API src

Found 34 results.

Sonderforschungsbereich (SFB) 1357: MIKROPLASTIK - Gesetzmäßigkeiten der Bildung, des Transports, des physikalisch-chemischen Verhaltens sowie der biologischen Effekte: Von Modell- zu komplexen Systemen als Grundlage neuer Lösungsansätze; MICROPLASTICS - Understanding the mechanisms and processes of biological effects, transport and formation: From model to complex systems as a basis for new solut, Teilprojekt B 05: Verhalten von Mikroplastik im System Landoberfläche-Atmosphäre und gegliedertem Gelände

Mikroplastik wird zwischen Land- und Wasseroberflächen und der Atmosphäre ausgetauscht und kann luftgetragen über weite Strecken transportiert werden, bevor die Mikroplastikpartikel wieder aus der Atmosphäre entfernt und abgelagert werden. Obwohl diese Transportprozesse für die Verteilung und die wirksamen Abbaumechanismen von Mikroplastik sehr wichtig sind, gibt es bislang keine systematischen Untersuchungen zum atmosphärischen Transport von Mikroplastik. Der luftgetragene Transport von Mikroplastik wird im vorliegenden Teilprojekt in einem Windkanal als idealisiertem Modellsystem experimentell untersucht und mit einem strömungsauflösenden Transportmodell numerisch simuliert, um die grundlegenden Prozesse verstehen und quantifizieren zu können.

Schwerpunktprogramm (SPP) 527: Bereich Infrastruktur - International Ocean Discovery Program, Teilprojekt: Pleistozäne Antarktische Zwischenwasservariabilität im offenen Ozean

Als Teil der globalen thermohalinen Zirkulation transportiert das Antarktische Zwischenwasser (AAIW) Wärme und Salz, es belüftet die intermediären Tiefen des Ozeans, und verteilt Nährstoffe aus dem Südozean (SO) in die nährstoffarmen Tropen. AAIW ist daher von globaler Bedeutung für die marine Biogeochemie und den Kohlenstoffkreislauf. Die Bildung des AAIW ist direkt an die Intensität des Auftriebs von Zirkumpolarem Tiefenwasser im SO gekoppelt und wird moduliert von den Westwinden und saisonaler Aussüßung durch Meereisexport und -abschmelzen. Obwohl es unbestritten ist, dass Transport und Zusammensetzung von AAIW eine wichtige Rolle für die ozeanischen und klimatischen Änderungen der letzten Deglaziation spielten, gibt es bisher nur wenige längere Aufzeichnungen der AAIW-Variabilität. Obwohl noch immer kontrovers, gibt es basierend auf Proxy-Daten zunehmende Einigkeit über einen anhaltenden oder nur leicht abgeschwächten AAIW-Export im Atlantik während des letzten glazialen Maximums. Neodym(Nd)-Isotopendaten, die eine größere und schnelle Variabilität nahelegten, wurden inzwischen sedimentären Überprägungen identifiziert, ein Problem, das auf den kontinentalen Schelfen, von denen diese Daten überwiegend stammen, kaum vermeidbar ist. Um diese Effekte zu umgehen und ein Verständnis der AAIW-Variabilität auf langen Zeitskalen zu erlangen, schlagen wir eine neue Studie vor, die nur Bohrkerne von Lokationen im offenen Ozean im Südatlantik (DSDP Site 516), dem Südostpazifik (ODP Site 1236) und der Tasmansee (DSDP Site 592 und IODP Site U1510) nutzt. Diese Sedimente weisen zwar niedrige Sedimentationsraten auf, vorläufige Daten zeigen aber die erwartete Amplitude benthischer O- und C-Isotopen im Zwischenwasser. Die Sedimente waren durchweg oxisch, was die verlässliche Anwendung von Nd-Isotopen und Seltenerdelement-Proxies für die Wassermassenrekonstruktion erlaubt. Diese Daten werden O- und C- Isotopendate benthischer Foraminiferen und von Spurenmetallproxies für Temperatur (Mg/Ca, Li/Mg) und Nährstoffgehalt (Cd/Ca) vervollständigen. Nach Etablierung einer benthischen Isotopenstratigraphie für jeden Bohrkern sollen glazial-interglaziale Schlüsselintervalle vor, während und nach dem Mittelpleistozänen Übergang (MPT) auf alle Proxies analysiert werden. Diese Aufzeichnungen der Variabilität der Quellen des AAIW, des Nährstoffgehalts und der Temperatur werden die letzten 1,5 Millionen Jahre in verschiedenen Becken abdecken. Dies wird neue Einsichten in die Rolle liefern, die die AAIW-Variabilität für die globale Umwälzzirkulation gespielt hat, die den SO mit den niedrigen Breiten verbindet, wie die Ozeanzirkulation auf Änderungen orbitaler Parameter der Eisschilde reagierte, und welchen Einfluss dies auf den Kohlenstoffkreislauf an glazialen Terminationen des Pleistozäns hatte.

Schwerpunktprogramm (SPP) 1704: Flexibilität entscheidet: Zusammenspiel von funktioneller Diversität und ökologischen Dynamiken in aquatischen Lebensgemeinschaften; Flexibility Matters: Interplay Between Trait Diversity and Ecological Dynamics Using Aquatic Communities as Model Systems (DynaTrait), Teilprojekt: Modellierung saisonaler vertikaler Migrationen bei marinem Zooplankton

Die saisonale vertikale Migration (SVM) beim marinem Zooplankton spiele potentiell eine Schlüsselrolle für die Primär- und Exportproduktion in höheren Breiten mit ausgeprägter Saisonalität. SVM ist ein wichtiger Teil des Verhaltens vieler mariner Zooplanktongemeinschaften in höheren Breiten, das ihnen ermöglicht, die bei der Frühjahrsblüte gebildete Biomass effizient zu nutzen. Geeignete Tage für den SVM Aufstieg im Frühjahr und den SVM Abstieg im Sommer sind wichtig, um die Verfügbarkeit von Futter zu maximieren und die Gefahr des Gefressenwerdens zu minimieren: wer zu früh oder zu spät aufsteigt, riskiert zu verhungern und wer zu spät absteigt wird leichter gefressen (Match-Mismatch-Hypothese). SVM tritt in niederen Breiten wenig bis gar nicht auf. Wegen dieser Komplikationen berücksichtigen die meisten biogeochemischen Modelle nur das Fraßverhalten, aber nicht die SVM des Zooplanktons. SVM wurde in Individuen-basierten Modellen (IBM) simuliert, um die saisonale Entwicklung und regionale Verteilung von Copepoden und deren Entwicklungsstadien zu untersuchen. IBM sind aber zu rechenintensiv für eine Anwendung in globalen 3D Modellen, insbesondere für Langzeitsimulationen. In vorangegangenen Projekten zu biogeochemischer Modellierung haben wir signifikante Diskrepanzen zwischen beobachteter und modellierter Sekundärproduktion beobachtet, die höchstwahrscheinlich auf das Fehlen von SVM im Modell zurückgehen. Hier wollen wir einfachere, trait- und optimalitäts-basierte SVM Modelle für globale Langzeitsimulationen entwickeln. Dabei können wir auf unsere bisher entwickelten Methoden zurückgreifen, um zu untersuchen, wie Traits, z.B. Tag des Aufstiegs oder Grad-Tage, das SVM Verhalten und seine Evolution steuern. Wir werden, zunächst in 1D und später auch in 3D biogeochemischen Modellen, trait-basierten SVM Beschreibungen entwickeln, um die treibenden Kräfte des SVM Verhaltens zu analysieren. Das Hauptziel ist dabei zu verstehen, welche Umweltfaktoren die Evolution von SVM Verhalten lokal bestimmen und wie sie globale Verteilungsmuster im SVM Verhalten und dessen Effekte auf Plankton-Ökologie und -Biogeochemie beeinflussen. Anschließend werden wir das Potential von SVM untersuchen, das Verhalten globaler Modelle zu verbessern, z.B. bezüglich der Verteilungen von Nährstoffen und Exportproduktion. Schließlich möchten wir SVM Effekte in Langzeitsimulationen vergangener und zukünftiger Klima-Szenarien analysieren. Unser Projekt bringt enge Verbindungen zwischen DynaTrait und anderen großen Forschungsprojekten mit sich, wobei DynaTrait vom DFG-finanzierten SFB 754 zu Sauerstoff-Minimum-Zonen und dem BMBF-finanzierten PalMod Projekt zu Langzeit-Klimasimulationen profitiert, aber auch einen Beitrag zu diesen Projekten leistet. Dadurch kann die Sichtbarkeit und Relevanz von DynaTrait für die globale Modellierung deutlich verbessert werden.

Sonderforschungsbereich Transregio 181 (SFB TRR): Energietransfer in der Atmosphäre und im Ozean, Teilprojekt (18) S02: Verbesserte Parametrisierungen und Numerik in Klimamodellen

Das Ziel dieses Projektes ist es, neue Parametrisierungen und numerische Algorithmen zur Verbesserung der Energiekonsistenz in die Ozeankomponenten der neuen Erdsystemmodelle, die momentan in Deutschland entwickelt werden, zu implementieren. Das Projekt wird ebenfalls die Entwicklung und Implementierung von neuen atmosphärischen Parametrisierungen unterstützen. In Zusammenarbeit mit den anderen Projekten im SFB/TRR wird das Projekt einen Rahmen für die Synthese der gemeinsamen Arbeit liefern und dient - zusammen mit S1 - als ein Erfolgskriterium.

Sonderforschungsbereich Transregio 181 (SFB TRR): Energietransfer in der Atmosphäre und im Ozean, Teilprojekt (08) T02: Energiebilanz der Deckschicht des Ozeans

Die wichtigsten Energietranfers im mesoskaligen Skalenbereich (zwischen 100m und 10km) wird identifiziert, quantifiziert und parametrisiert, mit dem Ziel sie in globale Klimamodelle zu integrieren. Dies wird mit Hilfe numerischer Ansätze erreicht, die aus zwei verschiedenen Modellstudien bestehen, spezialisiert auf turbulente Flüsse und regionale Ozeanprozesse, sowie mit Hilfe eines Feldprogrammes, welches die Ostsee als ein 'natürliches Labor' für die Beobachtung von sub-mesoskaligen Energietransfers nutzt.

Forschergruppe (FOR) 5094: Dynamik des tiefen Untergrundes von Hochenergiestränden, Teilprojekt: Koordinationsfonds

Subterrane Ästuare sind die Übergangszonen zwischen terrestrischen Aquiferen und dem Meer, in denen sich meteorisches Süßwasser und zirkulierendes Meerwasser mischen und in denen es durch biogeochemische Reaktionen zur Veränderung der Grundwasserzusammensetzung kommt. Somit stellen diese Systeme effektive biogeochemische Reaktoren dar, die die Stoffflüsse in Richtung Meer wesentlich beeinflussen. Die Motivation für das Projekt DynaDeep ist die Tatsache, dass ein Verständnis des Ausmaßes und der Funktionsweise subterraner Ästuare notwendig ist, um die gegenwärtige Dynamik und zukünftige Entwicklung von Ökosystemfunktionen am Land-Meer Übergang zu erfassen. Bislang ist unklar, wie Hydro- und Morphodynamik die Grundwasserströmung beeinflussen. Außerdem wurden die sich daraus ergebenden Konsequenzen für biogeochemische Prozesse und für die Bedingungen als mikrobielles Habitat bislang nicht abgeschätzt. Wir nehmen an, dass der Untergrund von Hochenergiestränden in Bezug auf Grundwasserströmung und -transport sowie assoziierte biogeochemische Prozesse hoch dynamisch ist und von gängigen vereinfachten Modellvorstellungen abweicht. Dieses einmalige mikrobiologische Habitat unterscheidet sich vermutlich grundlegend von den normalerweise stabilen Lebensräumen im Untergrund. DynaDeep wird deshalb Grundwasserströmungsmuster als Funktion hydro- und morphodynamischer Randbedingungen untersuchen. Wir werden abiotische und biotische Umsatzraten organischer Substanz quantifizieren. Umsetzung und Fraktionierung von Spurenmetallen und Metallisotopen sind ebenso Gegenstand der Untersuchungen wie die Diversität und Funktionsweise der mikrobiellen Gemeinschaft. In einem integrativen Ansatz werden sechs Teilprojekte gemeinsam Felduntersuchungen durchführen sowie experimentelle Ansätze und mathematische Modelle entwickeln und nutzen. DynaDeep wird sich in einer ersten Phase zunächst auf einen Standort konzentrieren und ein “Subterranean Estuary Online Observatory” auf der Insel Spiekeroog aufbauen. Die Erkenntnisse werden anschließend in einer zweiten Phase an anderen Standorten überprüft und gegebenenfalls auf diese übertragen. Ultimatives Ziel ist es, die globale Bedeutung tiefer, dynamischer biogeochemischer Reaktoren im Untergrund von Hochenergiestränden für Küstenökosysteme und globale Stoffkreisläufe abzuschätzen.

Sonderforschungsbereich (SFB) 1357: MIKROPLASTIK - Gesetzmäßigkeiten der Bildung, des Transports, des physikalisch-chemischen Verhaltens sowie der biologischen Effekte: Von Modell- zu komplexen Systemen als Grundlage neuer Lösungsansätze; MICROPLASTICS - Understanding the mechanisms and processes of biological effects, transport and formation: From model to complex systems as a basis for new solut, Teilprojekt B 04: Partikelaustausch an der Luft-Wasser-Grenzfläche

Fällt ein Regentropfen auf eine Wasseroberfläche oder platzt dort eine Gasblase, so wird in einem komplizierten strömungsmechanischen Prozess eine Vielzahl kleinster Tröpfchen produziert und in die Luft geschleudert. Diese Tröpfchen können ursprünglich im Wasser vorhandene Mikroplastikpartikel in die Luft übertragen. Da sowohl Regen als auch platzende Gasblasen in natürlichen und technischen Systemen wie Ozeanen, Pfützen oder Kläranlagen extrem häufige Ereignisse sind, liegt hier ein potenziell hochrelevanter Migrationspfad von Mikroplastik aus der Hydro- in die Atmosphäre vor. Dieser Prozess soll im vorliegenden Projekt durch eine Kombination aus Modell-Experimenten und Computersimulationen im Detail untersucht und verstanden werden.

Schwerpunktprogramm (SPP) 527: Bereich Infrastruktur - International Ocean Discovery Program, Teilprojekt: Beginn und Modifikationen der Intensitaet und Pfade des Wassermassenaustauschs zwischen suedoestlichem Pazifik und Suedatlantik mit Fokus auf dem Falkland Plateau

Durch die Öffnung der Drake Passage und der Scotia See wurde ein Wassermassenaustausch zwischen dem südlichen Pazifik und dem Südatlantik ermöglicht. Auf diese Weise kam es zu einem Transfer von Wärme und Energie zwischen den beiden Ozeanen. In Kombination mit der Öffnung des Tasman Gateways wurde so die Entwicklung des antarktischen Zirkumpolarstroms (ACC) und somit eine thermische Isolation der Antarktis möglich, was als eine Hauptursache für den Einsatz weitreichender Vereisungen diskutiert wird. Sowohl die tektonischen Bewegungen in der Drake Passage und der Scotia See als auch klimatische Veränderungen haben zu Modifizierungen in Intensität und Pfad des ACCs und der Wassermassen, welche der ACC umfasst, geführt. Das Einsetzen des ACCs sowie diese Modifizierungen sind in sedimentären Strukturen dokumentiert, die auf dem Falkland Plateau abgelagert wurden. Eine Untersuchung dieser Sedimentdrifts, welche durch Zirkumpolares Tiefenwasser, Weddell See Tiefenwasser und Antarktisches Bodenwasser geformt wurden, wird zu Information über Veränderungen der ozeanischen Zirkulation als Folge tektonischer Bewegungen und Klimaänderungen führen. Ein Gitter hochauflösender reflexionsseismischer Daten, welche während der Expedition MSM81 mit FS Maria S Merian gesammelt wurden, wird die Entschlüsselung der Sedimentdriftstrukturen und ihrer Modifikation und Umformung durch die Wassermassen sowie die Identifizierung von Depozentren und ihrer Verlagerung als Folge der Verlagerung der Pfade der Wassermassen erlauben, was dann Rückschlüsse auf Klimaänderungen und tektonische Bewegungen ermöglicht.Weieterhin bildendie seismischen Daten die Basis eines site survey Datenpaketes für IODP proposal 862, welches die früheste Phase des Wassermassenaustauschs über die Drake Passage untersuchen wird.

Schwerpunktprogramm (SPP) 527: Bereich Infrastruktur - International Ocean Discovery Program, Teilprojekt: Die Biogeochemie von gelöstem organischem Material in hydrothermalen Sedimenten des Guaymas-Beckens

Das primäre Forschungsziel des Projekts ist das Verständnis der biotischen und abiotischen Prozesse, welche die molekulare Zusammensetzung von gelöstem organischem Material (engl. DOM) in tiefen, hydrothermal beeinflussten Sedimenten bestimmen. Hierzu steht uns bereits ein umfassender Satz von Porenwasser- und Sedimentproben aus dem Guaymas-Becken zur Verfügung, die im Rahmen der IODP-Expedition 385 (Sep. - Nov. 2019) erbohrt wurden. Die Proben wurden aus bis zu 500 Meter langen Bohrkernen von acht Bohrlokationen gewonnen, die unterschiedliche hydrothermale Gradienten aufweisen. Durch die Bestimmung der molekularen Zusammensetzung von Porenwasser-DOM und Wasser-extrahierbarem organischem Material aus dem Sediment sollen deren hydrothermale und mikrobielle Überprägung erfasst werden. Mit Hilfe von ultrahochauflösender Massenspektrometrie (FT-ICR-MS), modernen molekularbiologischen Methoden und Kohlenstoff-Isotopen-Analyse sollen aktuelle Wissenslücken zu den molekularen Eigenschaften von DOM in tiefen Sedimenten geschlossen werden. Wir werden 1) die molekulare Zusammensetzung von DOM in Organik-reichen, hydrothermal geprägten Sedimenten im Vergleich zu unbeeinflussten Sedimenten charakterisieren und 2) die Verbindung zwischen der molekularen Zusammensetzung des DOM mit dem mikrobiellen Stoffwechsel in der tiefen Biosphäre entlang von Temperatur- und Redoxgradienten entschlüsseln. Die Ergebnisse sollen zudem mit Proben aus der Wassersäule verglichen werden, die während einer FS Atlantis-Ausfahrt zum Guaymas-Becken im Jahr 2018 gewonnen wurden, um den Transport von hydrothermalen DOM in die Tiefsee zu untersuchen. Im Rahmen des Projekts werden die folgenden Hypothesen getestet: I) Die hydrothermale Aufheizung tiefer Sedimente erzeugt und setzt große Mengen von reaktivem und refraktärem DOM frei, II) Hydrothermales thermogenes DOM (engl. dissolved black carbon, DBC) trägt zur stabilen Kohlenstoff-Isotopensignatur mariner Prägung und zum Radiokarbonalter des refraktären ozeanischen DBC bei, und III) die Struktur der mikrobiellen Gemeinschaft in der Tiefen Biosphäre wird durch die geochemischen und thermalen Gradienten beeinflusst und hängt mit spezifischen reaktiven, hydrothermal erzeugten DOM-Verbindungen zusammen. Insgesamt bietet das Projekt die einmalige Gelegenheit, die Biogeochemie von DOM entlang hydrothermaler Gradienten in tiefen Sedimenten, aber auch im Übergang von Lithosphäre zur Hydrosphäre zu untersuchen.

Schwerpunktprogramm (SPP) 1889: Regional Sea Level Change and Society (SeaLevel), Teilprojekt: Koordinationsfonds

Um regionale Meeresspiegeländerungen und deren Auswirkungen auf die Gesellschaft zu verstehen, müssen neue Formen von integrierter Forschung beschritten werden, die einen weiten, fächerübergreifenden Bogen spannen muss, von physikalischen bis hin zu sozialwissenschaftlichen Disziplinen. Nur ein solches Programm, wie es unter dem SPP 1889 'SeaLevel' etabliert wurde, kann die wissenschaftliche Basis für die Entwicklung von Informationen hervorbringen, die zur Unterstützung von Küstenschutz und Küstenzonen-Management und für die zur Minimierung des Einflusses von ansteigenden Meeresspiegel auf Gesellschaften erforderlich ist. Um ein solches interdisziplinäres Programm zum Erfolg zu führen, ist ein proaktives, ausgedehntes Projektmanagement erforderlich. Dieses gilt für jedes SPP, es gilt um so mehr für interdisziplinäre SPP, wie es das SPP SeaLevel ist. Während der zweiten Förderphase des SPP SeaLevel wird ein Hauptaugenmerk der Koordination darin liegen, eine kontinuierliche interdisziplinäre wissenschaftliche und organisatorische Koordination und Unterstützung aller Projekte bereitzustellen, das bestehende Netzwerk innerhalb des SPP weiter auszubauen, die Öffentlichkeitsarbeit und Gleichstellungsmaßnahmen weiter zu verstärken und in dieser zweiten und letzten Phase besonders auch die Sichtbarkeit und den Nutzen der SPP SeaLevel Ergebnisse zu maximieren. Hierfür wird die Koordination kontinuierlich die Zusammenarbeit aller Projekte und aller involvierten Disziplinen fördern und voranbringen und gewonnenen Informationen innerhalb des SPP und mit der internationalen Community austauschen. Die Koordination wird wie zuvor in allen ihren Aspekten und Modulen in ihrer Verantwortung bei D. Stammer liegen, der die allgemeine Verantwortung für das SPP trägt. D. Stammer wird unterstützt durch die Assistenz von Eleni Tzortzi, die wie in der ersten Phase dem SSP in allen Koordinationsaspekten und Modulen zur Seite stehen wird, die das SPP-Netzwerk weiter fördern wird, die reguläre Projekttreffen organisieren wird und die besonders in dieser zweiten Phase Abschlusskolloquien und Sonderausgaben eines wissenschaftlichen Journals mit unterstützen wird. Ohne diese Vollzeitunterstützung kann eine erforderliche Koordination dieses interdisziplinären SPP nicht garantiert werden.

1 2 3 4