API src

Found 28 results.

Modellhafter Einsatz von 'gasbetriebenen Fahrzeugen'

Verminderung von schwermetallhaltigen Emissionen durch Gewebefilter der Herstellung von Leuchtstoffen. Der bei der Herstellung von Leuchtstoffen entstehende Abgasstrom, der Antimonverbindungen, anorganische Chlor- und Fluorsalze, Salzsaeure und Ammoniak enthaelt, wird ueber Materialabscheider zur Staubrueckgewinnung durch Abgassammelleitungen erfasst und zur Staubentfernung in Materialabscheider geleitet. Bedingt durch die verschiedenartige chemische Belastung der Abgase sowie durch die Tatsache, dass die Antimonverbindungen aufgrund ihrer hohen Fluechtigkeit durch das Filter sublimieren, ist eine Chemisorption vorgesehen. Als Additiv soll Calciumhydroxid eingesetzt werden. In einer zentralen Gewebefilteranlage werden die schwermetallhaltigen Abgase auf einen Reststaubgehalt von max. 2 mg/m3 gereinigt. Das Abgasreinigungskonzept fuehrt gleichzeitig zu einer Verminderung der Abluftmenge um mehr als 50 Prozent. Ausserdem werden Staubmessgeraete mit optischer und akustischer Alarmgabe eingebaut.

Entwicklung einer Prüfmethode zur Ermittlung der technischen Adsorptionskapazitäten von Hochleistungssorbentien für elementares Quecksilber

Entwicklung und Charakterisierung von oxidischen Katalysatoren zur Reduktion von Stickoxiden in Industrieabgasen

Es soll die Funktionsweise von Katalysatoren zur Stickoxidreduktion auf Spinellbasis (Cu, Ni) verstanden werden, und durch geeignete Modifikation sollen Aktivitaet und Lebensdauer, auch Resistenz gegen Schwefelverbindungen, verbessert werden. Dazu werden Strukturuntersuchungen an frischen und gebrauchten Katalysatoren (Roentgenbeugung, ESCA, UV-VIS-Spektren, ESR) durchgefuehrt und ergaenzt durch das Studium von Chemiesorptionsvorgaengen (IR-Spektroskopie, temp. programmierte Desorption und Reduktion). Schliesslich werden Katalysatortests unter Standardbedingungen gefahren.

Dotierte und imprägnierte Materialien

Teilprojekt C^Maßgeschneiderte Inhaltsstoffe: ECOX2: Enzymatische und chemische Oxidationskaskade in der Gasphase - Phenol aus Biogas, Teilprojekt B

Ziel des Verbundprojektes ist die Entwicklung eines chemisch-biotechnischen Verfahrens zur Herstellung von Phenol aus Biogas. In einem ersten Schritt sollen aus Biogas chemokatalytisch Benzol und die Nebenprodukte Ethen und Naphthalin hergestellt werden. In einem zweiten biotechnologischen Schritt sollen Benzol in Phenol sowie die Nebenprodukte in die Wertstoffe Ethylenoxid und Naphthol umgesetzt werden. Die Ziele des Teilprojekts sind: i) Aufbau einer Testanlage, ii) Einsatzfähige Single-Site Katalysatoren sowie iii) Produktion von Phenol, Naphthol und Ethylenoxid aus Biogas durch Kopplung von Chemo- und Biokatalyse. Für letzteres Ziel optimiert LIKAT drei Klassen von Katalysatoren auf maximale Selektivität für Benzol bei höchstmöglichem Umsatz von Biogas bzw. Methan. MLU stellt eine lösliche Methanmonooxygenase zur Verfügung und screent nach weiteren Benzol und Naphthalin oxidierenden Enzymen, welche rekombinant gewonnen werden sollen. IGB ist zuständig für das Screening nach weiteren Ethen oxidierenden Enzymen, die Untersuchung und Optimierung der Ganzzellkatalyse durch methanotrophe Mikroorganismen, sowie Aufbau und Betrieb einer Versuchsanlage zur Herstellung aller Endprodukte. Danach sollen die in den Teilprojekten erreichten Ergebnisse in der Versuchsanlage durch Kopplung der Chemo- und Biokatalyse vereinigt werden. Die Arbeitsplanung von LIKAT umfasst im Einzelnen folgende Arbeitspakete: 1) Aufbau des Teststandes für die Methanaromatisierung; 2) Synthese geeigneter Single-Site-Katalysatoren, wie Fe, Mo und vergleichbare, auf Trägermaterialien, wie SiO2, SiC, Kohlenstoffallotrope, Zeolithe; 3) Katalysatorcharakterisierung (XRD, BET, TG/DSC, XPS, UV-vis, IR/Raman, Chemisorption, TEM, XANES/EXAFS); 4) Katalysatortests im breiten Parameterraum 5) Optimierung von Katalysatorsynthese und Austestung sowie 6) Chemo- und Biokatalytische Kopplung.

Untersuchungen zur Effizienzsteigerung bei der Rückgewinnung von NE-Metallen und seltenen Erden aus festen Verbrennungsrückständen durch Einsatz unkonventioneller Aufbereitungsverfahren wie Bioakkumulation oder -flotation

Im Rahmen dieses Vorhabens sollen bisher nur im Ansatz erhobenen Daten zum Einsatz unkonventioneller Verfahren (z.B. sogen. Grüne Biotechnologie wie Bioakkumulation und Bioflotation) bei der Rückgewinnung von NE-Metallen und seltenen Erden (u.a. Neodym) aus festen Rückständen von Siedlungsabfallverbrennungsanlagen systematisch untersucht und durch Versuchsreihen ergänzt werden. Ziel ist es, die aus einem abgeschlossenen UFOPLAN-Vorhaben ableitbaren Ansätze einer verbesserten Metallrückgewinnung aus der Feinfraktion der Verbrennungsrückstände hinsichtlich ihrer qualitativen und quantitativen Perspektiven darzustellen und systematisch die Einsatzmöglichkeiten der sogenannten 'Grünen Biotechnologie' zu beschreiben. Ergänzend zum theoretischen Ansatz sollen Versuchsreihen durchgeführt werden, die eine Abgrenzung zwischen Bioakkumulation und Bioflotation ermöglichen. Zusätzlich soll eine Abgrenzung zur Chemisorption erfolgen, um auch die Möglichkeit des Einsatzes sauer Abgaswäscherflüssigkeiten zur Metallabscheidung zu betrachten. Die im Vorhaben zu ermittelnden Daten und Erkenntnisse sollen als Grundlage für eine anzustrebende großtechnische Umsetzung der Verfahrenskonzepte zur Metallabtrennung dienen und zur Weiterentwicklung des Standes der Technik der Metallrückgewinnung aus der Abfallverbrennung beitragen.

05K2016 - NUKFER - Neue Probenumgebungen und Röntgenoptiken für die resonante Kernstreuung zum Studium von geologisch-, biologisch- und nanotechnologisch-relevanten eisenbasierten Systemen unter Reaktionsbedingungen, Teilprojekt 3

MABMEM: Entwicklung einer Material - Auswahlbox zur Herstellung von Hochleistungsmembranen für die Wasseraufbereitung, MABMEM: Entwicklung einer Material - Auswahlbox zur Herstellung von Hochleistungsmembranen für die Wasseraufbereitung

Katalytische Selektivoxidation von Detergentien, Teilvorhaben 2: Anwendungstechnische Untersuchungen

Ziel des Projektes ist es zu prüfen, inwieweit bestimmte Detergentienklassen durch innovative ressourcen- und umweltschonende katalytische Oxidationsverfahren mit Gold-basierten Katalysatoren hergestellt werden können. Alle relevanten Parameter sollen zunächst an einem Modellsystem studiert werden und anschließend auf andere Detergentienklassen übertragen werden, um eine Basistechnologie zur Selektivoxidation von Detergentien zu schaffen. Durch Variation der Substrate sollen Erkenntnisse zur Aktivität, Selektivität und Langzeitstabilität der Katalysatoren erlangt werden, die durch systematische Variationen (Trägermaterial, Metalle und Metallkombinationen, Katalyatorpräparation) optimiert werden sollen. Rückkopplungen werden durch Charakterisierungsmethoden (TPR, Chemisorption, ICP, TEM, XPS) erhalten. Die reaktionstechnische Optimierung soll in batch und kontinuierlichen Reaktoren erfolgen. Anwendungstechnische Untersuchungen der Produkte sollen die Qualität des Herstellungsprozesses erhöhen. Im Erfolgsfall steht eine neue Basistechnolgie zur ressourcen- und umweltschonenden sowie wirtschaftlichen Herstellung von Detergentien aus nachwachsenden Rohstoffen zur Verfügung.

FP1-ENNONUC 3C, Catalyst development for selective conversion of syngas to mainly aromatic hydrocarbons

Objective: Development and characterization of zeolite-modified fischer-tropsch catalysts with a high selectivity for aromatic hydrocarbons under conditions similar to fischer-tropsch synthesis. General information: formation of aromatic hydrocarbons via zeolite modified ft catalysts is well known, but the selectivity is low (ca 30 percent). Higher selectivities were achieved only when zeolites were combined with catalysts for methanol synthesis, but then pressures and temperatures similar to those usually applied in methanol synthesis were required. The present project aims at applying conditions similar to ft synthesis. Modified fe/mn and fe/v-oxide catalysts combined with zsm-5-type-zeolites of high silica to alumina ratio will be used, 1.- as composite catalysts (micro-mixed on molecular scale), 2.- as mechanically mixed catalysts (macro-mixed material), and 3.- the two catalysts distributed on two different catalytic reactors (dual bed operation). The composite catalysts will be tested catalytically and characterized by their physico-chemical surface properties before, during and after catalytic reaction. These informations are expected to serve as a feed-back in design and optimization of catalysts. Achievements: A high pressure apparatus has been developed for synthesis gas experiments. The whole apparatus is controlled by a minicomputer, to be able to work at constant carbon monoxide conversion or at constant space velocity. For surface analysis an Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), ion scattering spectrometry (ISS) apparatus has been additionally equipped with a reaction chamber to conduct in situ synthesis gas experiments. The pressure dependence of selectivity and activity of an iron manganese oxide catalyst has been investigated. A maximum in activity is observed at a synthesis gas pressure of 1.5 MPa. The surface concentration, as determined by XPS and ISS of the catalysts is strongly altered by pre-treatment conditions and the addition of copper or potassium. The following catalytic systems were developed, tested in the Fischer Tropsch (FT) reaction and characterized by X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and carbon monoxide (CO) chemisorption: iron/manganese oxides impregnated with cobalt, copper, lead, rhodium and potassium respectively; cobalt/manganese oxide catalysts with different compositions to maximise the formation of olefinic products; rhodium/silicon dioxide catalysts doped with rare earth compounds and thorium dioxide to maximise the formation of oxygenates; mixtures of the previous catalysts with pentasil zeolites to form aromatic hydrocarbons. 2 modes of operation were tested: a single bed reactor with a mechanical mixture of the components and a dual operation with the FT component and the zeolite respectively in separate reactors. ... Prime Contractor: Ruhr Universität Bochum, Technische Chemie, Fakultät für Chemie; Bochum; Germany.

1 2 3