s/chemischer-reaktor/Chemischer Reaktor/gi
Die Arbeitsziele des Teilvorhabens sind der Entwurf und Optimierung der Reaktionstechnik des CO2-Konverters. Ausgehend von den Abstimmungen hinsichtlich Verfahren, Energiebilanzen und Schnittstellen zu Beginn des Vorhabens wird ein chemischer Reaktor entworfen, der die notwendige Infrastruktur wie geeignete Katalysatoren, Elektrolysezelle, thermisches Management und Schnittstelle zur ThermaLab-Plattform-Technologie bereitstellt. Im ersten Schritt wird dazu der optimalste Arbeitspunkt der Reaktion für unterschiedliche Metall-Katalysatoren identifiziert und diese werden dann gegeneinander verglichen. Die dabei gewonnen Kenntnisse bilden die Grundlage für die Festlegung und Optimierung des Reaktionsdesigns hinsichtlich Elektrodenform, -material und Beschichtung sowie Zelldesign. Die Elektrolysezelle wird dabei für bestimmte Reaktionsparameter (z.B. pH-Wert, Druck, Temperatur) dimensioniert, wobei die Kombination der Reaktionszelle mit der Gensoric Technologie hier zusätzliche Betrachtungen notwendig macht wie z.B. die elektrische Impedanz, Elektrodenoberfläche, elektrisch und chemisch stabile Kontaktierungen und die Minimierung von unerwünschten Nebenreaktionen. In diesem Zusammenhang werden geeignete Messmethoden untersucht, welche die Parameter der Reaktion überwachen und zur Steuerung des Ablaufs der Reaktion genutzt werden können. Anschließend werden die Anforderungen in ein erstes Reaktor-Prototypen-Design zusammengefasst. Die konzeptionellen Reaktoransätze, Flow- und Batch-Reaktor, werden dazu zum einen auf ihre Leistungsfähigkeit in Hinblick auf Ausbeute und Steuerbarkeit getestet und zum anderen hinsichtlich der Kompatibilität des Gesamtdemonstrators und mit weitergehenden wirtschaftlichen Anwendungen verglichen. Im letzten Schritt wird dann die Auswahl des Reaktors mit optimierten Parametern in das Gesamtsystem als Demonstrator zur Darstellung der Machbarkeit integriert.
Der Waerme- und Stoffuebergang in einer pulsierenden Stroemung ist bis zum Doppelten hoeher als in einer stationaeren Stroemung. In einem Pulsationsreaktor werden mittels der pulsierenden Verbrennung diese Vorteile verfahrenstechnisch genutzt. Fuer gewisse Anwendungsfaelle werden jedoch hoehere Verweilzeiten als die hier erzielbaren 100 bis 500 ms benoetigt. Der Pulsierende Zyklonbrenner kombiniert einen Pulsbrenner zur Erzeugung einer pulsierenden Stroemung mit einem Zyklon zum Erreichen einer groesseren Verweilzeit bis zum Sekundenbereich. Hierbei dient ein Pulsbrenner als Treibstrahlerzeuger fuer einen Injektor, mit dem sowohl der thermisch zu behandelnde Feststoff als auch die Verbrennungsluft fuer die Nachverbrennung (oder gestufte Verbrennung) in den Zyklon gefoerdert wird.
In einer pulsierenden Stroemung sind gegenueber einer stationaeren erhoehte Waerme- und Stoffuebergaenge moeglich. Die Erfahrungen der Bearbeiter mit der thermischen Kurzzeitbehandlung (100-500 ms) von Stoffen in einem Pulsationsreaktor (Abfallbehandlung und gezielte chemische Reaktionsablaeufe) wurden auf die Entwicklung eines pulsierenden Zyklonbrenners uebertragen, in dem Verweilzeiten bis 1000 ms erreicht werden. Im errichteten Versuchsstand wurden Versuche durchgefuehrt zur Mineralisierung von Klaerschlamm und Giessereistaeuben; Trocknung von Kieselgur; Dehydratisierung von Kaolin; Decarbonatisierung von Kalk. Die Behandlung zum Trocknen und Dehydratisieren inerter Stoffe kann gestuft vorgenommen werden. Der pulsierende Zyklonbrenner koennte auch als Stromtrockner kompakter Bauart dienen.
1. Zielsetzung: Druckbehaelter oder Chemiereaktoren koennen ueber Sicherheitsventile oder Berstscheiben bei ueberschreiten des hoechstzulaessigen Druckes notentspannt werden. Die dabei freigesetzten Stoffe koennen in viele Faellen aufgrund ihrer Soffeigenschaften (z.B. toxisch, explosionsfaehig) auch in Notsituationen nicht in die Atmosphaere entlastet werden. Ziel einer solchen sicherheitstechnischen Massnahmen muss es sein, die notentspannten Substanzen innerhalb der Anlage zurueckzuhalten und somit eine Gefaehrdung von Mensch, Umwelt und Anlage zu vermelden. Notentspannte Daempfe bzw. Dampf-Inertgas-Gemische koennen durch Kondensation zurueckgehalten werden. Im genannten Forschungsvorhaben erfolgte die Kondensation durch intensive Vermischung von Dampf und Kuehlfluessigkeit in einem Strahlkondensator. Ziel des Forschungsvorhabens ist die Bestimmung der Kondensationswirksamkeit verschiedener Strahlkondensatoren in Abhaengigkeit von Vordruck, Inertgasgehalt, Kuehlfluessigkeitstemperatur und anderen Einflussfaktoren. 2. Arbeitsprogramm: Das Forschungsvorhaben umfasst neben der Detailplanung und dem Aufbau einer Technikumsanlage die systematische Untersuchung mit den Stoffsystemen Methanol/N2/H2O/und Frigen/N2/H2O unter stationaeren bzw. transistenten Versuchsbedingungen. Begleitend erfolgt eine theoretische Aufarbeitung der Waerme- und Stoffaustauschvorgaenge in einem Strahlkondensator. 3. Stand der Arbeiten: Das Forschungsvorhaben ist nahezu abgeschlossen. Die untersuchten Strahlkondensatoren eignen sich sehr gut zur Direktkondensation notentspannter Daempfe. Auch unter extremen Bedingungen wie z.B. sehr hohen Anteilen nichtkondensierbarer Gase koennen die Dampfanteile noch nahezu vollstaendig kondensiert werden. Die vorhandenen experimentellen Ergebnisse koennen in Verbindung mit dem theoretischen Modell als Dimensionierungsgrundlagen fuer einen Einsatz bei grosstechnischen Notentspannungssituationen herangezogen werden.
Synthetic natural gas from wood-How can the synthesis be optimised? The production of bio natural gas as a fuel and combustible made of biomass that is rich in lignin presents an interesting alternative to the use (combustion) of biomass purely as a source of energy. In this project, researchers examine how the chemical reactions, the mass transfer and the fluid dynamics in fluidised bed reactors mutually influence each other. In experiments, they check whether the reactor simulation mirrors the actual processes precisely enough. This is important for optimising processes for the production of bio natural gas with the help of simulations. Background Woody biomass containing lignin, such as wood and straw, can so far only be transformed into a combustible product gas via thermochemical processes such as gasification. From the wood gas thereby gained, a synthetic natural gas is made via fluid bed methanation. This so-called bio-SNG (synthetic natural gas) can be fed directly into the existing natural gas network and is available as a renewable and CO2-neutral substitute for conventional fossil natural gas and as fuel for natural gas vehicles. The fluid bed methanation, during which wood gas is transformed into methane, works well at the pilot scale, but further research is necessary before it can be implemented in larger production plants. Aim The goal of the experiments is to collect on a 160 kW pilot plant data of sufficiently good quality that will enable researchers to validate the computer models. These models are used to upscale the fluid bed methanation to the scale of commercial plants and to optimise processes. During the experiments, the researchers will vary temperature, pressure, gas flows and gas composition. For process optimisation, the researchers will measure the fluid dynamics, the axial temperature and the gas phase concentration profiles and will use a catalyst sampling system. Significance The computer modules validated via the measurements on the pilot plant enable researchers to derive meaningful model experiments in the perspective of the 'observing passenger'. In these experiments, a small amount of a catalyst is exposed to a periodically changing gas mixture, which is what happens to the catalyst when there is movement in the fluidised bed reactor. This innovative approach can be applied to all chemical reactors with moving solids.
The scope of this project is to split CO2 using concentrated solar energy in a two-step cycle with metal oxide redox reactions. The first step is a high temperature process driven by concentrated solar energy where a metal oxide is converted to a lower-valence metal oxide or metal and O2. The lower-valence metal oxide or metal is then reacted with CO2 in the second, non-solar, step to produce CO and the initial metal oxide. The CO can be further processed to produce liquid fuels and the initial metal oxide is recycled back to the first step. The net reaction of the cycle is CO2=CO+0.5O2 with the CO and O2 produced in different steps, bypassing problematic gas separation. This project focuses on quantifying the maximum efficiencies of such cycles using thermodynamics, determining the rate at which reactions in the second step proceed with chemical kinetics, and designing a chemical reactor for the second cycle step. Further work will focus on modifying the second step to chemically reduce both CO2 and H2O in competitive reactions with the lower-valence metal oxide or metal to produce synthesis gas (mixtures of CO and H2).
The main objective of the project is to investigate, assess and enhance the potentiality of promising technological options (i.e., technologies, processes and concepts) for the treatment of industrial wastewater with the specific aim to provide tailor-mad e solutions to end-users for a wide range of wastewaters. Such solutions will be essentially based on the optimised integration of the investigated options and on technological improvements with respect to treatment system components, operation and control. Referring to the investigated options and the envisaged technological solutions, the project's goals are: -Investigating and enhancing the performances of promising wastewater treatment options such as aerobic granulation, integrated advanced oxidation processes (AOP) and membrane-based hybrid processes -Achieving fundamental and technological knowledge advancements necessary for advanced wastewater treatment application in different industrial sectors -Assessing the economic and environmental sustainability of promising wastewater treatment options -Developing integrated tailor-made solutions for end-users in different industrial sectors -Transferring the developed know-how to potential end-users inside and outside the project -Favouring their actual implementation for enhancing the EU Water Industry competitiveness. In order to achieve such goals, coordinated research activities will be carried out on selected options treating different wastewater. The experiences from such activities will be merged to define tailor-made solutions for end-users in different industrial sectors. A major goal will be the definition of treatment needs and framework conditions for a wide range of wastewaters based on the specific features of the options investigate d (i.e., aerobic granulation, AOP combined processes, membrane contactors, membrane chemical reactors). Prime Contractor: Consiglio Nazionale delle Ricerche, Department of Bari, Water Research Institute, Roma, Italien.
The spectroscopy system proposed is aimed at measuring the spectral extinction coefficient, the absorption coefficient, the scattering phase function, and the bi-directional reflectivity as a function of wavelength and direction. The current system comprises a double VIS-IR lamp coupled to a double monochromator as the radiation source, collimating/focusing lenses, a sample group, and a detector. It enables measurements of spectral transmittance in the wavelength range 0.3-4 micron for materials of moderate optical thickness such as reticulate porous ceramics and particle clouds. The upgrade proposed will enable the extension of the spectral range to 0.2-10 micron, the measurements of directional characteristics, and investigation of highly-attenuating materials. The proposed upgraded system will be unique in its capabilities to measure accurately the radiative properties of fluidized beds, packed beds, aerosol flows, porous structures, reticulate ceramics, micro channels, and other solid-gas configurations that are used in high-temperature solar chemical reactors.The significance of the research lies in the advancement of the thermal sciences applied to solar chemical technologies that will lead to cleaner, more efficient, and sustainable energy utilization.
Origin | Count |
---|---|
Bund | 24 |
Type | Count |
---|---|
Förderprogramm | 24 |
License | Count |
---|---|
offen | 24 |
Language | Count |
---|---|
Deutsch | 19 |
Englisch | 5 |
Resource type | Count |
---|---|
Keine | 24 |
Topic | Count |
---|---|
Boden | 10 |
Lebewesen & Lebensräume | 10 |
Luft | 10 |
Mensch & Umwelt | 24 |
Wasser | 8 |
Weitere | 24 |