Verschiedene Moosspezies aus dem mitteldeutschen Raum werden gesammelt und auf die Produktion pharmazeutisch einsetzbarer Inhaltsstoffe gescreent.
Denitrifikation ist ein Schlüsselprozess, welcher Stickstoff (N) als N2 und NOx aus Böden wieder der Atmosphäre zuführt und damit den globalen N-Kreislauft schließt. Obgleich organische Bodensubstanz (OM) während der Denitrifikation als Elektronendonator fungiert, ist wenig über den Einfluss der Menge, Qualität sowie räumlicher und zeitlicher Zugänglichkeit der OM auf Denitrifikationsprozesse bekannt. Derartige Informationen sind jedoch für das Verständnis und die Vorhersage von 'hot-spot' und 'hot-moments' der Stickstoffemissionen aus Agrarböden von zentraler Bedeutung. Das vorliegende Projekt widmet sich Untersuchungen zum Einfluss der Herkunft und chemischen Zusammensetzung des organischen Materials auf Denitrifikationsprozesse. Insbesondere sollen die Auswirkungen spezifischer funktioneller OM-Fraktionen (gelöste, partikuläre und mineralassoziierte OM) auf den Beginn und das Ausmaß der Denitrifikation als auch auf die resultierenden Gasprodukte in definierten Inkubationsexperimenten untersucht werden. Durch Inkubation unterschiedlicher organischer Substrate als auch Bodenaggregatfraktionen sollen Denitrifikationsraten und minimale Sauerstoffkonzentrationen ermittelt sowie die Lokalisation der Denitrifikationsaktivitäten bestimmt werden. Die räumliche Verteilung der OM in Aggregaten wird dabei mittels Dünnschliffe und mikroskopischer Verfahren erfasst. Basierend auf den Eigenschaften der OM, welche aus der Elementaranalytik, 13C-NMR- und Röntgenphotoelektronenspektroskopie abgeleitet werden, und den Inkubationsexperimenten soll ein Qualitätsindex für die OM für die Implementierung in Denitrifikationsmodelle entwickelt werden.
Binnengewässer sind wichtiger Teil des globalen Kohlenstoffkreislaufs, da sie der terrestrischen Biosphäre entstammende Biomasse (organisches Material, OM) aufnehmen und umsetzen. Gelöstes OM beeinflusst Farbe und Zustand der Gewässer und subventioniert als Energieträger das aquatische Nahrungsnetz. Der Umsatz des OM wird von dessen oxidativer Mineralisation getrieben, daher wird die Sauerstoffverfügbarkeit als kritischer Einflussfaktor gesehen. Jedoch findet auch in sauerstofffreien, anoxischen Zonen rege Produktion, Mineralisation und Transformation von OM statt. Die chemische Zusammensetzung des OM wird in anoxischen Zonen auf spezifischen Reaktionspfaden transformiert. Zu diesen Pfaden gehört (1.) der bevorzugte Abbau von energiereichen OM-Fraktionen, (2.) die Anreicherung von mikrobiellem OM, sowie (3.) der Einbau von anaerob entstandenem Wasserstoff in OM. Anoxische Zonen sind in kontinentalen und marinen Gewässern bereits heute weit verbreitet. Ihre weitere Ausdehnung ist vorhergesagt. Trotzdem ist unklar, unter welchen Bedingungen die anoxischen Reaktionspfade aktiviert werden und wie sie gemeinsam den Kohlenstoffkreislauf und aquatische Ökosystemfunktionen beeinflussen. Ziel dieses Projekts ist es daher, das Zusammenspiel anoxisch ablaufender OM Transformationen aufzuklären. Zu diesem Zweck entwickeln wir eine OM Charakterisierung basierend auf der (Gibbs-) Energie seiner molekularen Bestandteile. Die Energieeigenschaften des OM dienen als Bezugssystem, mit dem sich aktive Reaktionspfade einschließlich ihre spezifischen Einflussfaktoren unterscheiden lassen. Auf Grundlage dieses Bezugssystems können wir die orts- und substratspezifischen Faktoren identifizieren, die mit der molekulare OM Zusammensetzung variieren. Entlang aquatischer Netzwerke werden wir dann analysieren, wie anoxische Zonen einen spezifischen Fingerabdruck im OM formen. Die Ergebnisse dieses Projekts werden eine neuartige, energiezentrierte Charakterisierung von organischem Material begründen. Damit können wir langfristig unser Verständnis des Umweltverhaltens von OM, insbesondere unter anoxischen Bedingungen, verbessern.
Zusammensetzung und Menge der organischen Bodensubstanz (OBS) werden durch die Landnutzungsform beeinflußt. Die OBS läßt sich nach ihrer Abbaubarkeit und nach ihrer Löslichkeit in verschiedene Pools einteilen. So kann die wasserlösliche organische Bodensubstanz (DOM) als Maßzahl für die abbaubare OBS herangezogen werden. Mit Natriumpyrophosphat-Lösung als Extraktionsmittel läßt sich ein weit größerer Anteil der OBS erfassen, da der stabilisierende Bindungsfaktor zwischen OBS und Bodenmineralen entfernt wird. Extrahiert man zuerst mit Wasser und anschließend mit Natriumpyrophosphat-Lösung, erhält man im letzten Schritt den schwer abbaubaren OBS-Anteil. Über die funktionelle Zusammensetzung der organischen Substanz dieser Pools und deren Abhängigkeit von Landnutzungsformen ist relativ wenig bekannt. Ziel der geplanten Untersuchung ist es, den Pool der löslichen abbaubaren und schwer abbaubaren OBS zu quantifizieren und deren funktionelle Zusammensetzung mittels FT-IR Spektroskopie zu erfassen. Die so gewonnenen Daten sollen der Validierung von Kohlenstoffumsatz-Modellen (z.B. Roth 23.6) dienen und die im Modell berechneten Pools um einen qualitativen Term ergänzen
Direkte Transportwege von der Troposphäre in die untere Stratosphäre von Wasserdampf und troposphärischen Spurengasen(z.B. ozonzerstörender Substanzen, wie beispielsweise sehr kurzlebige halogenierte Spurenstoffe)beeinflussen die chemische Zusammensetzung der oberen Troposphäre und unteren Stratosphäre außerhalb der Tropen (ExUTLS). Sogar relativ kleine Änderungen in Ozon und Wasserdampf in dieser Region, haben große Auswirkungen auf das Klima an der Erdoberfläche. Verschiedene direkte Transportwege werden derzeit diskutiert, wie z. B. quasi-horizontaler Transport aus der tropischen Tropopausen Region, horizontaler Transport aus dem Gebieten des asiatischen Monsuns und durch Konvektion induzierte Einträge. Jedoch ist unser derzeitiges Verständnis für diese Transportprozesse und ihre relativen Beiträge unvollständig. Im Rahmen unseres Projekts AMOS, möchten wir die zugrunde liegenden Transportprozesse für verschiedene vergangene (TACTS/ESMVal) und zukünftige HALO-Kampagnen (PGS, WISE) identifizieren und quantifizieren unter Berücksichtigung ihrer jahreszeitlichen und jährlichen Variabilität. Der Schwerpunkt unseres Projekts ist die WISE-Kampagne, die Transportvorgänge, die die chemische Zusammensetzung in der ExUTLS bestimmen, untersuchen wird. Im Rahmen unseres Projekts werden HALO Messungen mit mehrere (Kurz- und Langzeit-) Simulationen mit dem Lagrangen Modell CLaMS kombiniert. Die Implementierung von künstlichen Markern in CLaMS, mit denen man die Herkunft der Luftmassen bestimmen kann, zusammen mit hochaufgelösten HALO-Messungen von verschiedenen Kampagnen ist ein einzigartiges Werkzeug, um die verschiedenen Transportwege und Mischungsprozesse zu identifizieren. Im Rahmen von AMOS können deshalb die Auswirkungen dieser verschiedenen Transportprozesse auf die chemischen Zusammensetzung der unteren Stratosphäre quantifiziert werden.
Mikroplastik (Partikel im µm Bereich) entsteht durch verschiedenste Prozesse, insbesondere jedoch durch Abrieb und Erosion von Plastik. Dabei ist ein Eintrag über den Wasser- und Bodenpfad mittlerweile unbestritten. Jedoch weiterhin ungeklärt ist der tatsächliche Eintrag über den Luftpfad. Zwar belegen Studien das Vorkommen von Mikroplastik an weitentfernten Orten und lassen auch den Schluss eines zumindest teilweisen Transportes über die Luft zu, aber wie hoch dieser Beitrag tatsächlich ist bleibt zurzeit ungeklärt. Darüber hinaus spielt die Identifikation der Polymere und somit die Erfassung der Quellbeiträge eine entscheidende Rolle. Ziel des Projektes ist es den luftgetragenen Eintrag von Mikroplastik und deren Quellen an Hintergrundstationen des Luftmessnetzes zu bestimmen. Dafür sollen an ausgewählten Messstationen des Luftmessnetzes des Umweltbundesamts (UBA) plastikfreie Niederschlagssammler sowie Vorrichtungen zur Feinstaubprobenahme installiert und über den Projektzeitraum repräsentativ PM10 Feinstaub- und Niederschlagsproben gesammelt und deren chemische Zusammensetzung analysiert werden. Zusätzlich sind Analysen von Niederschlagsproben zu Vergleichszwecken vorzusehen. In der Studie soll zudem die Ergebnisse statistisch (deskriptiv und beurteilend) ausgewertet und eine mögliche Quellenidentifikation über die Inhaltsstoffe erarbeitet werden.
Verbessertes Verständnis der Emissionen von leichten flüchtigen organischen Verbindungen (VOCs) und deren genaue Zusammensetzung aus großen Populationszentren sowie deren chemische Veränderung windabwärts. Dies beinhaltet die Messung möglichst vieler VOCs mit unterschiedlichen Eigenschaften wie chemische Lebensdauern, chemische Eigenschaften (z.B. unterschiedliche Abbauprozesse wie z.B. Reaktion mit OH, NO3, O3, Photolyse), Wasserlöslichkeit (Auswaschung und/oder trockene Deposition), Dampfdruck (auswirkend auf Bildung und Wachstum von organischen Aerosolen). Eine wichtige Frage ist diesbezüglich die Rolle von biogenen Emissionen in asiatischen Megastädten. Die gesammelten Daten sollen mit Simulationen des neuen Klimamodells ICON-ART in Kollaboration mit der Modellgruppe des IMK (Institut für Meteorologie und Klimaforschung) verglichen werden. Hierbei geht es darum Schwachstellen in den verwendeten Emissionsdaten und der chemischen Prozessierung entlang der Transportpfade aufzudecken. Des Weiteren können hier auch die Wechselwirkungen mit organischen Aerosolen sowie Mischungs- und Verdünnungsprozesse mit Hintergrundluftmassen untersucht werden.Ausserdem sollen die Quelltypen und deren Aufteilung von europäischen und asiatischen Megastädten identifizert und quantifiziert werden. Unterschiede diesbezüglich werden erwartet und wurden bereits identifiziert (Guttikunda, 2005; von Schneidemesser et al., 2010; Borbon et al., 2013), z.B. aufgrund von unterschiedlichen Treibstoffen, PKW und LKW - Typen / Alter, Abfall-Zusammensetzungen / Management, Energieerzeugung, etc. Zum Beispiel ist Acetonitril ein verlässlicher Marker für Biomassenverbrennung und es wird vermutet, dass dessen Bedeutung in Asien wesentlich größer ist als in Europa. Eine weitere Frage ist, ob die photochemische Ozonbildung windabwärts von Megastädten durch NOx oder durch VOCs limitiert ist und wie verändert sich dies entlang der Transportpfade bzw. mit dem Alter der Luftmasse. Gibt es diesbezüglich allgemeine Unterschiede zwischen asiatischen und europäischen Megastädten und wie ist der Einfluss biogener Emissionen?
Bevölkerungsreiche Ballungszentren stellen konzentrierte Quellen für anthropogene Emissionen dar. Das Ziel der HALO-Mission EMeRGe ist die Untersuchung der Transportwege und der Umwandlungsprozesse der gas- und partikelförmigen Emissionen in den Abluftfahnen solcher Ballungszentren in der freien und oberen Troposphäre. Dieses Teilprojekt legt den Schwerpunkt auf die chemische Charakterisierung der Partikelphase mittels Aerosolmassenspektrometrie sowie auf die Untersuchung der Wolkenaktivierungseigenschaften der Partikel. Mit einem Compact Time-of-Flight Aerosol Mass Spectrometer (C-ToF-AMS) und einem Single Particle Soot Photometer (SP2) kann die chemische Zusammensetzung und die photochemische Prozessierung der Aerosolpartikel nahezu vollständig erfasst werden. Mikrophysikalische Partikeleigenschaften wie Größenverteilung und Anzahlkonzentrationen in verschiedenen Größenbereichen tragen zur Charakterisierung der Partikel bei. Die größenselektierten Messungen der Wolkenaktivierungseigenschaften der Partikel werden im Zusammenhang mit der beobachteten Änderung der chemischen Zusammensetzung (Oxidation) betrachtet, so dass der Einfluss der Emissionen auf die Wolkenbildung untersucht werden kann. Weiterhin wird untersucht, ob die Emissionen bis in die obere Troposphäre oder sogar in die Tropische Übergangschicht (Tropical Transition Layer, TTL) gelangen können, wodurch sie für den weiteren Transport in die untere Stratosphäre zur Verfügung stünden.
Die Lebensbedingungen der Baumvegetation in industriellen Ballungsgebieten sowie an Stadt- und Fernstrassen werden zunehmend unguenstiger. Eine natuerliche und zuverlaessige Informationsquelle fuer oekologische Veraenderungen stellen die Jahresringe der Baeume dar, die die Umwelteinfluesse in Form ihrer Struktur, Breite oder chemischen Zusammensetzung jahrgenau dokumentieren. Mit Hilfe dieses Konzeptes werden die Einwirkungen von Emissionen, Streusalz, Grundwasserabsenkungen usw. auf die Vitalitaet der Baeume rekonstruiert und beurteilt.
| Origin | Count |
|---|---|
| Bund | 2686 |
| Land | 35 |
| Wissenschaft | 27 |
| Zivilgesellschaft | 3 |
| Type | Count |
|---|---|
| Daten und Messstellen | 19 |
| Ereignis | 2 |
| Förderprogramm | 2614 |
| Text | 60 |
| unbekannt | 46 |
| License | Count |
|---|---|
| geschlossen | 83 |
| offen | 2650 |
| unbekannt | 8 |
| Language | Count |
|---|---|
| Deutsch | 2515 |
| Englisch | 414 |
| Resource type | Count |
|---|---|
| Archiv | 12 |
| Bild | 2 |
| Datei | 12 |
| Dokument | 46 |
| Keine | 1312 |
| Unbekannt | 3 |
| Webdienst | 2 |
| Webseite | 1371 |
| Topic | Count |
|---|---|
| Boden | 2070 |
| Lebewesen und Lebensräume | 1855 |
| Luft | 1681 |
| Mensch und Umwelt | 2738 |
| Wasser | 1481 |
| Weitere | 2741 |