API src

Found 392 results.

Schwerpunktprogramm (SPP) 1803: EarthShape: Earth Surface Shaping by Biota, Koordination des DFG Schwerpunktprogramms 1803 (Phase I): EarthShape- Earth Surface Shaping by Biota

Das EarthShape-Programm definiert vier überprüfbare Hypothesen, die darauf ausgerichtet sind, den Einfluss von Biota auf Oberflächenprozesse zu quantifizieren. Dies wird durch einen einzigartigen interdisziplinären Forschungsansatz erzielt, der die traditionellen Bereiche der Geowissenschaften, Biologie, Geomorphologie sowie der Hydrologie umfasst. Dieser Koordinations-Antrag nimmt mehrere Aufgaben administrativer Art in Angriff, die der Überprüfung der wissenschaftlichen Hypothesen und der Entwicklung eines interdisziplinären Umfelds für zukünftige Forschung im Bereich der Oberflächenprozesse in Deutschland dienen. Diese Aufgaben beinhalten: a) Bereitstellen grundlegender Messinstrumente und Datensätze, die für viele EarthShape-Unterprogramme wichtig sind b) Koordination von Geländearbeit, Genehmigungen und internationalen Kollaborationen in entlegenen Gebieten Chiles; c) Förderung der Weiterentwicklung und Mobilität der Teilnehmer als Forscher in einem interdisziplinären Umfeld mit Hilfe von Tagungen zur Ergänzung von Fähigkeiten für junge Wissenschaftler, Gleichstellungsmaßnahmen und Projektseminaren. In diesem Antrag erläutern wir die Hauptziele sowie administrativen und finanziellen Bedürfnisse des EarthShape-Programms innerhalb der nächsten drei Jahre. Im Rahmen dessen legen wir die wichtigsten Komponenten dar, die die Koordinatoren und der Lenkungsausschuss in den vergangenen vier Jahren als essentielle Bestandteile eines erfolgreichen Programms ins Auge gefasst haben. Diese Erwägungen umfassen: a) die Erfordernis, an den vorgeschlagenen Forschungs Clustern zu arbeiten und Zeitskalen zu überbrücken, wie es im ursprünglichen EarthShape-Forschungsantrag dargestellt wurde, b) das Zusammenbringen von Wissenschaftlern unterschiedlicher Forschungsrichtungen, um die interdisziplinäre Zusammenarbeit zu stärken, und c) die Notwendigkeit, dass die Teilnehmer in den ausgewählten Schwerpunktgegenden (oder deren nahem Umfeld) forschen, um den Gegenvergleich und das Zusammenführen der Ergebnisse aus den verschiedenen Projekten zu ermöglichen.

Begleitforschung zum großskaligen Aufbau der Produktion von grünem Methanol und DME in Chile

Inventarisierung der Moos- und Flechtenflora ausgewählter Naturschutzgebiete in Mittelchile (VII. Region)

Die VII. Region Chiles (Region Maule) zählt zu den bryologisch und lichenologisch bisher ungenügend untersuchten Gebieten Chiles. Große Teile der natürlichen Vegetation sind durch Inkulturnahme heutzutage in Plantagen, Felder und Siedlungsland umgewandelt. Die wenigen Reste der natürlichen Waldvegetation sind aktuell fast ausschließlich auf wenige als Naturschutzgebiete ausgewiesene Gebiete beschränkt. Die Moos- und Flechtenflora dieser Flächen wird im Zuge des Projektes detailliert kartiert. Ziel des Projektes ist es, den Kenntnisstand der Moos- und Flechtenflora der VII. Region Chiles zu mehren, Vorschläge für Schutzmaßnahmen herauszuarbeiten und Indikatororganismen für natürliche Waldvegetationstypen herauszufinden.

Optimierter Betrieb von Solarturm-Receivern

In OPTOP werden Design und Betrieb des Receivers als zentraler Schnittstelle der Solar Island eines Solarturmkraftwerks verbessert. Dafür wird innovative Messtechnik in ein Monitoringsystem basierend auf Machine Learning und Digital Twin integriert. Das Projekt OPTOP hat drei Kernthemen: a) Sensorik für Receiver: In einem integralen Messkonzept für den Receiver wird die verbesserte Erfassung der Receiveroberflächentemperatur mittels Infrarotkameras, eine nicht-invasive Erfassung der Fluidtemperatur im Receiver, eine betriebsbegleitende Strahlungsdichtemessung und die kamerabasierte Reflexionsgradvermessung des Receivers implementiert. Die Sensordaten werden gemäß den Prinzipien von Industrie 4.0 und dem IoT aufbereitet und für die Betriebsoptimierung und das Receivermonitoring bereitgestellt. b) Receivermonitoring und intelligente Betriebsstrategien: Basierend auf dem umfassenden Sensorinput und einem parallellaufenden Digital Twin-Modell des Receivers wird ein Monitoringsystem entwickelt, das mittels Machine Learning-Methoden ein Überschreiten der Receiver-Betriebsgrenzen im Voraus erkennt und dem Betreiber einen sicheren Betrieb erleichtert. Darauf aufbauend wird mit dynamischen Zielpunkt- und Defokussierstrategien und O&M-Zyklen eine intelligente Betriebsstrategie entwickelt, die den Betrieb der Solar Island sowohl energetisch als auch ökonomisch optimiert. c) Transientes Receiverdesign: Eine Methodik für das Design des Receivers als zentraler Schnittstelle der Solar Island wird entwickelt, welche das integrale System für maximalen Ertrag im transienten Kraftwerksbetrieb optimiert. Dafür wird der Einsatz variabler Flussschemata untersucht, für welche - um die Grenzen des erlaubten Einsatzbereichs nicht zu überschreiten - die umfassende Kenntnis des Receiverzustands im Betrieb basierend auf Sensorik und Digital Twin notwendig ist. Die entwickelte Sensorik und Simulations-Methodik wird im Labor und im Turmsystem Cerro Dominador in Chile implementiert und getestet.

Einfluss der Landnutzung auf den Wasser- und Stoffhaushalt von drei kleinen Einzugsgebieten in der IX. Region Chiles

Die Auswirkungen unterschiedlicher Landbewirtschaftung auf Gebietswasserhaushalt und Wasserqualität in der IX. Region Chiles sind bisher weitgehend unerforscht und bleiben deshalb bei der wasserwirtschaftlichen Planung unberücksichtigt. Im Rahmen eines DAAD Jahresstipendiums baut der Mitantragsteller deshalb in Zusammenarbeit mit Hochschullehrern der Universidad de la Frontera (Temuco, Chile) ein Monitoringprogramm in drei kleinen Wassereinzugsgebieten auf (land- und forstwirtschaftliche Nutzung, Naturwald), welches Erkenntnisse über das Abflussverhalten unter den gegebenen Klimabedingungen liefern soll. Hauptziel des Vorhabens ist die Klärung, ob die intensive forstliche Bewirtschaftung mit Eucalyptus globulus und Pinus radiata zu einer Verminderung des Trockenwetterabflusses führt. Weitere Aspekte der Untersuchung sind die kontinuierliche Erfassung von Gewässergüteparametern sowie das Abflussverhalten dreier Vorfluter bei Starkregenereignissen. Das Vorhaben knüpft an die Zusammenarbeit im Rahmen des abgeschlossenen EU-Projektes 'Influence of Land Use on Sustainability' an und soll Basisdaten für die wasserwirtschaftliche Planung (manejo de cuencas) liefern. Die Zusammmenarbeit mit lokalen Professoren und Studenten soll die langfristige sachgerechte Nutzung der Messstationen gewährleisten.

Airglow-Forschung mit astronomischen Spektren

In der oberen Erdatmosphäre ab 70 km herrschen spezielle Bedingungen, die ein Leuchten im sichtbaren und infraroten Licht verursachen. Die Airglow genannten Emissionen werden durch solare extreme Ultraviolettstrahlung hervorgerufen, die Luftmoleküle zerstört und Atome ionisert. Daraufhin finden diverse chemische Reaktionen und physikalische Prozesse statt, die teilweise zur Lichtemission durch verschiedene Atome und Moleküle führen. Bedeutend sind z.B. die Beiträge durch Sauerstoff- und Natriumatome sowie Hydroxyl-, Sauerstoff- und Eisenoxidmoleküle. Airglow ist zeitlich und räumlich sehr variabel und die damit verbundenen komplexen Prozesse sind noch nicht vollständig verstanden.Die direkte Erforschung der oberen Atmosphäre ist schwierig, da nur Raketen diese Höhe erreichen können. Daher werden hauptsächlich erd- und satellitengebundene Fernerkundungsmethoden angewendet. Die verbreitetsten Messverfahren erfassen nur einen kleinen Teil des Lichtspektrums, womit viele der gleichzeitigen und teilweise verknüpften Emissionen nicht studiert werden können.Eine bisher wenig genutzte aber vielversprechende Methode zur Airglowmessung sind astronomische Spektren von bodengebundenen Teleskopen. Neben dem Licht vom astronomischen Objekt zeigen diese immer auch atmosphärische Emissionen. Für astronomische Anwendungen müssen diese Beiträge aufwändig entfernt werden, aber für die Atmosphärenforschung sind sie wertvoll, zumal die Spektrographen an großen Teleskopen besonders leistungsfähig sind. Speziell Instrumente, die einen großen Spektralbereich abdecken, erlauben simultane Messungen von vielen verschiedenen Airglowemissionen.Das geplante Projekt wird auf Aufnahmen verschiedener Spektrographen am Very Large Telescope in Nordchile und Apache Point Observatory in New Mexico basieren. Der volle Datensatz, beginnend im Jahr 2000, wird um die 100.000 Spektren umfassen. Er wird viel größer sein als alles was bisher unter Nutzung von astronomischen Daten zur Erdatmosphäre publiziert worden ist.Das Projektziel ist die Charakterisierung der zeitlichen Variationen aller beobachtbaren Airglowemissionen in der oberen Erdatmosphäre mit besonderen Fokus auf (1) Linienemissionen von Hydroxyl- und Sauerstoffmolekülen, besonders im Hinblick auf ihren Wert als Temperaturindikator für die Klimaforschung, (2) Kontinuumsemission von Metall- und Stickoxiden und (3) hochvariablen aber zumeist schwachen Linienemissionen in der Ionosphäre. Die Analyse wird auch Modell-, ergänzende Satelliten- und bodengestützte Daten berücksichtigen. Die dabei gewonnenen Erkenntnisse werden einen signifikanten Beitrag zum Verständnis der chemischen und physikalischen Prozesse in der oberen Atmosphäre, aber auch zur Atom- und Molekülphysik liefern. Mit besseren Modellen der Emissionen wird es auch möglich werden die natürliche Nachthimmelshelligkeit genauer abzuschätzen und astronomische Daten besser zu verarbeiten.

Schwerpunktprogramm (SPP) 1488: Planetary Magnetism (PlanetMag), Evolution of geomagnetic dipole moment and South Atlantic Anomaly

The geomagnetic field shields our habitat against solar wind and radiation from space. Due to the geometry of the field, the shielding in general is weakest at high latitudes. It is also anomalously weak in a region around the south Atlantic known as South Atlantic Anomaly (SAA), and the global dipole moment has been decreasing by nearly 10 percent since direct measurements of field intensity became possible in 1832. Due to our limited understanding of the geodynamo processes in Earths core, it is impossible to reliably predict the future evolution of both dipole moment and SAA over the coming decades. However, lack of magnetic field shielding as would be a consequence of further weakening of dipole moment and SAA region field intensity would cause increasing problems for modern technology, in particular satellites, which are vulnerable to radiation damage. A better understanding of the underlying processes is required to estimate the future development of magnetic field characteristics. The study of the past evolution of such characteristics based on historical, archeo- and paleomagnetic data, on time-scales of centuries to millennia, is essential to detect any recurrences and periodicities and provide new insights in dynamo processes in comparison to or in combination with numerical dynamo simulations. We propose to develop two new global spherical harmonic geomagnetic field models, spanning 1 and 10 kyrs, respectively, and designed in particular to study how long the uninterrupted decay of the dipole moment has been going on prior to 1832, and if the SAA is a recurring structure of the field.We will combine for the first time all available historical and archeomagnetic data, both directions and intensities, in a spherical harmonic model spanning the past 1000 years. Existing modelling methods will be adapted accordingly, and existing data bases will be complemented with newly published data. We will further acquire some new archeomagnetic data from the Cape Verde islands from historical times to better constrain the early evolution of the present-day SAA. In order to study the long-term field evolution and possible recurrences of similar weak field structures in this region, we will produce new paleomagnetic records from available marine sediment cores off the coasts of West Africa, Brazil and Chile. This region is weakly constrained in previous millennial scale models. Apart from our main aim to gain better insights into the previous evolution of dipole moment and SAA, the models will be used to study relations between dipole and non-dipole field contributions, hemispheric symmetries and large-scale flux patterns at the core-mantle boundary. These observational findings will provide new insights into geodynamo processes when compared with numerical dynamo simulation results.Moreover, the models can be used to estimate past geomagnetic shielding above Earths surface against solar wind and for nuclide production from galactic cosmic rays.

Schwerpunktprogramm (SPP) 1803: EarthShape: Earth Surface Shaping by Biota, DeepEarthShape - Geophysikalische Sondierung: Abbildung der Verwitterungsfront im tiefen Regolith mit seismischen und elektromagnetischen Methoden (GIDES)

Dieses Projekt ist Teil des interdisziplinären DeepEarthshape Verbunds zur Untersuchung der Verwitterungs- bzw. kritischen Zone (CZ) mit Bohrungen und geophysikalischen, geochemischen und mikrobiologischen Untersuchungen. Die CZ ist der oberste Teil der Erdkruste, wo Gesteine durch den Einfluss von Luft, Wasser oder biologischen Organismen mechanisch bzw. chemisch zersetzt werden. Die Mächtigkeit hängt vom Gleichgewicht zwischen Erosion und tiefen Verwitterungsprozessen ab. Die geochemische Charakterisierung der CZ hat gezeigt, dass sie viel tiefer ist als erwartet (ca. 30m). Obwohl in geringen Tiefen (1-2m) beachtliche Mengen an mikrobieller Biomasse und DNA gefunden wurden, die mit der Verwitterung zusammenhängen könnten, ist unser Verständnis der CZ und ihrer Prozesse immer noch begrenzt. Unklar sind die Tiefe der Verwitterung, die Prozesse und ihre jeweiligen Verursacher. Da die Eigenschaften der CZ mit dem Klima in Verbindung zu stehen scheinen, werden im Rahmen der DFG SPP 1803 vier Untersuchungsgebiete vorgeschlagen, die verschiedenen Klimazonen mit unterschiedlicher Vegetation, Niederschlagsmengen und Erosion angehören. Die langgestreckte Küste Chiles ist ein idealer Ort, um klimatische Abhängigkeiten im gleichen geologischen Komplex, der Küstenkordillere, zu untersuchen. Durch den Vergleich der Ergebnisse aus diesen vier Untersuchungsgebieten sollen schließlich Hypothesen für die CZ getestet werden, wie z.B. eine mögliche Verknüpfung der Verwitterungsfront mit rezenten klimagetriebenen Prozessen und der Erosion an der Oberfläche durch eine biogeochemische Rückkopplung oder mikrobielle Aktivität im tiefen Regolith durch organische Substanzen, die die Verwitterung vorantreiben. Die oberflächennahe Geophysik entwickelt sich zu einem wesentlichen Bestandteil der CZ-Untersuchungen, um hydro-geomorphologische und Verwitterungsfront-Modelle zu testen. Hier schlagen wir kombinierte geophysikalische Experimente mit P- und S-Wellen Seismik und flachen elektromagnetischen (Radiomagnetotellurischen) Messungen entlang von ca. 500m langen Profilen an allen vier Standorten vor. Die Hauptziele dieser geophysikalischen Experiment, sind a) die Abbildung der Tiefe der CZ und ihrer räumlichen Variation; b) der Zusammenhang von physikalischen Parametern mit denen, die in den Bohrkernen gefunden wurden; c) die Beurteilung, ob Bohrlochergebnisse für einen größeren Raum repräsentativ sind; d) der Vergleich von geophysikalischen Abbildern der CZ mit denen der hydro-geomorphologischen Modelle; e) das Bestimmen der Tiefe des Grundwasserspiegels und der Einfluss von Störungssystemen, die Wegsamkeiten für meteorische Wässer darstellen; f) die Kopplung seismischer Geschwindigkeiten mit elektrischen Leitfähigkeiten, um zuverlässige Schätzungen der Porosität zu erhalten und g) eine konsistente geologische Interpretation verschiedener geophysikalischer, geochemischer und mikrobiologischer Beobachtungen abzuleiten.

Schwerpunktprogramm (SPP) 1803: EarthShape: Earth Surface Shaping by Biota, Koordinationsfonds

Das EarthShape Programm definiert vier überprüfbare Hypothesen, mit denen der Einfluss von Biota auf Erdoberflächenprozesse quantifiziert werden soll. Hierzu haben wir einen einzigartigen und interdisziplinären Forschungsansatz entwickelt, der die traditionellen Disziplinen der Geowissenschaften, der Biologie und Ökologie, sowie der Geomorphologie umfasst. Das hier vorgelegte Koordinationsprojekt umfasst mehrere administrative Aufgaben, die der Überprüfung der wissenschaftlichen Hypothesen und der Entwicklung eines interdisziplinären Umfelds für zukünftige Forschung im Bereich der Erdoberflächenprozesse in Deutschland dienen. Diese Aufgaben beinhalten: a) Bereitstellen grundlegender Feldkampagnen, Messinstrumente und Datensätze, die für viele EarthShape-Einzelprojekte Voraussetzung sind; b) Koordination von Geländearbeit, Genehmigungen und internationalen Kollaborationen in entlegenen Gebieten Chiles; c) Förderung der Weiterentwicklung und Mobilität der Teilnehmer als Forscher in einem interdisziplinären Umfeld mit Hilfe von Tagungen zur Ergänzung von Fähigkeiten für junge Wissenschaftler, Gleichstellungsmaßnahmen und Projektseminare. Neue Hauptziele des EarthShape Projektes, die die Koordinatoren und der Lenkungsausschuss aus den Resultaten von SPP Phase 1 als Bestandteile eines erfolgreichen Programms für die zweiten drei Jahre identifiziert haben, sind neue Arbeiten zur Biosphäre, Geophysik, und Critical Zone Prozessen der tieferen Erdoberfläche. Das Koordinationsprojekt enthält deshalb den finanziellen und logistischen Rahmen für ein koordiniertes Bohrprogramm der 'Critical Zone' in allen vier Untersuchungsstandorten. Wir erachten die folgenden Bestandteile für bewilligte EarthShape Einzelprojekte für einen erfolgreichen Projektabschluss als unerlässlich: a) die Arbeit in den vorgeschlagenen Forschungs-'Clustern' sowie die Überbrückung von Zeitskalen, wie es im ursprünglichen EarthShape Forschungsantrag dargestellt wurde; b) die aktive Zusammenarbeit zwischen Wissenschaftlern und Wissenschaftlerinnen unterschiedlicher Forschungsrichtungen, um die interdisziplinäre Zusammenarbeit zu stärken; c) die Notwendigkeit, dass die Teilnehmer in allen ausgewählten Untersuchungsstandorten (oder deren nahem Umfeld) forschen, um den Gegenvergleich und das Zusammenführen der Ergebnisse aus den verschiedenen Projekten zu ermöglichen; d) die Dokumentation der Beteiligung der Chilenischen Wissenschaftsgemeinschaft an den Vorhaben.

Schwerpunktprogramm (SPP) 1803: EarthShape: Earth Surface Shaping by Biota, Priority Program SPP 1803: EarthShape: Earth Surface Shaping by Biota

Das EarthShape-Programm definiert vier überprüfbare Hypothesen, die darauf ausgerichtet sind, den Einfluss von Biota auf Oberflächenprozesse zu quantifizieren. Dies wird durch einen einzigartigen interdisziplinären Forschungsansatz erzielt, der die traditionellen Bereiche der Geowissenschaften, Biologie, Geomorphologie sowie der Hydrologie umfasst. Dieser Koordinations-Antrag nimmt mehrere Aufgaben administrativer Art in Angriff, die der Überprüfung der wissenschaftlichen Hypothesen und der Entwicklung eines interdisziplinären Umfelds für zukünftige Forschung im Bereich der Oberflächenprozesse in Deutschland dienen. Diese Aufgaben beinhalten: a) Bereitstellen grundlegender Messinstrumente und Datensätze, die für viele EarthShape-Unterprogramme wichtig sind b) Koordination von Geländearbeit, Genehmigungen und internationalen Kollaborationen in entlegenen Gebieten Chiles; c) Förderung der Weiterentwicklung und Mobilität der Teilnehmer als Forscher in einem interdisziplinären Umfeld mit Hilfe von Tagungen zur Ergänzung von Fähigkeiten für junge Wissenschaftler, Gleichstellungsmaßnahmen und Projektseminaren. In diesem Antrag erläutern wir die Hauptziele sowie administrativen und finanziellen Bedürfnisse des EarthShape-Programms innerhalb der nächsten drei Jahre. Im Rahmen dessen legen wir die wichtigsten Komponenten dar, die die Koordinatoren und der Lenkungsausschuss in den vergangenen vier Jahren als essentielle Bestandteile eines erfolgreichen Programms ins Auge gefasst haben. Diese Erwägungen umfassen: a) die Erfordernis, an den vorgeschlagenen Forschungs Clustern zu arbeiten und Zeitskalen zu überbrücken, wie es im ursprünglichen EarthShape-Forschungsantrag dargestellt wurde, b) das Zusammenbringen von Wissenschaftlern unterschiedlicher Forschungsrichtungen, um die interdisziplinäre Zusammenarbeit zu stärken, und c) die Notwendigkeit, dass die Teilnehmer in den ausgewählten Schwerpunktgegenden (oder deren nahem Umfeld) forschen, um den Gegenvergleich und das Zusammenführen der Ergebnisse aus den verschiedenen Projekten zu ermöglichen.

1 2 3 4 538 39 40