaufen Sie für die Anwendung im Garten nur Pflanzenkohle, die mit dem EBC-Siegel zertifiziert ist. Dieser Standard garantiert, dass die Pflanzenkohle bei der Herstellung und bezüglich Schadstoffgehalt allgemeinen Umweltanforderungen entspricht. Die Herstellung in modernen Pyrolyseanlagen hat gegenüber handwerklichen Herstellungsmethoden den Vorteil, dass der Pyrolyseprozess technisch kontrolliert und gesteuert werden kann. Zudem können auch die "Nebenprodukte" (Pyrolyseöle, Pyrolysegase und Abwärme) genutzt werden. Dadurch haben moderne Pyrolyseanlagen einen höheren Wirkungsgrad und die Schadstoffgehalte in der Abluft und in der Pflanzenkohle liegen unter den Grenzwerten.</p></p><p><strong>Siegel beachten:</strong> Kaufen Sie für die Anwendung im Garten nur Pflanzenkohle, die mit dem EBC-Siegel zertifiziert ist. Dieser Standard garantiert, dass die Pflanzenkohle bei der Herstellung und bezüglich Schadstoffgehalt allgemeinen Umweltanforderungen entspricht. Die Herstellung in modernen Pyrolyseanlagen hat gegenüber handwerklichen Herstellungsmethoden den Vorteil, dass der Pyrolyseprozess technisch kontrolliert und gesteuert werden kann. Zudem können auch die "Nebenprodukte" (Pyrolyseöle, Pyrolysegase und Abwärme) genutzt werden. Dadurch haben moderne Pyrolyseanlagen einen höheren Wirkungsgrad und die Schadstoffgehalte in der Abluft und in der Pflanzenkohle liegen unter den Grenzwerten.</p><p><strong>Dauerhafte CO2-Bindung durch Zusatzzertifikate:</strong> Pflanzenkohle kann – z.B. kleinteilig in den Boden ausgebracht – dauerhaft CO2 speichern. Im Rahmen der freiwilligen CO2-Kompensation können entsprechende Projekte unterstützt werden. Hierfür gibt es Plattformen, die nicht nur die Qualität der Pflanzenkohle (EBC-Siegel), sondern auch die nicht-rückholbare Ausbringung zertifizieren. Das ist für den Klimaschutznutzen wichtig, da Pflanzenkohle prinzipiell auch verbrannt werden kann, so dass der Kohlenstoff wieder vollständig als CO2 entweichen würde.</p><p>Bei eigener Herstellung <strong>an Herstellerempfehlungen halten</strong>: Wenn Sie Pflanzenkohle selbst herstellen möchten, sollten Sie sich vorab intensiv mit dem Herstellungsprozess und der richtigen Praxis vertraut machen. Das Ithaka Institut in der Schweiz bietet z. B. entsprechende Hintergrundinformationen und eine <a href="https://www.ithaka-institut.org/de/ct/109-Bedienungsanleitung%20">Bedienungsanleitung</a> an. Am besten lassen Sie sich den Herstellungsprozess von erfahrenen Personen zeigen. So schaffen Sie die Voraussetzungen, dass Sie nicht nur eine möglichst große Ausbeute, sondern auch eine Pflanzenkohle mit guter Qualität und geringer Schadstoffbelastung erhalten. Denn auch wenn das Grundprinzip einfach ist und seit Jahrtausenden praktiziert wird, kann man aus Umweltsicht einiges falsch machen. Statt eines korrekt ablaufenden Verkohlungsprozesses kann ein qualmendes Lagerfeuer mit unnötiger Schadstoffbelastung das Resultat sein.</p><p><strong>Folgende Punkte sind für eine gute Verkohlung besonders entscheidend:</strong></p><p>Aufgrund der hohen Anschaffungskosten eignet sich die handwerkliche Herstellung von Pflanzenkohle am ehesten für Gartengemeinschaften wie z. B. Kleingartenvereine. Verschiedene Vereine oder Verbände bieten Seminare oder Informationen hierzu an.</p><p><strong>Abstand halten:</strong> Bedenken Sie bezüglich der Rauchentwicklung, dass Sie genügend Abstand zu Lüftungsöffnungen (Fenster und Türen), zu Gartennachbarn sowie zu brennbaren Objekten (Bäume, Büsche, Häuser, Schuppen) einhalten. Wie bei jedem offenen Feuer sollte mindestens eine Person das Feuer immer im Blick haben, um eingreifen zu können, falls etwas passiert.</p><p><strong>Entsorgen Sie Grünschnitt fachgerecht:</strong> Kleinere Mengen an Grünschnitt können Sie fachgerecht z.B. über die Biotonne entsorgen oder selber kompostieren. Durch die Untermischung von holzigem Material wird die Durchlüftung und damit der Rotteprozess des Komposts verbessert. Für größere Mengen Grünschnitt bieten Kommunen gesonderte Entsorgungsmöglichkeiten an. Wenn Sie genügend Platz in Ihrem Garten haben, können Sie eine Totholz(h)ecke anlegen. Sie schaffen damit einen wichtigen Lebens- und Rückzugsraum u.a. für Kleingetier wie Kröten und Eidechsen sowie für viele Insekten.</p><p><strong>Was Sie noch tun können: </strong></p><p>Hintergrund</p><p><strong>Umweltsituation:</strong> Pflanzenkohle stellt eine Option zur Entnahme von CO2 aus der <a href="https://www.umweltbundesamt.de/service/glossar/a?tag=Atmosphre#alphabar">Atmosphäre</a> ("Removal") und zur langfristigen Speicherung von Kohlenstoff dar, wenn sichergestellt werden kann, dass sie nicht verbrannt wird. Die Pflanzenkohle wird durch Pyrolyse, also Verkohlung von Biomasse (z.B. Holz) hergestellt.</p><p>Dabei entstehen – neben der Pflanzenkohle – auch unerwünschte Abgase und Schadstoffe wie Kohlenmonoxid, Feinstaub und Kohlenwasserstoffe. Dem Nutzen für das Klima stehen demnach Risiken wie die Belastung der Böden, der Luft und des Grundwassers mit Schadstoffen gegenüber. Vor allem durch Fehlbedienung kann es zu einer ungewollten Qualm-Entwicklung und zu unnötiger Schadstoffbelastung der Pflanzenkohle mit Polyzyklisch Aromatischen Kohlenwasserstoffen (<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PAK#alphabar">PAK</a>) kommen. Daher ist es aus Umweltsicht besonders wichtig, hohe Anforderungen bezüglich des Ausgangsmaterials, der Herstellung als auch in Bezug auf die Ausbringung z. B. in Böden zu legen. Im European Biochar Certificate (EBC) werden Anforderungen an das Ausgangsmaterial als auch Grenzwerte für einzelne Schadstoffe in der Pflanzenkohle sowie der Kontrollumfang an die herstellenden Anlagen festgelegt.</p><p><strong>Gesetzeslage: </strong>Pflanzenkohle ist in der EU als Bodenhilfsstoff zugelassen. Die detaillierten Voraussetzungen und Anforderungen sind in der EU-Düngemittelverordnung (<a href="https://eur-lex.europa.eu/legal-content/DE/TXT/HTML/?uri=CELEX:02019R1009-20230316#tocId413%20">EU-Verordnung 2019/1009</a>) geregelt.</p>
This dataset comprises key carbonate chemistry parameters measured and calculated in incubation experiments under different experimental conditions. pH, water temperature, and salinity were measured with a WTW multimeter (MultiLine® Multi 3630 IDS). Total alkalinity was determined by open-cell titration with an 888 Titrando (Metrohm). Saturation state of calcite and aragonite were calculated using phreeqpython, a Python wrapper of the PhreeqC engine (Vitens 2021) with pH, water temperature, total alkalinity, and major ions as major input, and phreeqc.dat as database for the thermodynamic data (Parkhurst and Appelo 2013). As the original Elbe water was supersaturated with carbon dioxide (CO2) with respect to the atmosphere, its partial pressure of CO2 (pCO2) level decreased during the incubation period with open flasks, which caused an adjustment of calcite saturation state (ΩC) for ambient air conditions. To adapt for the impact of pCO2 variations during the experiment, saturation state of calcite and aragonite was calculated assuming an equilibrium with an atmospheric pCO2 of 415 ppm (normalized ΩC and normalized aragonite sautration state ΩA). Since ion concentrations were measured for only a small number of samples, the ion concentrations of the remaining samples were reconstructed using stoichiometry based on the initial solution composition and total alkalinity. The concentrations of conservative ions (Na+, K+, Cl-, SO42-) were assumed remain constant, while ions related to carbonate precipitation (Ca2+, Mg2+) were calculated based on changes in measured alkalinity (see Figure 5 of the associated paper). Detailed analysis and calculation procedures are described in the Method section of the associated paper.
<p>Wälder, Böden und ihre Vegetation speichern Kohlenstoff. Bei intensiver Nutzung wird Kohlendioxid freigesetzt. Maßnahmen, die die Freisetzung verhindern sollen, richten sich vor allem auf eine nachhaltige Bewirtschaftung der Wälder, den Erhalt von Dauergrünland, bodenschonende Bearbeitungsmethoden im Ackerbau, eine Reduzierung der Entwässerung und Wiedervernässung von Moorböden.</p><p>Bedeutung von Landnutzung und Forstwirtschaft</p><p>Der Kohlenstoffzyklus stellt im <a href="https://www.umweltbundesamt.de/themen/klima-energie/klimawandel/klima-treibhauseffekt">komplexen Klimasystem</a> unserer Erde ein regulierendes Element dar. Durch die Vegetation wird Kohlendioxid (CO2) aus der Luft mittels <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Photosynthese#alphabar">Photosynthese</a> gebunden und durch natürlichen mikrobiellen Abbau freigesetzt. Zu den größten globalen Kohlenstoffspeichern gehören Meere, Böden und Waldökosysteme. Wälder bedecken weltweit ca. 31 % der Landoberfläche (siehe <a href="https://www.fao.org/documents/card/en/c/ca8642en">FAO Report 2020</a>). Bedingt durch einen höheren Biomassezuwachs wirken insbesondere <a href="https://www.umweltbundesamt.de/service/glossar/b?tag=boreale#alphabar">boreale</a> Wälder in der nördlichen Hemisphäre als Kohlendioxid-Senken. Nach § 1.8 des <a href="https://www.umweltbundesamt.de/themen/klima-energie/internationale-klimapolitik/klimarahmenkonvention-der-vereinten-nationen-unfccc">Klimarahmenabkommens der Vereinten Nationen</a> werden Senken als Prozesse, Aktivitäten oder Mechanismen definiert, die Treibhausgase (THG), <a href="https://www.umweltbundesamt.de/service/glossar/a?tag=Aerosole#alphabar">Aerosole</a> oder Vorläufersubstanzen von Treibhausgasen aus der <a href="https://www.umweltbundesamt.de/service/glossar/a?tag=Atmosphre#alphabar">Atmosphäre</a> entfernen. Im Boden wird Kohlenstoff langfristig durch sog. Humifizierungsprozesse eingebaut. Global ist etwa fünfmal mehr Kohlenstoff im Boden gespeichert als in der Vegetation (siehe <a href="https://www.ipcc.ch/report/land-use-land-use-change-and-forestry/">IPCC Special Report on Land Use, Land Use Change and Forestry</a>). Boden kann daher als wichtigster Kohlenstoffspeicher betrachtet werden. Natürliche Mineralisierungsprozesse führen im Boden zum Abbau der organischen Bodensubstanz und zur Freisetzung der Treibhausgase CO2, Methan und Lachgas. Der Aufbau und Abbau organischer Substanz steht in einem dynamischen Gleichgewicht.</p><p>Die voran genannten Prozesse werden in der Treibhausgasberichterstattung unter der Kategorie/Sektor „Landnutzung, <a href="https://www.umweltbundesamt.de/service/glossar/l?tag=Landnutzungsnderung#alphabar">Landnutzungsänderung</a> und Forstwirtschaft“ (kurz <a href="https://www.umweltbundesamt.de/service/glossar/l?tag=LULUCF#alphabar">LULUCF</a>) bilanziert.</p><p>Modellierung von Treibhausgas-Emissionen aus Landnutzungsänderung </p><p>Jährliche Veränderungen des nationalen Kohlenstoffhaushalts, die durch Änderungen der <a href="https://www.umweltbundesamt.de/service/glossar/l?tag=Landnutzung#alphabar">Landnutzung</a> entstehen, werden über ein Gleichgewichtsmodell berechnet, welches für Deutschland auf einem Stichprobensystem mit rund 36 Millionen Stichprobenpunkten basiert. Für die Kartenerstellung der Landnutzung und -bedeckung werden zunehmend satellitengestützte Daten eingesetzt, um so die realen Gegebenheiten genauer abbilden zu können. Die nationalen Flächen werden in die Kategorien Wald, Acker- sowie Grünland, Feuchtgebiete, Siedlungen und Flächen anderer Nutzung unterteilt (siehe auch <a href="https://www.umweltbundesamt.de/daten/flaeche-boden-land-oekosysteme/flaeche/struktur-der-flaechennutzung">Struktur der Flächennutzung</a>). Die Bilanzierung (Netto) erfolgt über die Summe der jeweiligen Zu- bzw. Abnahmen der Kohlenstoffpools (ober- und unterirdische Biomasse, Totholz, Streu, organische und mineralische Böden und Holzprodukte) in den verschiedenen Landnutzungskategorien.</p><p>Allgemeine Emissionsentwicklung</p><p>Der Verlauf der Nettoemissionen von 1990 bis 2023 zeigt, dass der <a href="https://www.umweltbundesamt.de/service/glossar/l?tag=LULUCF#alphabar">LULUCF</a>-Sektor in den meisten Jahren als Nettoquelle für Treibhausgase fungierte. Hauptquellen sind die Emissionen aus den landwirtschaftlich genutzten Flächen der Landnutzungskategorien Acker- und Grünland. Diese beiden Kategorien weisen über die Jahre anhaltend hohe Emissionen aus entwässerten organischen Böden auf, sowie netto, zu einem geringeren Teil, aus den Mineralböden. Die Landnutzungskategorie Feuchtgebiete trägt hauptsächlich durch den industriellen Torfabbau und die Methanemissionen aus künstlichen Gewässern nicht unerheblich zur Gesamtsumme der THG-Emissionen bei. Die C-Pools des Waldes spielen eine ambivalente Rolle im Zeitverlauf. Mit ihren meist deutlich negativen Emissionen wirken die Pools tote organische Substanz (<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Totholz#alphabar">Totholz</a> und Streu), genau wie die Holzprodukte, durch Zunahme dieser Kohlenstoffspeicher der Quellfunktion des Pools <a href="https://www.umweltbundesamt.de/service/glossar/b?tag=Biomasse#alphabar">Biomasse</a> entgegen. Nichtsdestotrotz wird der qualitative Verlauf der LULUCF-Emissionskurve im Wesentlichen durch den Pool Biomasse, insbesondere der Landnutzungskategorie Wald, geprägt. Gegenüber dem Basisjahr haben die Netto-Emissionen aus dem LULUCF-Sektor in 2023 um 90,6% zugenommen (Netto THG-Emissionen in 1990: rund +36 Mio. t CO2 Äquivalente und in 2023: + 69 Mio. t CO2 Äquivalente).</p><p>Im Rahmen des novellierten <a href="https://www.bmuv.de/gesetz/bundes-klimaschutzgesetz">Klimaschutzgesetzes (KSG)</a> wird eine Schätzung für das Vorjahr 2024 vorgelegt. Diese liefert für LULUCF nur Gesamtemissionen, deren Werte als unsicher einzustufen sind. Die Werte liegen bei 51,3 Mio. t CO2 Äquivalenten. Aus diesem Grunde werden in den folgenden Abschnitten nur die Daten der Berichterstattung 2025 für das Jahr 2023 betrachtet.</p><p>Veränderung des Waldbestands </p><p>Die Emissionen sowie die Speicherung von Kohlenstoff bzw. CO2 für die Kategorie Wald werden auf Grundlage von <a href="https://www.bundeswaldinventur.de/">Bundeswaldinventuren</a> berechnet. Bei der Einbindung von Kohlenstoff spielt insbesondere der Wald eine entscheidende Rolle als potentielle Netto-Kohlenstoffsenke. In gesunden, sich im Aufwuchs befindlichen Waldbeständen können jährlich große Mengen an CO2 aus der <a href="https://www.umweltbundesamt.de/service/glossar/a?tag=Atmosphre#alphabar">Atmosphäre</a> eingebunden werden. Im Zeitraum 1991 bis 2017 waren es im Durchschnitt rund 54 Mio. t Netto-CO2-Einbindung jährlich. In den Jahren 1990 und 2007 trafen auf Deutschland Orkane (2007 war es der Sturm Kyrill), die zu erheblichem Holzbruch mit einem daraus resultierenden hohen Sturmholzaufkommen in den Folgejahren führten. Die dramatische Abnahme der Forstbiomasse im Jahr 2018 und den Folgejahren ist auf die Waldschäden infolge der großen Trockenheit in diesem und den folgenden Berichtsjahren zurückzuführen. Diese erheblichen Änderungen in der Waldbiomasse wurden während der jüngsten <a href="https://www.bundeswaldinventur.de/fileadmin/Projekte/2024/bundeswaldinventur/Downloads/BWI-2022_Broschuere_bf-neu_01.pdf">Bundeswaldinventur (2022)</a> erfasst und durch die quantifizierte Auswertung der Erhebung verifiziert (siehe dazu <a href="https://www.umweltbundesamt.de/publikationen/berichterstattung-unter-der-klimarahmenkonvention-9">NID</a>). Bis in das Jahr 2017 waren in der Waldkategorie die Pools <a href="https://www.umweltbundesamt.de/service/glossar/b?tag=Biomasse#alphabar">Biomasse</a>, mineralische Böden und <a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Totholz#alphabar">Totholz</a> ausschlaggebende Kohlenstoffsenken. Zu den Emissionsquellen im Wald zählten Streu, Drainage organischer Böden, Mineralisierung und Waldbrände. Ab 2018 wurde auch der Pool Biomasse durch die absterbenden Bäume zur deutlichen CO2-Quelle.</p><p>In 1990 wurden rund 25,4 Mio. t CO2-Äquivalente im Wald an CO2-Emissionen gespeichert. Im Jahr 2023 wurden dagegen 20,9 Mio. t CO2-Äquivalente freigesetzt (siehe Tab. „Emissionen und Senken im Bereich <a href="https://www.umweltbundesamt.de/service/glossar/l?tag=Landnutzung#alphabar">Landnutzung</a>, <a href="https://www.umweltbundesamt.de/service/glossar/l?tag=Landnutzungsnderung#alphabar">Landnutzungsänderung</a> und Forstwirtschaft“).</p><p>Treibhausgas-Emissionen aus Waldbränden</p><p>Bei Waldbränden werden neben CO2 auch sonstige Treibhausgase bzw. Vorläufersubstanzen (CO, CH4, N2O, NOx und <a href="https://www.umweltbundesamt.de/service/glossar/n?tag=NMVOC#alphabar">NMVOC</a>) freigesetzt. Aufgrund der klimatischen Lage Deutschlands und der Maßnahmen zur Vorbeugung von Waldbränden sind Waldbrände ein eher seltenes Ereignis, was durch die in der <a href="https://www.ble.de/DE/BZL/Daten-Berichte/Wald/wald.html">Waldbrandstatistik</a> erfassten Waldbrandflächen bestätigt wird. Allerdings war das Jahr 2023 bezüglich der betroffenen Waldfläche mit 1.240 Hektar, ein deutlich überdurchschnittliches Jahr. Das langjährige Mittel der Jahre 1993 bis 2022 liegt bei 710 Hektar betroffener Waldfläche. Auch die durchschnittliche Waldbrandfläche von 1,2 Hektar je Waldbrand war in 2023 überdurchschnittlich und stellt den fünfthöchsten Wert seit Beginn der Waldbrandstatistik dar (siehe mehr zu <a href="https://www.umweltbundesamt.de/daten/land-forstwirtschaft/waldbraende">Waldbränden</a>). Durch die Brände wurden ca. 0,11 Mio. t CO2-Äquivalente an Treibhausgasen freigesetzt. Werden nur die CO2-Emissionen aus Waldbrand (0,95 Mio. t CO2-Äquivalente) betrachtet, machen diese im Verhältnis zu den CO2-Emissionen des deutschen Gesamtinventars nur einen verschwindend kleinen Bruchteil aus.</p><p>Veränderungen bei Ackerland und Grünland</p><p>Mit den Kategorien Ackerland und Grünland werden die Emissionen sowie die Einbindung von CO2 aus mineralischen und organischen Böden, der ober- und unterirdischen <a href="https://www.umweltbundesamt.de/service/glossar/b?tag=Biomasse#alphabar">Biomasse</a> sowie direkte und indirekte Lachgasemissionen durch Humusverluste aus Mineralböden nach <a href="https://www.umweltbundesamt.de/service/glossar/l?tag=Landnutzungsnderung#alphabar">Landnutzungsänderung</a> sowie Methanemissionen aus organischen Böden und Entwässerungsgräben berücksichtigt. Direkte Lachgas-Emissionen aus organischen Böden werden im Bereich <a href="https://www.umweltbundesamt.de/daten/land-forstwirtschaft/beitrag-der-landwirtschaft-zu-den-treibhausgas#klimagase-aus-landwirtschaftlich-genutzten-boden">Landwirtschaft unter landwirtschaftliche Böden</a> berichtet.</p><p>Für die Landnutzungskategorie Ackerland betrugen im Jahr 2023 die THG-Gesamtemissionen 20,1 Mio. t CO2 Äquivalente und fielen damit um 0,8 Mio. t CO2 Äquivalente ≙ 4 % geringer im Vergleich zum Basisjahr 1990 aus (siehe Tab. „Emissionen und Senken im Bereich <a href="https://www.umweltbundesamt.de/service/glossar/l?tag=Landnutzung#alphabar">Landnutzung</a>, Landnutzungsänderung und Forstwirtschaft“). Hauptquellen sind die ackerbaulich genutzten organische Böden (47 %) und die Mineralböden (45 %), letztere hauptsächlich infolge des Grünlandumbruchs. Die <a href="https://www.umweltbundesamt.de/service/glossar/a?tag=anthropogen#alphabar">anthropogen</a> bedingte Netto-Freisetzung von CO2 aus der Biomasse (7 %) ist im Ackerlandsektor gering. Dominierendes <a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Treibhausgas#alphabar">Treibhausgas</a> in der Kategorie Ackerland ist CO2 (2023: 19,2 Mio. t CO2 Äquivalente, rund 96 %).</p><p>Die Landnutzungskategorie Grünland wird in Grünland im engeren Sinne, in Gehölze und weiter in Hecken unterteilt. Die Unterkategorien unterscheiden sich bezüglich ihrer Emissionen sowohl qualitativ als auch quantitativ deutlich voneinander. Die Unterkategorie Grünland im engeren Sinne (dazu gehören z.B. Wiesen, Weiden, Mähweiden etc.) ist eine CO2-Quelle, welche durch die Emissionen aus organischen Böden dominiert wird. Für die Landnutzungskategorie Grünland wurden 2023 Netto-THG-Emissionen insgesamt in Höhe von 23,7 Mio. t CO2 Äquivalenten errechnet. Diese fallen um rund 8,6 Mio. t CO2 Äquivalente ≙ 27% niedriger als im Basisjahr 1990 aus. Dieser abnehmende Trend wird durch die Pools Biomasse und Mineralböden beeinflusst. Mineralböden stellen eine anhaltende Kohlenstoffsenke dar. Die Senkenleistung der Mineralböden der Unterkategorie Grünland im engeren Sinne beträgt in 2023 -4,9 Mio. t CO2.</p><p>Moore (organische Böden)</p><p>Drainierte Moorböden (d.h. entwässerte organische Böden) gehören zu den Hotspots für Treibhausgase und kommen in den meisten Landnutzungskategorien vor. Im Torf von Moorböden ist besonders viel Kohlenstoff gespeichert, welches als Kohlenstoffdioxid freigesetzt wird, wenn diese Torfschichten austrocken. Bei höheren Wasserständen werden mehr Methan-Emissionen freigesetzt. Zusätzlich entstehen Lachgas-Emissionen. Im Jahr 2023 wurden aus Moorböden um die 50,8 Mio. t CO2 Äquivalente an THG-Emissionen (CO2-Emissionen: 44,5 Mio. t CO2 Äquivalente, Methan-Emissionen: 2,6 Mio. t CO2 Äquivalente, Lachgas-Emissionen: 0,4 Mio. t CO2 Äquivalente) freigesetzt. Das entspricht in etwa 7 % der gesamten Treibhausgasemissionen in Deutschland im Jahr 2023. (siehe Abb. „Treibhausgas-Emissionen aus Mooren“). Die Menge an freigesetzten CO2-Emissionen aus Mooren ist somit höher als die gesamten CO2-Emissionen des <a href="https://www.umweltbundesamt.de/daten/klima/treibhausgas-emissionen-in-deutschland#emissionsentwicklung">Industriesektors</a> (47,2 Mio. t CO2).</p><p>Landwirtschaftlich genutzte Moorböden</p><p>Drainierte Moorböden werden überwiegend landwirtschaftlich genutzt. Die dabei entstehenden Emissionen aus organischen Böden werden deshalb in den Landnutzungskategorien Ackerland und Grünland im engeren Sinne (d.h. Wiesen, Weiden, Mähweiden) erfasst. Hinzu kommen die Lachgasemissionen aus den organischen Böden (Histosole) des Sektors Landwirtschaft. Insgesamt wurde für diese Bereiche eine Emissionsmenge von rund 42,1 Mio. t CO2-Äquivalente in 2023 (folgende Angaben in Mio. t CO2-Äquivalente: CO2: 42,1, Methan: 2,2 und Lachgas: 3,3) freigesetzt, was insgesamt einem Anteil von 82,9 % an den THG-Emissionen aus Mooren entspricht.</p><p>Feuchtgebiete</p><p>Unter der Landnutzungskategorie „Feuchtgebiete“ werden in Deutschland verschiedene Flächen zusammengefasst: Zum einen werden Moorgebiete erfasst, die vom Menschen kaum genutzt werden. Dazu gehören die wenigen, naturnahen Moorstandorte in Deutschland, aber auch mehr oder weniger stark entwässerte Moorböden (sogenannte terrestrische Feuchtgebiete). Zum anderen werden unter Feuchtgebiete auch Emissionen aus Torfabbau (on-site: <a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Emission#alphabar">Emission</a> aus Torfabbauflächen; off-site: Emissionen aus produziertem und zu Gartenbauzwecken ausgebrachtem Torf) erfasst. Allein die daraus entstehenden CO2-Emissionen liegen bei rund 1,8 Mio. t CO2-Äquivalenten. Im Inventar in Submission 2024 neu aufgenommen sind die Emissionen aus natürlichen und künstlichen Gewässern. Zu letzteren gehören Fischzuchtteiche und Stauseen ebenso wie Kanäle der Wasserwirtschaft. Durch diese Neuerung fließen nun Methanemissionen in das Treibhausgasinventar ein, die bislang nicht berücksichtigt wurden. Dadurch liegen nun die Netto-Gesamtemissionen der Feuchtgebiete bei 8,8 Mio. t CO2-Äquivalenten im Jahr 2023 und haben im Trend gegenüber dem Basisjahr 1990 um 0,4 % abgenommen. Diese Abnahme im Trend lässt sich auf eine zwischenzeitlich verstärkte Umwidmung von Grünland-, Wald- und Siedlungsflächen zurückführen.</p><p>Nachhaltige Landnutzung und Forstwirtschaft sowie weitere Maßnahmen </p><p>Im novellierten <a href="https://www.bmuv.de/gesetz/bundes-klimaschutzgesetz">Bundes-Klimaschutzgesetz</a> sind in § 3a Klimaziele für den <a href="https://www.umweltbundesamt.de/service/glossar/l?tag=LULUCF#alphabar">LULUCF</a>-Sektor 2021 festgeschrieben worden. Im Jahr 2030 soll der Sektor eine Emissionsbilanz von minus 25 Mio. t <a href="https://www.umweltbundesamt.de/service/glossar/c?tag=CO2#alphabar">CO2</a>-Äquivalenten erreichen. Dieses Ziel könnte unter Berücksichtigung der aktuellen Zahlen deutlich verfehlt werden. Um dieses Ziel zu erreichen, sind ambitionierte Maßnahmen zur Emissionsminderung, dem Erhalt bestehender Kohlenstoffpools und der Ausbau von Kohlenstoffsenken notwendig. Im Koalitionsvertrag adressieren die Regierungsparteien diese Herausforderungen. Das <a href="https://www.umweltbundesamt.de/service/glossar/b?tag=BMUV#alphabar">BMUV</a> hat bereits den Entwurf eines „Aktionsprogramm natürlicher Klimaschutz“ vorgelegt, das nach einer Öffentlichkeitsbeteiligung im letzten Jahr innerhalb der Regierung abgestimmt wird. Auf die Notwendigkeit für ambitionierte Klimaschutzmaßnahmen und die Bedeutung von <a href="https://www.umweltbundesamt.de/themen/studie-zu-naturbasierten-loesungen-im-globalen">naturbasierten Lösungen für den Klimaschutz</a> hat das Umweltbundesamt in verschiedenen Studien (siehe hierzu <a href="https://www.umweltbundesamt.de/publikationen/treibhausgasminderung-um-70-prozent-bis-2030">Treibhausgasminderung um 70 Prozent bis 2030: So kann es gehen!</a>) hingewiesen</p><p>Seit dem Jahr 2015 wird die Grünlanderhaltung im Rahmen der EU-Agrarpolitik über das sogenannte Greening geregelt <a href="http://eur-lex.europa.eu/legal-content/DE/TXT/PDF/?uri=CELEX:32013R1307&qid=1464776213857&from=DE">(Verordnung 1307/2013/EU)</a>. Das bedeutet, dass zum ein über Pflug- und Umwandlungsverbot Grünland erhalten und zum anderen aber auch durch staatliche Förderung die Grünlandextensivierung vorangetrieben werden soll. Die Förderung findet auf Bundesländerebene statt. In der Forstwirtschaft sollen Waldflächen erhalten oder sogar mit Pflanzungen heimischer Baumarten ausgeweitet und die verstärkte Holznutzung aus nachhaltiger Holzwirtschaft (siehe <a href="https://www.charta-fuer-holz.de/">Charta für Holz 2.0</a>) gefördert werden. Weitere Erstaufforstungen sind bereits bewährte Maßnahmen, um die Senkenwirkung des Waldes zu erhöhen. Des Weiteren werden durch das Bundesministerium für Ernährung und Landwirtschaft (<a href="https://www.umweltbundesamt.de/service/glossar/b?tag=BMEL#alphabar">BMEL</a>) internationale Projekte zur nachhaltigen Waldwirtschaft, die auch dem deutschen Wald zu Gute kommen, zunehmend gefördert. Eine detailliertere Betrachtung dazu findet sich unter <a href="https://www.umweltbundesamt.de/themen/landwirtschaft/landwirtschaft-umweltfreundlich-gestalten/klimaschutz-in-der-landwirtschaft">Klimaschutz in der Landwirtschaft</a>.</p><p>Die <a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Treibhausgas#alphabar">Treibhausgas</a>-Emissionen aus drainierten Moorflächen lassen sich verringern, indem man den Wasserstand gezielt geregelt erhöht, was zu geringeren CO2-Emissionen führt. Weitere Möglichkeiten liegen vor allem bei Grünland und Ackerland in der landwirtschaftlichen Nutzung nasser Moorböden, der sogenannten Paludikultur (Landwirtschaft auf nassen Böden, die den Torfkörper erhält oder zu dessen Aufbau beiträgt). Eine weitere Klimagasrelevante Maßnahme ist die Reduzierung des Torfabbaus und der Torfanwendung (siehe <a href="https://www.dehst.de/DE/Themen/Klimaschutzprojekte/Natuerlicher-Klimaschutz/Moore/moore_artikel.html?nn=284150#doc284160bodyText3">Moorklimaschutz</a>).</p>
Global efforts to reduce emissions remain inadequate which resulted in an increasing need for negative emission technologies that actively remove and permanently sequester CO₂ from the atmosphere. We highlight the rapid growth of commercial mCDR start-ups, despite limited research and potential irreversible harm to marine ecosystems. These activities appear uncoordinated, lack oversight, and show no evidence of compliance with international frameworks such as the London Protocol. Our study underscores the urgent need for its ratification. Veröffentlicht in Fact Sheet.
Um die globale Erwärmung zu einzudämmen, ist der Entzug von Kohlendioxid (CDR) aus der Atmosphäre dringend in erheblichem Maßstab erforderlich. Zwei heute bereits verfügbare Negativ-Emissionstechnologien (NET) sind die beschleunigte Verwitterung von silikatischem Gestein (engl. enhanced weathering - EW) und die pyrogene Kohlenstoffabscheidung und -speicherung (engl. pyrogenic carbon capture and storage - PyCCS). Bei EW wird vulkanisches Gesteinsmehl in landwirtschaftliche Böden eingebracht, wo dieses mit CO2 reagiert und gelöstes Bicarbonat bildet, das durch weitere Reaktionen im Boden als Karbonat ausfallen kann oder über die Bodenlösung in Grund- und Oberflächengewässer gelangt und in die Ozeane transportiert wird. Bei PyCCS erfolgt der CO2-Entzug durch Photosynthese (Produktion von Biomasse). Anschließend wandelt die Pyrolyse die Biomasse und damit den pflanzlich aufgenommenen Kohlenstoff in eine stabile Form um, die, wenn sie in den Boden eingebracht wird, für Jahrhunderte stabil bleibt. Die Kombination dieser beiden NETs, d. h. pyrogene und mineralische Kohlenstoffabscheidung und -speicherung (PyMiCCS), könnte das C-Senken Potenzial pro bewirtschafteter Flächeneinheit maximieren und die positiven Effekte auf die Bodenfruchtbarkeit vereinen und verstärken. Allerdings sind systematische Untersuchungen zu den Materialeigenschaften, zur Kinetik der Verwitterung von Silikatgestein in Gegenwart von pyrogenem Kohlenstoff, zur C-Effizienz der Pyrolyse, zu möglichen Umweltrisiken und zur kombinierten Wirkung beider NETs auf das Pflanzenwachstum erforderlich. Darüber hinaus muss die CDR-Dynamik dieser kombinierten C-Senken erfasst werden, um die Bewertung von PyMiCCS gegenüber anderen NETs zu ermöglichen. Zu diesem Zweck werden sowohl Mischungen aus Pflanzenkohle und Gesteinsmehl als auch Co-Pyrolysate aus Biomasse und Gesteinsmehl experimentell im Kilogramm-Maßstab hergestellt. Diese PyMiCCS-Materialien werden in Säulen- und Gewächshausversuchen eingesetzt. Verwitterungsraten, Nährstoffauswaschung und Pflanzenwachstum werden quantifiziert. Sowohl frische als auch gealterte Pflanzenkohlen werden spektro-mikroskopisch untersucht, um den Einfluss des Gesteinsmehls auf die Speziierung des pyrogenen Kohlenstoffs zu charakterisieren. An gealterter Pflanzenkohle, die aus den Gewächshausexperimenten gewonnen wird, wird der Einfluss des Gesteinsmehls auf den Alterungsprozess untersucht, insbesondere auf die Bildung der organischen Beschichtung der Pflanzenkohle. Diese Beschichtung trägt maßgeblich zur Fähigkeit der Pflanzenkohle bei, hochmobile Pflanzennährstoffe wie Nitrat zurückzuhalten, was eine wichtige Eigenschaft von (gealterter) Pflanzenkohle ist. Basierend auf den experimentellen Daten und Literaturarbeit wird die CDR-Dynamik der PyMiCCS C-Senke beschrieben, um eine spätere Zertifizierung solcher Kohlenstoffsenken zu ermöglichen.
Im Rahmen des beantragten Vorhabens Air2Fuel soll eine effiziente und für die Synthese von eFuels ausgelegte DAC-Technologie des ZSW umgesetzt werden. Die Technologie wurde bereits im Maßstab 1 kg/h CO2 (DAC1) an einem Demonstrator validiert und soll im Rahmen des Projektes in Kooperation mit den Projektpartnern industrialisiert und erstmalig in den Maßstab 100 kg/h CO2 (DAC100) überführt werden. Die Wäscher-basierte Technologie besteht aus einem Ab- und Desorber und nutzt eine Polyethyleniminlösung als Sorbens. Die Technologie zeichnet sich durch eine kontinuierliche und robuste Betriebsweise, der Einbindung und Nutzung von Prozessabwärmen (Elektrolyse bzw. nachgelagerte Synthese) sowie einer einfachen Skalierbarkeit aus. Bei der Konzeption und technischen Entwicklung des DAC100-Prototypen sollen insbesondere auch für die Industrialisierung relevante Aspekte wie Serienfertigung, Robustheit und Recyclingfähigkeit der eingesetzten Materialien berücksichtigt werden. Dies betrifft insbesondere das bislang eingesetzte CO2-Sorbens, das in dem ZSW-Teilvorhaben weiterentwickelt werden soll.
In dem beantragten Vorhaben soll eine bereits erprobte, effiziente und für die Synthese von eFuels ausgelegte DAC-Technologie des ZSW, die bislang als Demonstrator im Maßstab 1 kg/h CO2 (DAC1) validiert wurde, aufgegriffen in Kooperation mit den Projektpartnern ela und atmosfair industrialisiert und erstmalig in den Maßstab 100 kg/h CO2 (DAC100) umgesetzt werden. Die Wäscher-basierte Technologie zeichnet sich durch eine kontinuierliche Betriebsweise, Nutzung von Prozessabwärmen (Elektrolyse bzw. nachgelagerte Synthese) und insbesondere eine einfache Skalierbarkeit aus. Beim Engineering des DAC100-Prototypen sollen insbesondere auch für die Industrialisierung relevanten Aspekte wie Fertigbarkeit in Serie, Robustheit und Recyclingfähigkeit der eingesetzten Materialien berücksichtigt werden. Ziel des Vorhabens ist es, die Technologie im Maßstab DAC100 in realer Einsatzumgebung im e-gas-Anlagenkomplex in Werlte zu betrieben und durch Vermessung der Performancedaten zu validieren. Hierzu wird die Technologie zur CO2-Bereitstellung in den Produktionsstandort für regeneratives Methan und LNG des Projektpartners ela integriert und im Demonstrationsbetrieb über mehrere Tausend Stunden betrieben. Ziel des Projektes und der begleitenden Wirtschaftlichkeitsanalysen ist es, die Wirtschaftlichkeit des Verfahrens nachzuweisen und die nächsten Skalierungsschritte in den energietechnischen relevanten Tonnen-Maßstab vorzubereiten. Es ist geplant, dass die Anlage nach Projektende im e-gas-Anlagenkomplex in Werlte weitergetrieben und regeneratives Luft-CO2 für die dortigen Syntheseprozesse bereitstellt.
Die anthropogenen Kohlendioxidemissionen (CO2) sind für den größten Teil der jüngsten globalen Oberflächenerwärmung der Erde um etwa 1°C gegenüber dem vorindustriellen Niveau verantwortlich. Das Land und die Ozeane nehmen derzeit etwa die Hälfte unserer Emissionen durch komplexe Prozesse des Kohlenstoffkreislaufs auf. Der Klimaantrieb durch anthropogene CO2-Emissionen hört erst auf, wenn ein Gleichgewicht zwischen CO2-Quellen und -Senken erreicht ist. Da es nicht realisierbar ist, alle CO2-Emissionen bis Mitte des 21. Jahrhunderts zu eliminieren, bestehen alle plausiblen zukünftigen Emissionsszenarien, die auf eine mit dem Pariser Abkommen übereinstimmende Temperaturstabilisierung anstreben, aus einem Portfolio menschlicher Aktivitäten, die Emissionssenkungen mit Maßnahmen zur so genannten Kohlendioxidentnahme (CDR) kombinieren, die die verbleibenden positiven Emissionen kompensieren sollen.Allerdings werden CDR-Maßnahmen wie die meisten anderen menschlichen Aktivitäten durch Emissionen von andere Treibhausgase als CO2 (z.B. Methan oder Distickstoffoxid), Aerosolen oder durch Landnutzungsänderungen zusätzliche Klimaveränderungen verursachen. Gegenwärtig machen diese weiteren Treibhausgase mehr als 40% der globalen Oberflächenerwärmung aus, während Aerosole einen Teil der Erwärmung ausgleichen. Darüber hinaus beeinflussen diese zusätzlichen Klimaeinflüsse den Kohlenstoffkreislauf, der wiederum Einfluss auf die atmosphärische CO2-Konzentration und damit auf die Oberflächentemperatur nimmt (Abb. 1). Diese Wechselwirkung beeinflusst die Menge der CO2-Entnahme, die durch CDR-Maßnahmen erforderlich ist, um eine Temperaturstabilisierung zu erreichen.Es ist daher wichtig, die vollständige Reaktion des Klimas auf spezifische menschliche Aktivitäten, einschließlich CDR-Maßnahmen, zu erfassen, um gut informiert Maßnahmen zur Temperaturstabilisierung ein zu leiten. Insbesondere die Untersuchung der Reaktion des Erdsystems auf realistische Portfolios künftiger anthropogener Aktivitäten erfordert die Einbeziehung aller damit verbundenen Klimafaktoren - CO2, andere Treibhausgase als CO2, Aerosole und Landnutzungsänderungen - um bestmögliche Einschätzungen der möglichen Wege zur Temperaturstabilisierung zu erhalten.
Es ist bekannt, dass Vulkanausbrüche das Klima auf verschiedene Weise beeinflussen. Diese reichen von kurzfristigen Auswirkungen wie Sulfat-Injektionen, die die einfallende Sonnenstrahlung reduzieren und zu Abkühlung führen, bis zu mittelfristigen Auswirkungen wie Erwärmung durch Kohlendioxid-Entgasung. Langfristig können Auswirkungen wie eine verstärkte Verwitterung eingelagerter Basalte zu einer Entfernung von Kohlendioxid und damit Abkühlung führen. Lange Perioden intensiven Vulkanismus, die als Large Igneous Provinces (LIPs) bekannt sind, können besonders tiefgreifende Auswirkungen auf das Klima haben, wobei mehrere LIPs entweder mit der globalen Erwärmung oder Abkühlung in der Erdgeschichte sowie mit Massenaussterben in Verbindung gebracht werden. Das Paläozän-Eozän-Temperaturemaximum (PETM), eine 200.000 Jahre lange Periode intensiver globaler Erwärmung vor ca. 56 Millionen Jahren, ereignete sich zur gleichen Zeit wie die Entstehung eines LIP, der North Atlantic Igneous Province (NAIP). Die NAIP-Entstehung wurde als Ursache für das PETM vorgeschlagen, da während des Vulkanismus Kohlendioxid und Methan freigesetzt werden, welches zu einer schnellen Erwärmung führt. Es wurde auch vermutet, dass die Ablagerung von Vulkanasche während des NAIP das Klima abgekühlt hat. Als solches ist das PETM eine ideale Periode, um die Auswirkungen des Vulkanismus auf das Erdsystem zu untersuchen. Expedition 396 des International Ocean Discovery Program (IODP) hat erfolgreich eine Reihe von langen Sedimentsequenzen aus dem PETM-Zeitalter am norwegischen Rand geborgen. In diesem Projekt beabsichtige ich, detaillierte deskriptive, geochemische und modellbasierte Untersuchungen mit den Sedimenten der Expedition 396 durchzuführen, um die Rolle des NAIP-Vulkanismus im PETM zu dokumentieren. Erstens wird die Intensität des Vulkanismus durch neue Schätzungen der Kohlendioxid-, Methan- und Sulfatemissionen bewertet, um die Rolle der Gase auf den Klimawandel zu bestimmen. Durch detaillierte geochemische Untersuchungen werden die Auswirkungen der Ascheablagerung auf den Kohlenstoffkreislauf bewertet mit Schwerpunkt auf der Rolle der Asche als Nährstofflieferant für Phytoplankton liegt. Die potenziellen Auswirkungen der Ascheablagerung auf die Speicherung von Kohlenstoff im Sediment werden ebenfalls geochemisch und isotopisch untersucht. Abschließend werden die Ergebnisse unter Verwendung von Erdsystemmodelle kombiniert, um die genaue Rolle des Vulkanismus im PETM zu bestimmen. Die erwarteten Ergebnisse werden uns neue Erkenntnisse über die Rolle der LIP-Entstehung und der Ablagerung von Vulkanasche beim Klimawandel geben. Sedimente von Expedition 396 bieten eine einzigartige Gelegenheit, den geochemischen Abdruck des Vulkanismus hochauflösend zu untersuchen. Die Ergebnisse dieser Arbeit werden zu einer erheblichen Verbesserung unseres Verständnisses des PETM führen.
| Origin | Count |
|---|---|
| Bund | 125 |
| Land | 1 |
| Wissenschaft | 26 |
| Type | Count |
|---|---|
| Chemische Verbindung | 2 |
| Daten und Messstellen | 25 |
| Förderprogramm | 77 |
| Gesetzestext | 2 |
| Text | 26 |
| Umweltprüfung | 1 |
| unbekannt | 21 |
| License | Count |
|---|---|
| geschlossen | 42 |
| offen | 105 |
| unbekannt | 5 |
| Language | Count |
|---|---|
| Deutsch | 99 |
| Englisch | 73 |
| Resource type | Count |
|---|---|
| Archiv | 8 |
| Datei | 32 |
| Dokument | 21 |
| Keine | 90 |
| Webseite | 24 |
| Topic | Count |
|---|---|
| Boden | 119 |
| Lebewesen und Lebensräume | 121 |
| Luft | 108 |
| Mensch und Umwelt | 151 |
| Wasser | 106 |
| Weitere | 152 |