API src

Found 82 results.

Related terms

H2020-EU.3.3. - Societal Challenges - Secure, clean and efficient energy - (H2020-EU.3.3. - Gesellschaftliche Herausforderungen - Sichere, saubere und effiziente Energieversorgung), Direct electrocatalytic conversion of CO2 into chemical energy carriers in a co-ionic membrane reactor (eCOCO2)

GHG emissions reduction policies to mitigate the alarming climate change can impact carbon-intensive industrial sectors, leading to loss of employment and competitiveness. Current multistage CCU technologies using renewable electricity to yield fuels suffer from low energy efficiency and require large CAPEX. eCOCO2 combines smart molecular catalysis and process intensification to bring out a novel efficient, flexible and scalable CCU technology. The project aims to set up a CO2 conversion process using renewable electricity and water steam to directly produce synthetic jet fuels with balanced hydrocarbon distribution (paraffin, olefins and aromatics) to meet the stringent specifications in aviation. The CO2 converter consists of a tailor-made multifunctional catalyst integrated in a co-ionic electrochemical cell that enables to in-situ realise electrolysis and water removal from hydrocarbon synthesis reaction. This intensified process can lead to breakthrough product yield and efficiency for chemical energy storage from electricity, specifically CO2 per-pass conversion greater than 85%, energy efficiency greater than 85% and net specific demand less than 6 MWh/t CO2. In addition, the process is compact, modular -quickly scalable- and flexible, thus, process operation and economics can be adjusted to renewable energy fluctuations. As a result, this technology will enable to store more energy per processed CO2 molecule and therefore to reduce GHG emissions per jet fuel tone produced from electricity at a substantial higher level. eCOCO2 aims to demonstrate the technology (TRL-5) by producing greater than 250 g of jet fuel per day in an existing modular prototype rig that integrates 18 tubular intensified electrochemical reactors. Studies on societal perception and acceptance will be carried out across several European regions. The consortium counts on academic partners with the highest world-wide excellence and exceptional industrial partners with three major actors in the most CO2-emmiting sectors.

Windenergieanlagen geregelt und umweltfreundlich demontieren

Der Rückbau von Windenergieanlagen verläuft in Deutschland unterschiedlich. Dadurch könnten Risiken für Mensch und Umwelt entstehen. Zudem kann Verunsicherung den Rückbau verteuern. Eine Studie für das Umweltbundesamt schlägt daher Angleichungen rechtlicher Vorgaben, Prüfung von Rückstellungen sowie Informationspflichten für Hersteller vor. Am Ende der Entwurfslebensdauer einer Windenergieanlage folgt entweder eine Laufzeitverlängerung um wenige Jahre oder ein Rückbau. Das betrifft irgendwann sämtliche der derzeit rund 30.000 installierten Anlagen. Die Studie „Entwicklung eines Konzepts und Maßnahmen zur Sicherung einer guten Praxis bei Rückbau und Recycling von Windenergieanlagen“ (⁠ UBA ⁠-Text 48/2023) schlägt eine Harmonisierung von Rechtsvorschriften vor, nennt unterschiedliche Modelle und bietet gute Grundlagen für Genehmigungsbehörden sowie auch die technische Normung. Die Empfehlungen der Studie bieten neben den bestehenden Betreiberverpflichtungen nach Immissionsschutz-, Bau- und Abfallrecht ein schlankes und doch tragfähiges Konzept für Rückbauten. Die Vorschläge sollen die Rückbauplanung und -ausführung unterstützen, ohne die Technikoffenheit und die Fortentwicklung der Abbruchtechnik einzuschränken. Die Vorteile des offen gehaltenen Konzepts liegen in der hohen Individualisierbarkeit – eine vollständige Standardisierung des Rückbaus sei nicht möglich. Als notwendig erachtet die Studie die Nennung von Rückbauten gegenüber den regionalen Bauordnungsbehörden sowie die Austragung deinstallierter Anlagen aus dem Marktstammdatenregister. Das Marktstammdatenregister muss zu jeder Zeit die aktuell installierte Leistung abbilden, regionale Raumordnungspläne müssen den Bebauungszustand der Windfläche jederzeit korrekt wiedergeben. Beide Forderungen sind in Expertenkreisen anerkannt, in der Praxis aber oft nicht umgesetzt. Betreiber und Rückbauunternehmen müssen diese Formalität aufmerksamer erfüllen. Für die Planung von Rückbauten sind genaue und anlagenindividuelle technische Informationen erforderlich, über welche die Hersteller verfügen dürften. In Fachkreisen umstritten ist die Frage nach der Herausgabe dieser Herstellerinformationen für die Rückbauplanung. Gemeint sind damit technische Daten, wie die Anlagenhöhe, der Rotordurchmesser, die Maße und Gewichte der mittels Krans zu senkenden Komponenten, Betriebsmittel und weitere. Bedenken bestehen hinsichtlich der Anforderungen an die Genauigkeit der Angaben, möglicher Veränderungen der Anlagen während der Laufzeit, und mit Blick auf Haftungsrisiken bei Irrtümern. Die Umsetzungsvorschläge der Studie variieren daher zwischen einer Informationsbereitstellung durch die Anlagenhersteller als Voraussetzung für eine Genehmigung und der gänzlich freiwilligen Übermittlung dieser Informationen auf Nachfrage der Rückbauunternehmen. Bei jedem Grad der Verbindlichkeit sind branchenweit abgestimmte und geordnete Datensätze hilfreich, denn sie schaffen Transparenz und gleiche Wettbewerbsbedingungen. Der Herstellerbranche wird daher die Festschreibung eines Informations-standards nahegelegt, nicht zuletzt um Inhalt und Umfang freigegebener technischer Informationen maßgebend zu bestimmen. Im Batterie- und Elektroaltgerätegesetz sowie in den Statuten der freiwilligen Selbstverpflichtung der Schaltanlagenhersteller und SF6-Produzenten ist geregelt, dass für bestimmte elektrische Komponenten sowie chemische Energiespeicher einer Windenergieanlage Regelungen der bestehenden Herstellerverantwortung greifen und die sich selbstverpflichtenden Unternehmen die F-Gase-Entnahme und ihr Recycling bei Bedarf unterstützen. Die gesetzlichen Vorgaben erleichtern somit die Entsorgung der chemischen und elektronischen Komponenten von Windenergieanlagen und entlasten damit auch Anlagenbetreiber und Rückbauunternehmen.

PROMETHEUS2018, Additive Herstellung von Protonen und Sauerstoff ko-ionische Leiter für CO2/H2O Ko-Elektrolyse und Umwandlung zu Methanol und andere Chemikalien

Eine vielversprechende Technologie, die regenerativ gewonnene Überschussenergie zu speichern und zu nutzen, ist deren effiziente Umwandlung mittels Ko-Elektrolyse von atmosphärischem oder industriellem CO2 und H2O in Kraftstoffe. Chemische Energiespeicherung kann mittels Transformation von elektrischer Energie in stoffliche Energieträger erfolgen. Sobald die Energie durch Umwandlung von Stoffen in einer Chemikalie gespeichert ist, sind verschiedene Möglichkeiten der Nutzung möglich, z.B. die Wiederverstromung, die Nutzung für Heizsysteme oder der Einsatz für mobile Anwendungen. Speziell die Herstellung von Chemikalien wie Methanol, Ethanol, Methan und Synthesegas, um nur einige Beispiele zu nennen, bietet eine Vielzahl von neuen Einsatzgebieten. Die Herstellung mittels Ko-Elektrolyse ist dabei eine sehr effiziente und vielversprechende Methode. Anstrengungen in der Forschung und Entwicklung sollten auf die Erhöhung der Prozesseffizienz gerichtet sein. Ziel des bei WZR geplanten Teilprojektes ist die Herstellung von Membranen mittels Additiver Fertigung. Auf diesem Wege soll eine deutliche Reduzierung der Herstellungskosten erreicht werden, da Montageprozesse entfallen. Um dieses Ziel zu erreichen, müssen mehrere Materialien verarbeitet und die Porosität des Gefüges variiert werden: Der grundlegende Aufbau besteht aus einem porösen Anodensubstrat, einem gasdichten Elektrolyt und einer porösen Kathodenschicht. Um dieses Ziel zu erreichen, werden parallel zwei Additive Verfahren betrachtet: Pulver-3D-Druck mit Partikel gefüllten Tinten und 3D-Extrusion. Da aber am Ende des Projektes eine industrielle Fertigung möglich sein soll, müssen neben verfahrenstechnischen Fragen auch wirtschaftliche Aspekte betrachtet werden. Da diese zum heutigen Zeitpunkt nicht zu bewerten sind, sollen zunächst beide aussichtsreichen Verfahren entwickelt und bewertet werden. Zum Projektende erfolgt die Festlegung auf ein Verfahren, das in die industrielle Umsetzung gelangen soll.

Metha-Cycle - Methanol-Kreislauf zur Speicherung erneuerbarer Energie, Teilprojekt: CO2-Quellen - Analyse verfügbarer Bezugsquellen von CO2 und Möglichkeiten zur energieeffizienten CO2-Speicherung sowie Realisierung einer Versuchseinrichtung

Ziel des Verbundprojektes ist die technologische Erschließung der Energie- und Wasserstoffspeicherung in Methanol. Diese Technologie ermöglicht gleichermaßen die kohlendioxidbasierte chemische Speicherung erneuerbarer Energien sowie eine dezentrale Energie- und Wasserstoffbereitstellung. Die Ziele des Teilprojektes D 'CO2-Quellen' sind die Analyse und Bewertung der CO2-Abscheidung und -speicherung. Diese Analyse erfolgt auf Basis einer umfangreichen Literaturrecherche sowie Berechnungen und Simulationen von aussichtsreichen Prozessen. Es sind nähere Betrachtungen zur energieeffizienten Abscheidung und Speicherung von CO2 aus der Dehydrierung von Methanol mittels physikalischer und chemischer Verfahren durchzuführen. Darüber hinaus soll die CO2-Abscheidung aus Verbrennungsprozessen, aus Prozessen der Hochtemperaturbrennstoffzellen vom Typ SOFC und aus der Luft evaluiert werden. Zum Abschluss der Entwicklung ist die Realisierung eines Versuchsaufbaus zur Abscheidung, vorrangig aus einem Methanolreformerprozess, und Speicherung von CO2 einschließlich umfangreicher Versuche geplant.

ACT ALIGN-CCUS: Beschleunigung des Wachstums CO2-armer Industrie durch CCUS, Teilvorhaben RWE: CO2-Wäsche-Optimierung und Demonstration der CCU-Kette

Das Projekt ALIGN-CCUS-Projekt vereint 30 Forschungsinstitute und Industrieunternehmen aus fünf Ländern mit dem gemeinsamen Ziel, den schnellen und kosteneffektiven Einsatz von CO2-Abscheidung, -Nutzung und -Speicherung zu unterstützen. Als FuE-Verbundvorhaben mit starker Industriebeteiligung werden alle Bausteine der CCUS-Prozesskette (CCUS: Carbon Capture Usage and Storage) untersucht und in einem ganzheitlichen Ansatz über die Grenzen der Subprozesse hinweg optimiert. Dies umfasst insbesondere auch Fragen zur weiteren Optimierung der CO2-Abtrennung in Anlagentests, öffentlichen Akzeptanz, Kommunikation über CCUS, Lebenszyklusanalysen und die Untersuchung von Umsetzungsoptionen von CCUS in Regionen der beteiligten Mitgliedsstaaten. Für Deutschland wurde hierfür Nordrhein-Westfalen als möglicher Ort für die Umsetzung von CCU ausgewählt. Die CO2-Emisionen lassen sich nur dann deutlich, nachhaltig und gesellschaftlich akzeptabel senken, wenn alle Sektoren - Energie, Industrie und Transport - dazu beitragen. CCU kann dabei einen Sektor-übergreifenden Nutzen entfalten, der über Klimaschutz hinausgeht. Kohlenstoff kann mehrfach genutzt und fossile Energieträger und Rohstoffe substituiert werden. Chemische Langzeitspeicherung bei einem hohen Angebot von Strom aus fluktuierender regenerativer Erzeugung und Spitzenlast- bzw. Backup-Stromerzeugung aus CCU-Kraftstoffen mit hoher Energiedichte stabilisieren bei Engpässen die Stromnetze. CCU-Kraftstoffe sind darüber hinaus als Plattformchemikalien in verschiedenen Wirtschaftszweigen vielfältig anwendbar, insbesondere Methanol, Dimethylether (DME) und Oxymethylenether (OME3-5). Durch die chemischen Eigenschaften von DME / OME3-5 kann insbesondere der NOx / Ruß-Zielkonflikt innermotorischer Verbrennung gelöst werden, woraus sich ein hohes Emissions-Reduktionspotential im Transportsektor ergibt. CCU und Sektorkopplung eröffnen zudem eine Chance, den Transformationsprozess der Strom- und Rohstoffversorgung und des Transportsektors von 'fossil' auf 'erneuerbar' unter Nutzung existierender Infrastruktur gleitend zu gestalten, die Finanzierbarkeit sicherzustellen und Strukturbrüche mit Risiken für die Versorgungssicherheit zu vermeiden. Als Teilprojekt von ALIGN-CCUS wird eine CCU-Demonstrationsanlage gebaut und die Nutzung des CCU-Produktes Dimethylether (DME) als emissionsarmer Treibstoff für die Stromerzeugung und als Rohstoff für den Transportsektor realisiert.

thermische Energiespeicher: poMMes: Synthese und Charakterisierung poröser Metall-Metallsalz-Verbünde für chemische Wärmepumpen und Wärmespeicher, Teilvorhaben: Synthese und makrokinetische Untersuchung von Adsorptionsmitteln mit metallischer Trägerstruktur

Die Bereitstellung von Raum- und Prozesswärme sowie Warmwasser stellt den größten Anwendungsbereich beim Endenergieverbrauch dar. Durch den Einsatz von Wärmepumpen kann ein Teil dieses Energiebedarfs durch Umweltwärme oder Niedertemperaturabwärme substituiert werden. Einen vielversprechenden Ansatz stellen thermisch angetriebene Wärmepumpen und Kältemaschinen auf der Basis reversibler chemischer Reaktionen oder Sorptionsprozesse dar. Zur dauerhaften Gewährleistung eines guten Wärme- und Stofftransportes müssen die Arbeitsstoffe auf poröse Trägerstrukturen aufgebracht werden. Bisher werden dafür vor allem Silicagel und Zeolithe verwendet, die aufgrund geringer Wärmeleitfähigkeiten die erreichbare Leistungsdichte solcher Systeme limitieren. Im Forschungsvorhaben sollen daher neue Arbeitsstoffe für chemische Wärmepumpen auf Basis poröser Metallstrukturen untersucht werden, die eine Verbesserung der Eigenschaften versprechen. Dieses Teilprojekt beschäftigt sich mit der Synthese und Charakterisierung dieser Metall-Metallsalz-Verbünde. Salze ermöglichen mit Wasserdampf, Ammoniak oder Alkoholen die Nutzung verschiedener Gas-Feststoff-Reaktionen, die sich für Anwendungen in Wärmepumpen, Kältemaschinen oder thermochemischen Speichern im Niedertemperaturbereich eignen. Das Ziel ist die Erzeugung von reaktiven Salzschichten auf porösen metallischen Schaum- oder Faserstrukturen. Hierzu sollen unterschiedliche Synthesepfade und deren Einfluss auf die Eigenschaften und Haftung der Salzschichten untersucht werden. Die hergestellten Verbundmaterialien werden anschließend experimentell charakterisiert, um Aussagen zu den Wärmeleiteigenschaften, zur Kinetik der Reaktions- bzw. Adsorptionsvorgänge und zur erreichbaren Leistungs- und Speicherdichte zu treffen. Anhand der Ergebnisse sollen Optimierungsmöglichkeiten abgeleitet und ein Simulationsmodell zur Auslegung von Adsorber-Wärmeübertragern auf Basis der neuen Verbundmaterialien erstellt werden.

'GREEN BELT' - Dezentrale Gasturbinenanlagen für schnelle Reserven im Verbund mit erneuerbarer Energieumwandlung - Validierung der Technologien, Teilvorhaben: Projektkoordination und Validierung

Der Projektvorschlag GREEN BELT ist Teil eines von vorneherein zweiphasig angelegten Vorhabens und ergänzt die Arbeiten der ersten Phase 'GRÜNE ERDE' (FKZ 03ET7030A-C), in der gemeinsam mit MTU im Unterauftrag und den Projektpartnern RU Bochum und DLR Stuttgart eine Industriegasturbinenanlage der Leistungsklasse kleiner als 25MW für den Einsatz in kompakten dezentralen Turbinenanlagen entwickelt wurde. In der ersten Phase des Projektes (FKZ 03ET7030A-C), die kurz vor dem Abschluss steht, wurde die Methodenentwicklung und Erprobung neuer Technologien und Verfahren auf Komponentenebene vorangetrieben. Die vorgeschlagene zweite Phase ist für 18 Monate konzipiert und um den Testzeitraum des Technologieträgers im Oberhausener Testzentrum der MAN angelegt. Parallel zu den eigentlichen Validierungstests entwickelt MAN gemeinsam mit seinen Partnern RU Bochum, TU Berlin und Fraunhofer-Institut Freiburg wichtige Modelle, um die Auswertung und Verwertung dieser Testergebnisse optimal auszuschöpfen. Die bereits in der ersten Phase begonnenen Arbeiten über den Betrieb der Gasturbine mit synthetisch erzeugten Gasen, die bei der chemischen Energiespeicherung entstehen und zur Rückverstromung mit Gasturbinen bereit stehen, werden vertieft weitergeführt und ein Vorhersagetool ertüchtigt und validiert. An der TU Berlin werden dazu an einem geeignet skalierten Modell ergänzende experimentelle Untersuchungen durchgeführt, die zusätzliche Eingangsgrößen für ein Vorhersageverfahren generieren, mit dem der Betrieb der Gasturbine bei veränderten Gaszusammensetzungen und die damit verbundenen optimalen Einstellungen der Brennkammer realitätsnah simuliert werden kann. Die RU Bochum widmet sich der instationären numerischen Simulation der gesamten Strömung in der Hochdruckturbine, um die Ausbreitung der heißen Strähnen aus den Brennkammern zu verfolgen. Das Fraunhofer-Institut Freiburg qualifiziert Werkstoffe für den Einsatz in der Brennkammer im Hinblick auf stärker zyklische Beanspruchungen.

Carbon2Chem-L0, Im Rahmen der Plattform für Nachhaltige Chemische Konversion PLANCK - Ein Projekt zur Technologieentwicklung, um Hüttengase aus der Stahlerzeugung für die Synthese chemischer Produkte zu nutzen

eleMeMe - Dezentrale Entkopplung von Stromerzeugung und Energieversorgung durch Kopplung von onsite-elektrochemischer Methanolerzeugung und Methanolbrennstoffzellen, Teilvorhaben: Entwicklung eines Latentwärme- und CO2-Speichers sowie von Katalystoren zur elektrochem. Methanolsynthese

Ziel des Projektes ist es, die technische Machbarkeit einer dezentralen Entkopplung von Stromerzeugung und Energieversorgung durch die Entwicklung eines neuartigen Energiesystems zu demonstrieren. Zur Abdämpfung fluktuierender Stromerzeugung soll hierfür die etablierte Technologie der Methanolbrennstoffzelle mit einem neuen technisch-chemischen Verfahren zur elektrochemischen Methanolerzeugung verbunden werden. Als 'Batterie' bzw. chemischer Energiespeicher fungiert das System CO2/Methanol, welches den Kreislauf weder verlässt noch zugeführt werden muss. Zur Steigerung der Gesamteffizienz des Systems wird ein Speicherkonzept basierend auf einem Latentwärmespeicher zur effizienten Nutzung der Brennstoffzellenabwärme in mehreren Wärmesenken integriert.

Carbon2Chem-L0, Technologien zur Nutzung von Hüttengasen der Stahlerzeugung für die Synthese chemischer Produkte und Systemintegration

1 2 3 4 57 8 9