Lignin ist ein nachwachsender Rohstoff (Bestandteil von Holz, in etwa 30 % Gewichtsanteil der Trockenmasse), der als Biopolymer aus hoch funktionalisierten, phenolischen Makromolekülen aufgebaut ist. Dieser biogene Rohstoff fällt in der Holz- und Zellstoffverarbeitenden Industrie in großen Mengen als Neben- beziehungsweise Reststoff an und wird bis heute nur wenig stofflich genutzt. Ein Großteil wird verbrannt und energetisch genutzt. Im Sinne einer ressourceneffizienten Kreislaufwirtschaft und einer bestmöglichen Wertschöpfung soll in ElektrALig ein innovativer Weg aufgezeigt werden, wie die regenerative Kohlenstoffquelle Lignin großtechnisch als chemischer Grundstoff für die Herstellung von Polymerbausteinen genutzt werden kann. In einem zweistufigen Produktionsverfahren sollen dazu die im Lignin enthaltenen aromatischen Polymerbausteine chemisch aufgeschlossen, über eine konvergente elektrochemische Umsetzung zu definierten Zielstrukturen umgesetzt und so für Anwendungen in der Produktion von Polymerharzen zugänglich gemacht werden. Zusammenarbeit der Industriepartner Mercer Rosenthal, Borregaard, Covestro und Heraeus und der Ruhr-Universität Bochum mit dem Lehrstuhl CSC und der Arbeitsgruppe Apfel als ausführenden Stellen vereint eine einzigartige Expertise im Bereich der Ausgangsstoffe, der chemischen Verfahrenstechnik, der elektrochemischen Reaktionstechnik und der Polymeranwendungen. So kann eine effiziente Strategie zur stofflichen Nutzung von Lignin umgesetzt werden, die von einem grundlegenden chemischen Verständnis des Aufbaus von technisch verfügbaren Ligninen, über konkrete Teilschritte zu einem ausgefeilten verfahrenstechnischen Konzept der strom-basierten Konversion des biogenen Rohstoffes Lignin reicht.
Gastrennmembranen stellen eine Querschnittstechnologie für die Energiewende dar. Sie erlauben es, eine modular skalierbare und dynamisch betreibbare Gastrenntechnologie an verschiedenste Anlagentypen und -größen anzupassen und dabei durch die unterschiedlichen zur Verfügung stehenden Membranmaterialien zahlreiche Trennaufgaben zu adressieren. Aus diesem Grunde sind sie bestmöglich geeignet, unterschiedliche Industrie- und Energieerzeugungssegmente im Sinne der Sektorkopplung zu verbinden. Dieser Querschnittsgedanke wird im geplanten Vorhaben MemKoWI durch die Untersuchung von Membranverfahren zur Abtrennung von Kohlendioxid und Wasserstoff aus verschiedenen, in der Industrie und der regenerativen Energieerzeugung auftretenden Abgas- und Prozessgasströmen verfolgt. Beide Gaskomponenten, CO2 und H2, stellen im Kontext der Energie- und Rohstoffwende Einsatzstoffe für die Erzeugung von Energieträgern und industriellen Grundstoffen mittels Power-to-X Verfahren dar. Im geplanten Vorhaben sollen dazu exemplarisch relevante Abgas- und Prozessgasströme folgender ausgewählter Industrieprozesse betrachtet werden: - Regenerative Energieerzeugung: Frischholzkraftwerk CO2-Abtrennung aus dem Abgas. - Zementindustrie: CO2-Abtrennung aus dem Abgas. - Eisen- und Stahlindustrie o Gichtgaskraftwerk: CO2-Abtrennung aus dem Abgas o Hochofengas: CO2-Abtrennung und Aufbereitung für anschl. Synthesegasherstellung o Hochofengas: H2-Abtrennung und prozessinterne Rückführung als Reduktionsmittel o Koksofengas: H2-Abtrennung zur Aktivierung von CO2 für die Erzeugung von Grundchemikalien und Kraftstoffen sowie zur Nutzung als Reduktionsgas im Hochofen und Direktreduktion. Der Fokus des Vorhabens liegt auf der experimentellen Untersuchung des Gastrennverfahrens im Miniplant- und Testanlagenmaßstab. Dabei sollen ein- und zweistufige Verfahrensführungen getestet werden. Begleitet werden sollen die experimentellen Aktivitäten durch theoretische Arbeiten zur Modellierung und Simulation der Trennverfahren.