Der Aufgabenschwerpunkt "Nachwachsende Rohstoffe" umfasst die Erarbeitung von Empfehlungen zur Rohstoffbereitstellung für die Energiegewinnung und technische Produktherstellung (z.B. Dämmstoffe, Biokraftstoff, Biogas) sowie die Umsetzung und Begleitung der Forschungsförderung. Zu den nachwachsenden Rohstoffe gehören z.B. schnellwachsende Hölzer, Chinaschilf, Getreide, Roggen, Hanf, Faserpflanzen, Energiepflanzen, Winterraps, halm- und holzartige Biomasse. Unter dem Begriff nachwachsende Rohstoffe werden Produkte pflanzlicher und tierischer Herkunft zusammengefasst, die im Nicht-Nahrungs- und Nicht-Futtermittelsektor verwertet werden. Nachwachsende Rohstoffe umfassen - Nebenprodukte der Land- und Forstwirtschaft (z. B. Stroh, Holz aus Waldpflege, Biomasse aus der Landschaftspflege), - Pflanzen aus dem landwirtschaftlichen Anbau (z. B. öl- und stärkehaltige Pflanzen, ein- und mehrjährige Gräser, Faserpflanzen, Heil-, Gewürz- und Aromapflanzen) sowie - unbehandelte Abfallstoffe der Biomasseverarbeitung (Bau- und Industrierestholz, Hobel- und Sägespäne etc.). Zunehmende Bedeutung erlangen sie vor allem vor dem Hintergrund des steigenden Energiebedarfs, der Endlichkeit fossiler Rohstoffe und der CO2-Anreicherung der Atmosphäre.
Ueber die Anbauwuerdigkeit von Miscanthus sinensis liegen in West-Europa nur vereinzelt Versuchsergebnisse vor. Ziel des Vorhabens ist zum einen im Rahmen eines groesseren Projektes der VEBA an mehreren Orten die generelle Leistungstaehigkeit von M. sinensis und den Einfluss ptlanzenbaulicher Massnahmen auf eine energetische Verwertung (Produktion von Hz) zu pruefen. Zum anderen soll eine oekologische Bewertung am Standort Berlin vorgenommen werden, die die Abhaengigkeit der Ertragsbildung vom Wasserhaushalt und die N-Dynamik des Bodens im Jahresverlauf, insbesondere den Nitrataustrag ins Grundwasser beinhaltet.
Pruefung der Anbaueignung von Pflanzenarten mit hoher Biomasseproduktion, z.B. Amarant, Chinaschilf
Angesichts der durch steigende Kohlendioxid (CO2)- Konzentrationen bedingten Klimaerwärmung wird nach Möglichkeiten gesucht, CO2 unter anderem in terrestrischen Senken für längere Zeiträume festzulegen. Am Beispiel von Miscanthus x giganteus (Greef et Deu.) wurde untersucht, ob durch den Anbau von nachwachsenden Rohstoffen eine Kohlenstoff (C)- Festlegung in Böden unterschiedlicher Textur möglich ist. Zu diesem Zweck wird die Methode der natürlichen 13C-Abundanz angewandt. Mit dieser modernen Methode können C-Umsatzzeiten des Gesamtkohlenstoffs im Boden sowie seiner verschieden Pools abgeschätzt werden, aber auch die C-Dynamik auf molekularer Basis durch komponentenspezifische O13C Lipidanalysen untersucht werden. Die Untersuchungen zeigten, dass die unter Miscanthus ermittelten C-Verweilzeiten nur geringfügig länger sind als diejenigen unter Mais. Die jährliche Festlegung von miscanthusbürtigem C in der organischen Bodensubstanz (OBS) bestätigt nur für lehmigen Boden eine höhere C-Sequestrierung von Miscanthus. Es wurde eine vergleichbare C-Akkumulation durch den Miscanthusanbau wie in Grünlandböden festgestellt. Ebenso zeigen Inkubationsexperimente im Miscanthusboden eine ähnliche kumulative CO2-Freisetzung wie in Böden unter Grünland mit einer Tendenz zu geringfügig niedrigeren Freisetzungsraten im Miscanthusboden, Die Anteile von miscanthusbürtigem C am freigesetzten CO2 sind ähnlich wie in Versuchen mit Mais. Es lässt sich eine schnellere Umsetzung des miscanthusbürtigen C in der mikrobiellen Biomasse als leicht umsetzbarer C-Fraktion bestätigen. Die Zugabe leicht verfügbarer organischer Substanzen bewirkte eine verstärkte Mineralisierung der OBS, wobei dieser zusätzlich freigesetzte C entgegen den Erwartungen aus der alten, C3 bürtigen OBS Fraktion stammte. In 13C- Markierungsexperimenten konnte in Miscanthus, Mais, Weizen und Roggen die Verlagerung des kürzlich assimilierten CO2 in Pflanzenteilen verfolgt werden. Eine Verlagerung in den Boden fand hierbei kaum statt. Die O13C-Werte aus den komponentenspezifischen O13C- Lipidanalysen sind vielversprechend für die Diagnose von molekularen Markern und die daraus erfolgende Bestimmung der Umsatzraten. An den CO2- Konzentrationen der Bodenluft und der Herkunft des CO2 konnte der besondere Vegetationszyklus (später Wachstumsbeginn, verzögertes Wurzelwachstum) von Miscanthus wiedergespiegelt werden.
Brennstoffe werden zur Wärmegewinnung eingesetzt und dienen der Erzeugung von elektrischem Strom im Dampfkraftwerk. Die Landwirtschaft verfügt über ein großes Potenzial an energetisch nutzbarer fester Biomasse. Das sind zum einen Getreidestroh, Grünland- und Landschaftspflegeaufwüchse zum anderen Energiepflanzen (Getreidekorn, Miscanthus, Schnellwachsende Baumarten), die gezielt angebaut werden. Im Zuge des weiteren Preisanstieges für fossile Energieträger und im Interesse der Umweltschonung (Klimawandel) gewinnen diese nachhaltigen Ressourcen zunehmend an Bedeutung.
Kurzinformation des wissenschaftlichen Dienstes des Deutschen Bundestages. 3 Seiten. Auszug der ersten drei Seiten: Wissenschaftliche Dienste Kurzinformation Einzelfragen zur Photosynthese von C3- und C4-Pflanzen 1. C3- und C4-Pflanzen „C3-Pflanzen betreiben unter normalen Temperatur- und Lichtverhältnissen Photosynthese. Bei heißem und trockenem Wetter schließen sich die Spaltöffnungen, wodurch die Photosynthese- leistung sinkt. Bei normalen Temperatur- und Lichtverhältnissen ist der Grundtypus der Photosynthese, der in den sogenannten C3-Pflanzen stattfindet, am effektivsten. Bei heißem und trockenem Wetter schließen sich jedoch die Spaltöffnungen. Dann sind C4- bzw. CAM-Pflanzen im Vorteil. Bei C3-Pflanzen wird CO2 im Calvin-Zyklus bei der RuBisCO-Reaktion an Ribulose-1,5-bisphos- phat fixiert. Dabei entsteht eine instabile Zwischenstufe, die in zwei stabile Moleküle 3-Phospho- glycerat (3-PGA) zerfällt. 3-PGA ist aus drei Kohlenstoffatomen aufgebaut, daher der Name C3- Pflanzen. 3-PGA wird im Calvin-Zyklus weiter umgesetzt. Der überwiegende Teil höherer Pflanzen gehört zu den C3-Pflanzen. Um sich an Standort- bzw. Klimabedingungen optimal anzupassen, haben sich zudem besondere Formen der CO2-Fixierung entwickelt (C4- und CAM-Pflanzen).“ BMBF (2019). C3-Pflanzen. https://www.pflanzenforschung.de/index.php?cID=7812 „C4-Pflanzen binden CO2 besser als C3-Pflanzen. Sie haben sich an wärmere Regionen mit höhe- rer Lichteinstrahlung, also tropisches und subtropisches Klima angepasst. Normalerweise schließen Pflanzen bei hoher Umgebungstemperatur ihre Stomata, um Wasserver- luste durch Transpiration in Grenzen zu halten. Dadurch wird allerdings die Aufnahme von CO 2 für die Photosynthese erschwert. C4-Pflanzen haben daher einen Mechanismus entwickelt, um selbst geringste Mengen CO2 nutzen zu können. Im Gegensatz zu C3-Pflanzen besteht das erste Zwischenprodukt der Photosynthese bei C4-Pflan- zen – Oxalacetat - aus vier Kohlenstoff-Atomen. Mithilfe des Enzyms PEP-Carboxylase wird CO2 besonders effektiv gebunden. WD 8 - 3000 - 126/19 (26.09.2019) © 2019 Deutscher Bundestag Die Wissenschaftlichen Dienste des Deutschen Bundestages unterstützen die Mitglieder des Deutschen Bundestages bei ihrer mandatsbezogenen Tätigkeit. Ihre Arbeiten geben nicht die Auffassung des Deutschen Bundestages, eines sei- ner Organe oder der Bundestagsverwaltung wieder. Vielmehr liegen sie in der fachlichen Verantwortung der Verfasse- rinnen und Verfasser sowie der Fachbereichsleitung. Arbeiten der Wissenschaftlichen Dienste geben nur den zum Zeit- punkt der Erstellung des Textes aktuellen Stand wieder und stellen eine individuelle Auftragsarbeit für einen Abge- ordneten des Bundestages dar. Die Arbeiten können der Geheimschutzordnung des Bundestages unterliegende, ge- schützte oder andere nicht zur Veröffentlichung geeignete Informationen enthalten. Eine beabsichtigte Weitergabe oder Veröffentlichung ist vorab dem jeweiligen Fachbereich anzuzeigen und nur mit Angabe der Quelle zulässig. Der Fach- bereich berät über die dabei zu berücksichtigenden Fragen.[.. next page ..]Wissenschaftliche Dienste Kurzinformation Seite 2 Einzelfragen zur Photosynthese von C3- und C4- Pflanzen C4-Pflanzen können bei hoher Lichteinstrahlung und hoher Temperatur in kürzerer Zeit mehr Biomasse aufbauen als C3-Pflanzen. Entsprechend sind C4-Pflanzen vorwiegend an trockenen Standorten zu finden. Vor allem Gräser und Nutzpflanzen, wie Amarant, Hirse, Mais und Zucker- rohr nutzen die C4-Photosynthese.“ BMBF (2019). C4-Pflanzen. https://www.pflanzenforschung.de/index.php?cID=7812 2. Vorkommen der C4-Photosynthese im Pflanzenreich „Nur etwa drei Prozent der heute lebenden Gefäßpflanzen betreiben C4-Photosynthese. Da diese jedoch so effizient ist, machen sie ungefähr 25 Prozent der gesamten, auf dem Land betriebenen Photosyntheseleistung aus. Bekannte C4-Pflanzen sind Mais, Zuckerrohr, Amarant, Hirse und Chinaschilf. Die meisten gehören zu den Gräsern, gefolgt von Seggen. Doch auch bei einer Reihe von Zweikeimblättrigen gibt es diesen Stoffwechselweg, insbesondere bei den Fuchsschwanzge- wächsen und anderen Nelkenartigen, bei Wolfsmilchgewächsen und vereinzelt bei Windenge- wächsen und Korbblütlern. C4-Pflanzen wachsen schneller als C3-Pflanzen, bilden also in kürze- rer Zeit mehr Biomasse, was ihren landwirtschaftlichen Nutzen gegenüber anderen Pflanzen er- höht. Die C4-Photosynthese ist aus evolutionsbiologischer Sicht der jüngere und modernere Pho- tosynthesetyp. Die C3-Photosynthese gibt es schon seit über zwei Milliarden Jahren. Die C4-Pho- tosynthese hat sich erst vor 30 Millionen Jahren entwickelt. (…) Das Enzym Ribulose-1,5-bisphosphat-carboxylase/oxygenase (RuBisCO) ist dafür verantwortlich, dass alle photosynthetisch aktiven Pflanzen Kohlenstoffdioxid aufnehmen können, weshalb es vermutlich das mengenmäßig häufigste wasserlösliche Protein der Erde ist. C4-Pflanzen können mit viel weniger RuBisCO genau so viel Kohlenstoff aus der Luft fixieren wie C3-Pflanzen. So bleibt ihnen mehr Energie zum Wachsen.“ BMBF (2013). Die Evolution von C4-Pflanzen vorhersagen. Kann man C3-Pflanzen in C4-Pflanzen umzüchten? https://www.pflanzenforschung.de/de/journal/journalbeitrage/die-evolution-von-c4- pflanzen-vorhersagen-kann-man-c3-p-10069 C4-Pflanzen sind bei Wasserknappheit, hohen Temperaturen und Sonneneinstrahlung C3-Pflan- zen in ariden Klimazonen überlegen. So betreiben etwa 70 Prozent aller im Death-Valley-Natio- nalpark lebenden Arten eine C4-Photosynthese. Der Großteil aller C4-Gräser wächst in Regionen mit weniger als 30 Grad geographischer Breite. Seltener sind sie in kalten Regionen zu finden, wie z. B. in der borealen Zone zwischen dem 50. und 65. Breitengrad und in großen Höhenlagen. Es gibt einige kältetolerante C4-Pflanzen, die Frost sowie winterliche Temperaturen (−20 °C) überstehen können, beispielsweise C4-Gräser in den Anden. Vergleiche dazu: Rowan F. Sage, Ferit Kocacinar, David S. Kubien: C4 photosynthesis and tempe- rature. In: Raghavendra, Sage (Hrsg.): C4 photosynthesis and related CO2 concentrating mecha- nisms. 2011, S. 161–195. Fachbereich WD 8 (Umwelt, Naturschutz, Reaktorsicherheit, Bildung und Forschung)[.. next page ..]Wissenschaftliche Dienste Kurzinformation Seite 3 Einzelfragen zur Photosynthese von C3- und C4- Pflanzen Unklar ist, warum es - bis auf ein paar wenige Ausnahmen - keine Bäume mit einer C4-Photosyn- these existieren. Rowan F. Sage schreibt dazu in einem Aufsatz aus dem Jahr 2017: "For reasons that are not fully understood, the C4 pathway is absent in trees, with the exception of a few rare species in Hawaii." Auf Hawaii existieren demnach nur vier Arten, darunter Euphorbia olowaluana (bis 10 m) und E. herbstii (bis 8 m). Euphorbia olowaluana wächst in trockenen Wäldern auf Hawaii, bildet aber kein dichtes Blätterdach. E. herbstii wächst größtenteils als Baum im Unterholz anderer Bäume und verfügt über eine ausgezeichnete Schattentoleranz. Vergleiche dazu: Rowan F. Sage: A portrait of the C4 photosynthetic family on the 50th anniver- sary of its discovery: species number, evolutionary lineages, and Hall of Fame. In: Journal of Ex- perimental Botany. Band 68, Nr. 2, 2017, S. e12–e13, https://academic.oup.com/jxb/ar- ticle/68/2/e11/2932223 ) *** Fachbereich WD 8 (Umwelt, Naturschutz, Reaktorsicherheit, Bildung und Forschung)
Ziel des Verbundprojekts ist, eine vollständige Miscanthus-Wertschöpfungskette von der nachhaltigen Nutzung von Grenzertragsflächen über Anbau, Ernte, Lagerung und Verarbeitung zu Fasern, Zellstoff, Faserwerkstoffen und Verpackungspapieren zu gewährleisten. Die grenzüberschreitende Herausforderung in Deutschland (Sachsen) und Tschechien ist die Notwendigkeit zur Revitalisierung ehemaliger Militärgebiete und Bergbaufolgeflächen. Der Anbau von Miscanthus, eine der für den Nonfood-Bereich bedeutendsten mehrjährigen Pflanzengattungen, kann auf diesen Grenzertragsflächen verschiedene positive Auswirkungen nach sich ziehen, darunter die Verbesserung der Bodenqualität, die Zusätzlich liefert der Anbau dieser Pflanzen große Mengen an Biomasse die bei der Herstellung verschiedener biobasierter Materialien zum Einsatz kommen können. Die Diversifizierung der Rohstoffe in der Papier- und Faserwerkstoffindustrie und der zunehmende Anteil nicht holzbasierter Rohstoffe sind Teil der Bioökonomie-Strategie der EU, welche die Produktion erneuerbarer Ressourcen und deren Verarbeitung zu Produkten und Bioenergie fördert. Der Einsatz von Miscanthus, einer etablierten mehrjährigen Kulturpflanze, bietet sich hierfür besonders an. Das beantragte Projekt wird die grenzüberschreitende Zusammenarbeit zwischen Sachsen und der Tschechischen Republik stärken.
| Origin | Count |
|---|---|
| Bund | 113 |
| Land | 3 |
| Zivilgesellschaft | 2 |
| Type | Count |
|---|---|
| Chemische Verbindung | 2 |
| Förderprogramm | 105 |
| Gesetzestext | 2 |
| Taxon | 4 |
| Text | 4 |
| unbekannt | 3 |
| License | Count |
|---|---|
| geschlossen | 8 |
| offen | 107 |
| unbekannt | 3 |
| Language | Count |
|---|---|
| Deutsch | 110 |
| Englisch | 15 |
| Resource type | Count |
|---|---|
| Archiv | 1 |
| Bild | 2 |
| Datei | 6 |
| Dokument | 5 |
| Keine | 84 |
| Webseite | 30 |
| Topic | Count |
|---|---|
| Boden | 101 |
| Lebewesen und Lebensräume | 102 |
| Luft | 68 |
| Mensch und Umwelt | 117 |
| Wasser | 56 |
| Weitere | 118 |