API src

Found 392 results.

Schwerpunktprogramm (SPP) 1803: EarthShape: Earth Surface Shaping by Biota, Ein Brückenschlag zwischen der grünen und der grauen Welt: ein experimenteller Ansatz zur Charakterisierung der Einflüsse von Klima, Vegetation und geochemischer Prozesse entlang eines klimatischen Gradienten

Organismen können durch ihre aktive Rolle als 'Verwitterungsmotor' zur Oberflächenformung beitragen. Pflanzen und Bodenmikroorganismen sind in der Lage, Nährstoffe effizient zu nutzen und damit den Bedarf zu reduzieren, Nährstoffe aus dem Ausgangsgestein freizusetzen. Das könnte gerade bei fortgeschrittener Verwitterung hin zu feuchteren Bedingungen der Fall sein. Zusätzlich wird der Nährstoffkreislauf von höheren trophischen Ebenen, insbesondere von Herbivoren beeinflusst. Bisher ist noch nicht geklärt, wie das Klima, insbesondere der Niederschlag, mit Herbivorie gemeinsam auf Nährstoffkreisläufe und Streuabbau wirken. Unser übergeordnetes Ziel ist es, die relative Bedeutung von biotischen (Pflanzen, Mikroorganismen, Herbivore) und abiotischen Faktoren (Geologie, Klima) für Verwitterungs- und biogeochemische Prozesse zu eruieren. Dafür werden wir biologische und geochemische Prozesse wie folgt direkt verknüpfen. Zum einen untersuchen wir im Detail Prozesse an der Schnittstelle zwischen der 'grünen', der 'braunen' und der 'grauen Welt', für die wir in Phase 1 die Grundlage gelegt haben. Zum anderen werden wir eine integrierte Analyse dieser und der in Phase 2 zu erfassenden Daten vornehmen, die durch die Kooperationen eines großen interdisziplinären Konsortiums in unserem Trockenexperiment ermöglicht wird. Wir werden unseren anfänglichen Fokus auf die Rückkopplung zwischen Pflanzen, Boden und Geologie sowohl 'nach unten' als auch 'nach oben' erweitern. Im Detail konzentrieren wir uns auf a) die Nährstofflimitierung und die Nährstoffeffizienz von Pflanzen und Bodenmikroorganismen und b) den Einfluss von Herbivorie auf die Abbaubarkeit von Streu. Beide beeinflussen indirekt biogeochemische Verwitterungsprozesse. Hierzu kombinieren wir den 'Space-for-time' Ansatz mit mechanistisch ausgerichteten Feldversuchen, welche direkt die Niederschläge entlang eines klimatischen Gradienten in Chile manipulieren. Mit dieser Herangehensweise möchten wir folgende Leitfragen beantworten: Können räumliche Gradienten als Resultat von langfristigen Klimaeinflüssen auf die Erdoberfläche für die Ableitung von zeitlichen (kurz- bis mittelfristigen) Klimaveränderungen genutzt werden? Welche Prozesse ('grün' vs. 'braun' vs. 'grau') können mit einem solchen räumlichen Gradienten abgebildet werden? Diese Fragen werden wir mit Hilfe von Beobachtungen und Experimenten im Gelände und Pflanzen- und Herbivorieversuchen im Gewächshaus beantworten. Wir werden Nährstoffanalysen von Pflanzen, Boden, und Bodenmikroorganismen durchführen, die durch innovative Methoden unter Nutzung von Stabilisotopentracern ergänzt werden. Da wir uns explizit der Rolle von Organismen im Nährstoffkreislauf widmen, können wir deren potenzielle Rolle als 'Verwitterungsmotor' ableiten, welches die Säule des EarthShape-Programms darstellt. Unser Projekt untersucht zudem erstmalig in Chile den Einfluss von Klimaveränderungen auf Ökosystemprozesse basierend auf aufwändigen Geländeversuchen.

Untersuchung der physikochemischen und mechanischen Eigenschaften von vulkanischen Ascheböden in Südchile und der Konsequenzen für die daraus resultierende Erodibilität

Die Hauptzielsetzung dieses interdisziplinären Verbundprojektes besteht in der Untersuchung der physikochemischen und mechanischen Eigenschaften und der daraus resultierenden Erosionsneigung von vulkanischen Ascheböden in Südchile in Abhängigkeit von Alter, Entwicklungszustand und Nutzungsform der Böden. Aschenböden stellen in vielerlei Hinsicht wie Porosität, Verdichtbarkeit, Erosionsverhalten, Kornform, Benetzbarkeit, Dynamik der Bodenentwicklung Extremstandorte dar. Gemessen an der Verbreitung und der wirtschaftlichen Bedeutung dieser Böden liegen zwar einige bodenphysikalische und chemische Daten vor, doch können diese Erkenntnisse bisher kaum in allgemeine Kategorien übertragen und auch nicht hinsichtlich der räumlichen Vernetzung und Relevanz bewertet werden. Daher werden mit dem vorliegenden methodischen Ansatz an 12 Catenen mit je 2 Profilen signifikante physikalische Parameter zur Kennzeichnung des physikochemischen, mechanischen und hydraulischen Verhaltens dieser Böden identifiziert und bewertet (siehe Abb.1 im Anhang). Auf diese Weise soll die besondere Bedeutung physikalischer Parameter für die Materialumlagerungen von Ascheböden erfasst werden. Der Erkenntnisgewinn liegt folglich einerseits im verbesserten Prozessverständnis über chilenische Aschenböden, andererseits sollen aber auch die entwickelten und geprüften Methoden auf Aschenböden allgemein übertragbar sein. Damit würde zusätzlich ein wichtiger Beitrag zur Standardisierung der Methoden für Aschenböden im weltweiten Maßstab geleistet werden. Die Interaktion zwischen physikalischen und mechanischen Eigenschaften und deren Ausprägung in Landschaften zu quantifizieren sind Ziel dieses Antrags.

Calocedrus decurrens und Austrocedrus chilensis. Ein pflanzengeographischer und ökologischer Vergleich zweier Reliktconiferen in den kalifornischen und chilenischen Winterregensubtropen

Ziel des Projektes ist, durch vergleichende Betrachtung zweier in der botanischen Systematik einander sehr nahestehender Zypressengewächse (Cupressaceae) in ihren jeweiligen Lebensräumen - colocedrus decurrens in Kalifornien/Oregon und Austrocedrus chilensis in Mittelchile/Argentinien - die Gesetzmäßigkeiten aufzudecken, die ihrer Verbreitung und ihren Standortmerkmalen zugrundeliegen. Forschungsansatz ist die bemerkenswert ähnliche ökologische Stellung der beiden getrennt auf Nord- und Südhemisphäre heimischen Arten. Hier wie dort gedeihen sie in den Bergwäldern der Winterregensubtropen und dringen -- dem 'Gesetz der relativen Standortskonstanz' gehorchend - noch weiter polwärts vor. Mit dem Vorhaben sollen die Stellung beider Arten im jeweiligen dreidimensionalen Klima- und Vegetationsaufbau und die öko-physiologischen Grundlagen ihrer Verbreitung vergleichend herausgearbeitet werden. Der Vergleich als pflanzengeographische Methode (GOLTE 1984, 1988, 1993) beinhaltet als wesentliche Indikatoren für die Standortsmerkmale und die ökologische Stellung die klimatischen Verhältnisse (Messungen), geologische und edaphische Faktoren (Probenentnahme, Laboruntersuchungen) sowie die begleitende Flora und Vegetation (Vegetationsaufnahmen).

Schwerpunktprogramm (SPP) 1803: EarthShape: Earth Surface Shaping by Biota, Koordinationsfonds

Das EarthShape Programm definiert vier überprüfbare Hypothesen, mit denen der Einfluss von Biota auf Erdoberflächenprozesse quantifiziert werden soll. Hierzu haben wir einen einzigartigen und interdisziplinären Forschungsansatz entwickelt, der die traditionellen Disziplinen der Geowissenschaften, der Biologie und Ökologie, sowie der Geomorphologie umfasst. Das hier vorgelegte Koordinationsprojekt umfasst mehrere administrative Aufgaben, die der Überprüfung der wissenschaftlichen Hypothesen und der Entwicklung eines interdisziplinären Umfelds für zukünftige Forschung im Bereich der Erdoberflächenprozesse in Deutschland dienen. Diese Aufgaben beinhalten: a) Bereitstellen grundlegender Feldkampagnen, Messinstrumente und Datensätze, die für viele EarthShape-Einzelprojekte Voraussetzung sind; b) Koordination von Geländearbeit, Genehmigungen und internationalen Kollaborationen in entlegenen Gebieten Chiles; c) Förderung der Weiterentwicklung und Mobilität der Teilnehmer als Forscher in einem interdisziplinären Umfeld mit Hilfe von Tagungen zur Ergänzung von Fähigkeiten für junge Wissenschaftler, Gleichstellungsmaßnahmen und Projektseminare. Neue Hauptziele des EarthShape Projektes, die die Koordinatoren und der Lenkungsausschuss aus den Resultaten von SPP Phase 1 als Bestandteile eines erfolgreichen Programms für die zweiten drei Jahre identifiziert haben, sind neue Arbeiten zur Biosphäre, Geophysik, und Critical Zone Prozessen der tieferen Erdoberfläche. Das Koordinationsprojekt enthält deshalb den finanziellen und logistischen Rahmen für ein koordiniertes Bohrprogramm der 'Critical Zone' in allen vier Untersuchungsstandorten. Wir erachten die folgenden Bestandteile für bewilligte EarthShape Einzelprojekte für einen erfolgreichen Projektabschluss als unerlässlich: a) die Arbeit in den vorgeschlagenen Forschungs-'Clustern' sowie die Überbrückung von Zeitskalen, wie es im ursprünglichen EarthShape Forschungsantrag dargestellt wurde; b) die aktive Zusammenarbeit zwischen Wissenschaftlern und Wissenschaftlerinnen unterschiedlicher Forschungsrichtungen, um die interdisziplinäre Zusammenarbeit zu stärken; c) die Notwendigkeit, dass die Teilnehmer in allen ausgewählten Untersuchungsstandorten (oder deren nahem Umfeld) forschen, um den Gegenvergleich und das Zusammenführen der Ergebnisse aus den verschiedenen Projekten zu ermöglichen; d) die Dokumentation der Beteiligung der Chilenischen Wissenschaftsgemeinschaft an den Vorhaben.

Schwerpunktprogramm (SPP) 1803: EarthShape: Earth Surface Shaping by Biota, SECCO-Chile: Einfluss und Wechselwirkungen holozäner hydrologischer Veränderungen auf Vegetation, Verwitterung, Erosion und Sedimentablagerung in Chile

Die Erdoberfläche verändert sich stetig aufgrund komplexer Wechselwirkungen zwischen Klima, Hydrologie, Vegetation, Verwitterung, Erosion und Sedimentablagerung und beeinflusst so unseren Lebensraum. Die Mechanismen sowie die Magnitude und zeitliche Abfolge mit der sich klimatische Veränderungen auf Vegetation, Verwitterung, Erosion und Sedimentdynamiken auswirken, sind jedoch nur unzureichend verstanden - dies erschwert die Interpretation von marinen Sedimentarchiven in Bezug auf das Paläoklima und Erdoberflächenprozesse. In marinen Sedimentarchiven vor der chilenischen Küste finden sich aber konkrete Hinweise auf einen direkten Zusammenhang zwischen Klima und Erdoberflächenprozessen, denn während an Land zu Beginn des Holozäns zunehmende Trockenheit einsetzt, verringern sich zeitgleich die Sedimentakkumulation im Ozean. In diesem Projekt wollen wir die Magnituden und zeitlichen Abfolgen von Änderungen in der Vegetation, Hydrologie, Verwitterungs- und Erosionsraten und Sedimentablagerung im Pazifischen Ozean vom letzten glazialen Maximum (LGM) bis heute entlang der chilenischen Küste quantifizieren. In diesem Projekt vernetzen wir die Forschungsdisziplinen der Sedimentologie, Geochemie und Biologie um die Feedbacks zwischen diesen Parametern zu untersuchen. Wir postulieren, dass der Einfluss der deglazialen Klimaveränderung auf die Landschaftsentwicklung stark durch die Vegetation moduliert ist. Dadurch existieren Zeitverzögerungen zwischen den untersuchten Parametern. Mit diesem Antrag schlagen wir einen neuen Ansatz vor, der auf der Anwendung hochspezialisierter organisch- und anorganisch-geochemischer Proxy Methoden basiert. Dazu sollen Biomarker Isotopenanalysen (Delta D, Delta 13C, als Proxy für Vegetation und Hydrologie), stabile Lithium Isotopenanalysen (Delta 7Li, als Proxy für Verwitterung) und kosmogene Nuklide (meteorische 9Be/10Be Verhältnisse, als Proxy für Erosion) kombiniert werden und an den gleichen marinen Sedimentkernen angewandt werden. In einem ersten Arbeitspaket (WP1) werden wir die heutigen räumlichen Unterschiede entlang des ausgeprägten N-S Klimagradienten der chilenischen Küste evaluieren und diese Proxies auf ihre Sensitivität kalibrieren. Dazu ist die Analyse der modernen Erosionsprodukte, die durch die Flüsse in den Ozean transportiert werden, sowie mariner Oberflächensedimente vorgesehen. In AP 2 (WP2) wenden wir die so kalibrierten Methoden an drei marinen Sedimentkernen entlang der chilenischen Küste an, um Veränderungen in Klima, Vegetation, Verwitterung, Erosion und Sedimenteintrag sowie deren zeitliche Abfolge und räumlichen Muster am gleichen Material zu rekonstruieren. Diese neuartige Kombination von Proxy Methoden und deren detaillierte Kalibration und Sensitivitätsanalyse werden es ermöglichen, die Mechanismen von räumlichen und zeitlichen Unterschieden in der Reaktion von Vegetation, Verwitterung, Erosion, und Sedimentablagerung auf eine klimatisch-induzierte hydrologische Veränderungen zu quantifizieren.

Begleitforschung zum großskaligen Aufbau der Produktion von grünem Methanol und DME in Chile, Teilvorhaben: Nachhaltigkeitsanalyse der MeOH- und DME-Herstellung in Chile

KI-basierte Erfassung und Monitoring von klimainduzierten Naturkatastrophen und Analyse der Exposition, KI-basierte Erfassung und Monitoring von klimainduzierten Naturkatastrophen und Analyse der Exposition

Geochemische Untersuchungen an Sedimenten oligotropher Seen Suedchiles

Die Sedimente, der Wasserkoerper sowie Gesteine des Einzugsgebietes verschiedener Seen im Sueden Chiles werden geochemisch untersucht. Da diese Seen anthropogen voellig unbeeinflusst sind, soll der natuerliche Loesungsinhalt (insbesondere Schwermetall) bestimmt werden. Die Studie dient zur Ermittlung des natuerlichen geochemischen Backgrounds.

Inventarisierung der Moos- und Flechtenflora ausgewählter Naturschutzgebiete in Mittelchile (VII. Region)

Die VII. Region Chiles (Region Maule) zählt zu den bryologisch und lichenologisch bisher ungenügend untersuchten Gebieten Chiles. Große Teile der natürlichen Vegetation sind durch Inkulturnahme heutzutage in Plantagen, Felder und Siedlungsland umgewandelt. Die wenigen Reste der natürlichen Waldvegetation sind aktuell fast ausschließlich auf wenige als Naturschutzgebiete ausgewiesene Gebiete beschränkt. Die Moos- und Flechtenflora dieser Flächen wird im Zuge des Projektes detailliert kartiert. Ziel des Projektes ist es, den Kenntnisstand der Moos- und Flechtenflora der VII. Region Chiles zu mehren, Vorschläge für Schutzmaßnahmen herauszuarbeiten und Indikatororganismen für natürliche Waldvegetationstypen herauszufinden.

Modelling Patagonian Lenga-forest dynamics (Nothofagus pumilio) in Chile

The dynamics of Patagonian Lenga-forests (Nothofagus pumilio) will be studied at two long-term investigation sites of the University of Chile of Santiago. Field data will be acquired in two field campaigns and involve structural surveys, increment coring and stem analyses. The aim of the proposed project is to model Lenga forest dynamics with an individual tree-based modelling approach. Building upon experience with the SILVA model, the major challenge lies in the old growth and regeneration phase, and the gap heterogeneity which can only be represented on the landscape scale. The approach is unique in a sense that it applies principles from individual-tree modelling to the classical field of gap models. It profits from the strong competition algorithms and structural sensitivity of individual tree models and overcomes the limitation of regular grids in gap models. The project will unite 30 years field experience and data collection at the U.Chile and the modelling background at the TUM. Besides the progress in the understanding of forest growth processes, the growth model will support the sustainable silvicultural management of the resource Lenga.

1 2 3 4 538 39 40