API src

Found 372 results.

Airglow-Forschung mit astronomischen Spektren

Das Projekt "Airglow-Forschung mit astronomischen Spektren" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Augsburg, Institut für Physik.In der oberen Erdatmosphäre ab 70 km herrschen spezielle Bedingungen, die ein Leuchten im sichtbaren und infraroten Licht verursachen. Die Airglow genannten Emissionen werden durch solare extreme Ultraviolettstrahlung hervorgerufen, die Luftmoleküle zerstört und Atome ionisert. Daraufhin finden diverse chemische Reaktionen und physikalische Prozesse statt, die teilweise zur Lichtemission durch verschiedene Atome und Moleküle führen. Bedeutend sind z.B. die Beiträge durch Sauerstoff- und Natriumatome sowie Hydroxyl-, Sauerstoff- und Eisenoxidmoleküle. Airglow ist zeitlich und räumlich sehr variabel und die damit verbundenen komplexen Prozesse sind noch nicht vollständig verstanden.Die direkte Erforschung der oberen Atmosphäre ist schwierig, da nur Raketen diese Höhe erreichen können. Daher werden hauptsächlich erd- und satellitengebundene Fernerkundungsmethoden angewendet. Die verbreitetsten Messverfahren erfassen nur einen kleinen Teil des Lichtspektrums, womit viele der gleichzeitigen und teilweise verknüpften Emissionen nicht studiert werden können.Eine bisher wenig genutzte aber vielversprechende Methode zur Airglowmessung sind astronomische Spektren von bodengebundenen Teleskopen. Neben dem Licht vom astronomischen Objekt zeigen diese immer auch atmosphärische Emissionen. Für astronomische Anwendungen müssen diese Beiträge aufwändig entfernt werden, aber für die Atmosphärenforschung sind sie wertvoll, zumal die Spektrographen an großen Teleskopen besonders leistungsfähig sind. Speziell Instrumente, die einen großen Spektralbereich abdecken, erlauben simultane Messungen von vielen verschiedenen Airglowemissionen.Das geplante Projekt wird auf Aufnahmen verschiedener Spektrographen am Very Large Telescope in Nordchile und Apache Point Observatory in New Mexico basieren. Der volle Datensatz, beginnend im Jahr 2000, wird um die 100.000 Spektren umfassen. Er wird viel größer sein als alles was bisher unter Nutzung von astronomischen Daten zur Erdatmosphäre publiziert worden ist.Das Projektziel ist die Charakterisierung der zeitlichen Variationen aller beobachtbaren Airglowemissionen in der oberen Erdatmosphäre mit besonderen Fokus auf (1) Linienemissionen von Hydroxyl- und Sauerstoffmolekülen, besonders im Hinblick auf ihren Wert als Temperaturindikator für die Klimaforschung, (2) Kontinuumsemission von Metall- und Stickoxiden und (3) hochvariablen aber zumeist schwachen Linienemissionen in der Ionosphäre. Die Analyse wird auch Modell-, ergänzende Satelliten- und bodengestützte Daten berücksichtigen. Die dabei gewonnenen Erkenntnisse werden einen signifikanten Beitrag zum Verständnis der chemischen und physikalischen Prozesse in der oberen Atmosphäre, aber auch zur Atom- und Molekülphysik liefern. Mit besseren Modellen der Emissionen wird es auch möglich werden die natürliche Nachthimmelshelligkeit genauer abzuschätzen und astronomische Daten besser zu verarbeiten.

Schwerpunktprogramm (SPP) 1803: EarthShape: Earth Surface Shaping by Biota, DeepEarthshape - Biogeochemistry: Microbial element cycling as a driver of soil formation

Das Projekt "Schwerpunktprogramm (SPP) 1803: EarthShape: Earth Surface Shaping by Biota, DeepEarthshape - Biogeochemistry: Microbial element cycling as a driver of soil formation" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Bayreuth, Fachgruppe Geowissenschaften, Bayreuther Zentrum für Ökologie und Umweltforschung (BayCEER), Lehrstuhl für Bodenökologie.Phosphorus (P) solubilization in soils is a crucial process for ecosystem nutrition and ecosystem development. Previous research on biogenic P solubilization focused on single microbial strains, but little is known about P solubilization as a process of soil formation and ecosystem development. The general objective of the project is to gain understanding on how microbial and plant mediated P solubilization and silicate weathering influence the formation of soil and its P forms. For this purpose, we will quantify the rates of P solubilization and of silicate weathering in a sequence of soils on granites of different stages of development in the coastal range of Chile. We aim at determining mechanisms of microbial P solubilization such as the release of protons and organic acid anions, the factors controlling P solubilization, and the abundance of P-solubilizing bacteria at different stages of soil development. The rates of P solubilization and silicate weathering will be related to soil P fractions (Hedley fractions) that have formed during pedogenesis. We will test the hypothesis that mechanisms, rates, controlling factors and abundances of P-solubilizing bacteria strongly change during soil development. The main value of the project will be that it relates microbial P solubilization taking place at a time scale of several weeks to the development of soils and P fractions taking place over hundreds of years.So far, it is not known how microbial activity in soil affects soil formation in different soil depths and under different climatic conditions. The overarching aim of the project proposed here is therefore to study how microbial cycling of C, N, P and Si affects soil formation. For this purpose, we will, first, study microbial biomass, microbial respiration, and the age of total organic C and respired C in soil and saprolite along a climate gradient in the Costal Cordillera of Chile. Second, we aim at quantifying non-symbiotic N2 fixation along the climate gradient, and at understanding the factors that limit N2 fixation, microbial respiration and silicate weathering. We will test the hypotheses (i) that microbial respiration in the saprolite that advances weathering is fueled by young organic matter, (ii) that CO2 concentrations in saprolite are positively correlated with the net primary production, and that (iii) N2 fixation is strongly limited by water availability along the climate gradient in the Costal Cordillera of Chile. In order to test these hypotheses, we will quantify microbial biomass in 10 m deep saprolite cores taken from four study sites along the climate gradient, and we will quantify the age of total organic C and respired C based on radiocarbon dating. Furthermore, we will quantify N2 fixation in incubations with 15N-N2. Finally, we will synthesize and model the results on biogenic weathering and microbial C, N, P, and Si cycling along the climate gradient in the Costal Cordillera that have been collected during the first a

Einfluss der Landnutzung auf den Wasser- und Stoffhaushalt von drei kleinen Einzugsgebieten in der IX. Region Chiles

Das Projekt "Einfluss der Landnutzung auf den Wasser- und Stoffhaushalt von drei kleinen Einzugsgebieten in der IX. Region Chiles" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Bonn, Agrikulturchemisches Institut.Die Auswirkungen unterschiedlicher Landbewirtschaftung auf Gebietswasserhaushalt und Wasserqualität in der IX. Region Chiles sind bisher weitgehend unerforscht und bleiben deshalb bei der wasserwirtschaftlichen Planung unberücksichtigt. Im Rahmen eines DAAD Jahresstipendiums baut der Mitantragsteller deshalb in Zusammenarbeit mit Hochschullehrern der Universidad de la Frontera (Temuco, Chile) ein Monitoringprogramm in drei kleinen Wassereinzugsgebieten auf (land- und forstwirtschaftliche Nutzung, Naturwald), welches Erkenntnisse über das Abflussverhalten unter den gegebenen Klimabedingungen liefern soll. Hauptziel des Vorhabens ist die Klärung, ob die intensive forstliche Bewirtschaftung mit Eucalyptus globulus und Pinus radiata zu einer Verminderung des Trockenwetterabflusses führt. Weitere Aspekte der Untersuchung sind die kontinuierliche Erfassung von Gewässergüteparametern sowie das Abflussverhalten dreier Vorfluter bei Starkregenereignissen. Das Vorhaben knüpft an die Zusammenarbeit im Rahmen des abgeschlossenen EU-Projektes 'Influence of Land Use on Sustainability' an und soll Basisdaten für die wasserwirtschaftliche Planung (manejo de cuencas) liefern. Die Zusammmenarbeit mit lokalen Professoren und Studenten soll die langfristige sachgerechte Nutzung der Messstationen gewährleisten.

Begleitforschung zum großskaligen Aufbau der Produktion von grünem Methanol und DME in Chile

Das Projekt "Begleitforschung zum großskaligen Aufbau der Produktion von grünem Methanol und DME in Chile" wird/wurde ausgeführt durch: Fraunhofer-Institut für Energiewirtschaft und Energiesystemtechnik.

Begleitforschung zum großskaligen Aufbau der Produktion von grünem Methanol und DME in Chile, Teilvorhaben: Nachhaltigkeitsanalyse der MeOH- und DME-Herstellung in Chile

Das Projekt "Begleitforschung zum großskaligen Aufbau der Produktion von grünem Methanol und DME in Chile, Teilvorhaben: Nachhaltigkeitsanalyse der MeOH- und DME-Herstellung in Chile" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Fraunhofer-Institut für Mikrotechnik und Mikrosysteme.

Schwerpunktprogramm (SPP) 1803: EarthShape: Earth Surface Shaping by Biota, Priority Program SPP 1803: EarthShape: Earth Surface Shaping by Biota

Das Projekt "Schwerpunktprogramm (SPP) 1803: EarthShape: Earth Surface Shaping by Biota, Priority Program SPP 1803: EarthShape: Earth Surface Shaping by Biota" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Eberhard Karls Universität Tübingen, Fachbereich Geowissenschaften, Arbeitsgruppe Geologie und Geodynamik.Das EarthShape-Programm definiert vier überprüfbare Hypothesen, die darauf ausgerichtet sind, den Einfluss von Biota auf Oberflächenprozesse zu quantifizieren. Dies wird durch einen einzigartigen interdisziplinären Forschungsansatz erzielt, der die traditionellen Bereiche der Geowissenschaften, Biologie, Geomorphologie sowie der Hydrologie umfasst. Dieser Koordinations-Antrag nimmt mehrere Aufgaben administrativer Art in Angriff, die der Überprüfung der wissenschaftlichen Hypothesen und der Entwicklung eines interdisziplinären Umfelds für zukünftige Forschung im Bereich der Oberflächenprozesse in Deutschland dienen. Diese Aufgaben beinhalten: a) Bereitstellen grundlegender Messinstrumente und Datensätze, die für viele EarthShape-Unterprogramme wichtig sind b) Koordination von Geländearbeit, Genehmigungen und internationalen Kollaborationen in entlegenen Gebieten Chiles; c) Förderung der Weiterentwicklung und Mobilität der Teilnehmer als Forscher in einem interdisziplinären Umfeld mit Hilfe von Tagungen zur Ergänzung von Fähigkeiten für junge Wissenschaftler, Gleichstellungsmaßnahmen und Projektseminaren. In diesem Antrag erläutern wir die Hauptziele sowie administrativen und finanziellen Bedürfnisse des EarthShape-Programms innerhalb der nächsten drei Jahre. Im Rahmen dessen legen wir die wichtigsten Komponenten dar, die die Koordinatoren und der Lenkungsausschuss in den vergangenen vier Jahren als essentielle Bestandteile eines erfolgreichen Programms ins Auge gefasst haben. Diese Erwägungen umfassen: a) die Erfordernis, an den vorgeschlagenen Forschungs Clustern zu arbeiten und Zeitskalen zu überbrücken, wie es im ursprünglichen EarthShape-Forschungsantrag dargestellt wurde, b) das Zusammenbringen von Wissenschaftlern unterschiedlicher Forschungsrichtungen, um die interdisziplinäre Zusammenarbeit zu stärken, und c) die Notwendigkeit, dass die Teilnehmer in den ausgewählten Schwerpunktgegenden (oder deren nahem Umfeld) forschen, um den Gegenvergleich und das Zusammenführen der Ergebnisse aus den verschiedenen Projekten zu ermöglichen.

Schwerpunktprogramm (SPP) 1803: EarthShape: Earth Surface Shaping by Biota, Koordination des DFG Schwerpunktprogramms 1803 (Phase I): EarthShape- Earth Surface Shaping by Biota

Das Projekt "Schwerpunktprogramm (SPP) 1803: EarthShape: Earth Surface Shaping by Biota, Koordination des DFG Schwerpunktprogramms 1803 (Phase I): EarthShape- Earth Surface Shaping by Biota" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum.Das EarthShape-Programm definiert vier überprüfbare Hypothesen, die darauf ausgerichtet sind, den Einfluss von Biota auf Oberflächenprozesse zu quantifizieren. Dies wird durch einen einzigartigen interdisziplinären Forschungsansatz erzielt, der die traditionellen Bereiche der Geowissenschaften, Biologie, Geomorphologie sowie der Hydrologie umfasst. Dieser Koordinations-Antrag nimmt mehrere Aufgaben administrativer Art in Angriff, die der Überprüfung der wissenschaftlichen Hypothesen und der Entwicklung eines interdisziplinären Umfelds für zukünftige Forschung im Bereich der Oberflächenprozesse in Deutschland dienen. Diese Aufgaben beinhalten: a) Bereitstellen grundlegender Messinstrumente und Datensätze, die für viele EarthShape-Unterprogramme wichtig sind b) Koordination von Geländearbeit, Genehmigungen und internationalen Kollaborationen in entlegenen Gebieten Chiles; c) Förderung der Weiterentwicklung und Mobilität der Teilnehmer als Forscher in einem interdisziplinären Umfeld mit Hilfe von Tagungen zur Ergänzung von Fähigkeiten für junge Wissenschaftler, Gleichstellungsmaßnahmen und Projektseminaren. In diesem Antrag erläutern wir die Hauptziele sowie administrativen und finanziellen Bedürfnisse des EarthShape-Programms innerhalb der nächsten drei Jahre. Im Rahmen dessen legen wir die wichtigsten Komponenten dar, die die Koordinatoren und der Lenkungsausschuss in den vergangenen vier Jahren als essentielle Bestandteile eines erfolgreichen Programms ins Auge gefasst haben. Diese Erwägungen umfassen: a) die Erfordernis, an den vorgeschlagenen Forschungs Clustern zu arbeiten und Zeitskalen zu überbrücken, wie es im ursprünglichen EarthShape-Forschungsantrag dargestellt wurde, b) das Zusammenbringen von Wissenschaftlern unterschiedlicher Forschungsrichtungen, um die interdisziplinäre Zusammenarbeit zu stärken, und c) die Notwendigkeit, dass die Teilnehmer in den ausgewählten Schwerpunktgegenden (oder deren nahem Umfeld) forschen, um den Gegenvergleich und das Zusammenführen der Ergebnisse aus den verschiedenen Projekten zu ermöglichen.

Schwerpunktprogramm (SPP) 1803: EarthShape: Earth Surface Shaping by Biota, Ein Brückenschlag zwischen der grünen und der grauen Welt: ein experimenteller Ansatz zur Charakterisierung der Einflüsse von Klima, Vegetation und geochemischer Prozesse entlang eines klimatischen Gradienten

Das Projekt "Schwerpunktprogramm (SPP) 1803: EarthShape: Earth Surface Shaping by Biota, Ein Brückenschlag zwischen der grünen und der grauen Welt: ein experimenteller Ansatz zur Charakterisierung der Einflüsse von Klima, Vegetation und geochemischer Prozesse entlang eines klimatischen Gradienten" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Tübingen, Fachbereich Geowissenschaften, Forschungsbereich Geographie.Organismen können durch ihre aktive Rolle als 'Verwitterungsmotor' zur Oberflächenformung beitragen. Pflanzen und Bodenmikroorganismen sind in der Lage, Nährstoffe effizient zu nutzen und damit den Bedarf zu reduzieren, Nährstoffe aus dem Ausgangsgestein freizusetzen. Das könnte gerade bei fortgeschrittener Verwitterung hin zu feuchteren Bedingungen der Fall sein. Zusätzlich wird der Nährstoffkreislauf von höheren trophischen Ebenen, insbesondere von Herbivoren beeinflusst. Bisher ist noch nicht geklärt, wie das Klima, insbesondere der Niederschlag, mit Herbivorie gemeinsam auf Nährstoffkreisläufe und Streuabbau wirken. Unser übergeordnetes Ziel ist es, die relative Bedeutung von biotischen (Pflanzen, Mikroorganismen, Herbivore) und abiotischen Faktoren (Geologie, Klima) für Verwitterungs- und biogeochemische Prozesse zu eruieren. Dafür werden wir biologische und geochemische Prozesse wie folgt direkt verknüpfen. Zum einen untersuchen wir im Detail Prozesse an der Schnittstelle zwischen der 'grünen', der 'braunen' und der 'grauen Welt', für die wir in Phase 1 die Grundlage gelegt haben. Zum anderen werden wir eine integrierte Analyse dieser und der in Phase 2 zu erfassenden Daten vornehmen, die durch die Kooperationen eines großen interdisziplinären Konsortiums in unserem Trockenexperiment ermöglicht wird. Wir werden unseren anfänglichen Fokus auf die Rückkopplung zwischen Pflanzen, Boden und Geologie sowohl 'nach unten' als auch 'nach oben' erweitern. Im Detail konzentrieren wir uns auf a) die Nährstofflimitierung und die Nährstoffeffizienz von Pflanzen und Bodenmikroorganismen und b) den Einfluss von Herbivorie auf die Abbaubarkeit von Streu. Beide beeinflussen indirekt biogeochemische Verwitterungsprozesse. Hierzu kombinieren wir den 'Space-for-time' Ansatz mit mechanistisch ausgerichteten Feldversuchen, welche direkt die Niederschläge entlang eines klimatischen Gradienten in Chile manipulieren. Mit dieser Herangehensweise möchten wir folgende Leitfragen beantworten: Können räumliche Gradienten als Resultat von langfristigen Klimaeinflüssen auf die Erdoberfläche für die Ableitung von zeitlichen (kurz- bis mittelfristigen) Klimaveränderungen genutzt werden? Welche Prozesse ('grün' vs. 'braun' vs. 'grau') können mit einem solchen räumlichen Gradienten abgebildet werden? Diese Fragen werden wir mit Hilfe von Beobachtungen und Experimenten im Gelände und Pflanzen- und Herbivorieversuchen im Gewächshaus beantworten. Wir werden Nährstoffanalysen von Pflanzen, Boden, und Bodenmikroorganismen durchführen, die durch innovative Methoden unter Nutzung von Stabilisotopentracern ergänzt werden. Da wir uns explizit der Rolle von Organismen im Nährstoffkreislauf widmen, können wir deren potenzielle Rolle als 'Verwitterungsmotor' ableiten, welches die Säule des EarthShape-Programms darstellt. Unser Projekt untersucht zudem erstmalig in Chile den Einfluss von Klimaveränderungen auf Ökosystemprozesse basierend auf aufwändigen Geländeversuchen.

Sonderforschungsbereich (SFB) 1211: Evolution der Erde und des Lebens unter extremer Trockenheit, Teilprojekt D02: Datierung von Evaporiten

Das Projekt "Sonderforschungsbereich (SFB) 1211: Evolution der Erde und des Lebens unter extremer Trockenheit, Teilprojekt D02: Datierung von Evaporiten" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität zu Köln, Institut für Geologie und Mineralogie.Ziel dieses Projekts ist es, die 176Lu-176Hf und 238U-230Th Methodik für die Anwendung an Evaporitmineralen (Karbonat, Anhydrit, Gips, Bassanit) zu entwickeln. In Kombination würden diese Methoden das gesamte zu erwartendene Alterspektrum in der Atacama Wüste abdecken (einige Zehntausend bis Zehnermillionen Jahre).

BS2, Bioflotation von Sulfiden in Meerwasser

Das Projekt "BS2, Bioflotation von Sulfiden in Meerwasser" wird/wurde ausgeführt durch: Helmholtz-Zentrum Dresden-Roßendorf e.V., Helmholtz-Institut Freiberg für Ressourcentechnologie.

1 2 3 4 536 37 38