B1.1 Räumlich-zeitliche Heterogenität der Blattchlorophyll Fluoreszenz Wir werden die räumlich-zeitliche Heterogenität von Chlorophyll Fluoreszenz als sensitiver Parameter für Stresseffekte zusammen mit mikroklimatischen Parametern auf Blattebene messen. Durch multiple Mikro-Sensoren erreichen wir eine neue Dimension von räumlichen Analyse um sowohl innerhalb einzelner Baumkronen und Baumgruppen Hot Spots und Hot Moments stressbedingter Veränderungen der photosynthetischen Effizienz zu identifizieren.B1.2 Minimalinvasive und energiebewusste multifunktionale Blattsensoren Wir entwickeln neuartige drahtlose, energieautarke ChlF-Sensoren, die flexible, multifunktionale (Mikroklima) und hochintegrierte Mikrosensoren verwenden. Die neuartigen Blattsensoren (<1cm²) werden den höchsten Grad an Miniaturisierung aufweisen, um die geringste Störung bei den Blättern zu gewährleisten. Diese Sensoren fungieren als unabhängige Sensorknoten, da sie dank Solarenergie ihre Daten drahtlos übermitteln. Sie können im Rahmen einer "Deploy and forget"-Strategie installiert werden.
1969 liess sich in der Naehe von Nordenham (Weser gegenueber Bremerhaven) das Chemieunternehmen Kronos-Titan nieder. Um die Folgen der Abwassereinleitung durch die Firma festzustellen, wurde im Dezember 1967 ein Monitoring-Programm zur Beweissicherung begonnen. Auf diese Weise wurden der Status vor der Inbetriebnahme und durch Langzeituntersuchungen die oekologischen Auswirkungen nach der Inbetriebnahme der Chemieanlage untersucht. Die Untersuchungen umfassen sowohl das Mikroplankton als auch das Makrozoobenthos. Fuer die Plankton-Erfassung werden einmal pro Jahr (meist im Juni) 22 Proben zwischen dem Leuchtturm 'Roter Sand' und Bremen entnommen; neben den Mikroplanktonorganismen werden die physikalisch-chemischen Begleitparameter O2, Temperatur, Salzgehalt, Truebung, Chlorophyll und Naehrsalze bestimmt. Zweimal im Jahr wird an 7 Stationen in der Naehe des Unternehmens das Makrozoobenthos, die Sedimentbeschaffenheit und der Schwermetallgehalt im Sediment und ausgewaehlten Organismengruppen erfasst.
<p>Umweltbewusst im Alltag: Lebensmittelverschwendung vermeiden</p><p>Was Sie gegen Lebensmittelverschwendung tun können</p><p><ul><li>Prüfen Sie Ihre Vorräte vor dem Einkauf: Kaufen Sie mit Einkaufszettel ein, nicht nach Gefühl und vermeiden Sie großzügige Vorratshaltung.</li><li>Lassen Sie sich bei Obst und Gemüse nicht von kosmetischen Makeln leiten und wählen sie bewusst Ware ohne Klassenangaben oder der Klasse II.</li><li>Kaufen Sie, wenn möglich, Gemüse wie Kohlrabi, Möhren und Radieschen ohne Blattgrün.</li><li>Prüfen Sie nach Ablauf des Mindesthaltbarkeitsdatums, ob die Lebensmittel noch genießbar sind (Ausnahme: verderbliche tierische Produkte).</li><li>Stellen Sie Reste kühl oder frieren Sie diese ein.</li><li>Entsorgen Sie Essensreste über die Biotonne.</li></ul></p><p>Gewusst wie</p><p>Im Schnitt wirft jeder Bundesbürger pro Jahr rund 78 Kilogramm Lebensmittel weg. Hinzu kommen Lebensmittel, die bereits in der Landwirtschaft oder vom Handel entsorgt werden, da sie beispielsweise optischen Vorgaben nicht entsprechen. Die Lebensmittel wurden sozusagen für die Mülltonne hergestellt, verursachten aber trotzdem Umweltbelastungen wie andere Lebensmittel auch (z.B. Klimagase, Energieverbrauch, Gewässer- und Bodenbelastungen). </p><p><strong>Überblick bewahren:</strong> Verschaffen Sie sich vor dem Einkaufen und dem Kochen einen Überblick darüber, welche Lebensmittel noch vorrätig sind. Lagern Sie Ihre Lebensmittel übersichtlich, damit diese nicht in Vergessenheit geraten und verderben. Räumen Sie neue Ware nach hinten, ältere nach vorne. Beschriften Sie Eingemachtes und Eingefrorenes mit dem Datum, an dem es hergestellt beziehungsweise eingefroren wurde. Die meisten Lebensmittel lassen sich sechs bis zwölf Monate ohne Bedenken einfrieren.</p><p><strong>Planvoll einkaufen:</strong> Supermärkte sind Könner der Verführung. Wer sich hier zu stark von seinen spontanen Gelüsten leiten lässt, kauft schnell zu viel ein. Stellen Sie sich deshalb zum Beispiel einen wöchentlichen Speiseplan zusammen. Notieren Sie sich die benötigten Lebensmittel für den Speiseplan und gleichen Sie diesen mit Ihren Vorräten ab. Der Einkaufszettel hilft Ihnen dabei, nur das einzukaufen, was Sie auch essen können.</p><p><strong>Ausschuss im Supermarkt vermeiden:</strong> Ob Gemüse und Obst gesund und lecker sind, ist unabhängig von kleinen kosmetischen Makeln, einer großen Größe oder schönen grünen Blättern. Die hohen optischen Anforderungen des Handels können allerdings häufig nur mit zusätzlichem Einsatz an Dünger und Pflanzenschutzmitteln und mit einem hohen Entsorgungsanteil an verzehrfähigen und gesunden Produkten gewährleistet werden. Lassen Sie sich beim Kauf von Obst und Gemüse also nicht von kosmetischen Makeln leiten und bevorzugen Sie Kohlrabi, Möhren und Co ohne Blattgrün. Mit einem bewussten Einkauf machen sie im Supermarkt und Discounter auch deutlich, dass das makellose Aussehen der Produkte nicht das entscheidende Kriterium für ihren Einkauf ist. Dies ist ein wichtiger Schritt, um die Handelsketten zu bewegen ihr Angebot umweltfreundlicher und ressourcenschonender zu gestalten.</p><p><strong>Vorräte beschränken:</strong> Jeder schöpft gerne aus dem Vollen. Doch die zu gut gemeinte Vorratshaltung ist ein wesentlicher Grund für anfallende Lebensmittelabfälle. Nutzen Sie deshalb die gut gefüllten Vorratslager der Lebensmittelmärkte und halten Sie die persönlichen Vorräte bei verderblichen Lebensmitteln klein. Greifen Sie eher zu kleinen Packungen. Mit "Sonderpreis" beworbene Großpackungen sind letztlich teurer, wenn man am Ende die Hälfte wegschmeißen muss.</p><p><strong>Mindesthaltbarkeits- und Verbrauchsdatum:</strong> Mit Ablauf des Mindesthaltbarkeitsdatums ist ein Lebensmittel nicht automatisch schlecht. Vielmehr sollte jetzt die Qualität des Lebensmittels vor Verzehr genauer geprüft werden. Vertrauen Sie auf Ihren eigenen Geruchs- und Geschmackssinn und entscheiden Sie selbst. Bei leicht verderblichen tierischen Produkten dagegen, wie zum Beispiel Fleisch und Fisch, gilt es, das Verbrauchsdatum zu beachten. Ist dieses überschritten, müssen die Produkte weggeworfen werden, sonst besteht die Gefahr einer Lebensmittelvergiftung.</p><p><strong>Richtig entsorgen:</strong> Ungenießbare Essensreste kommen - unabhängig von ihrem Verarbeitungszustand - ohne Verpackung in die <a href="https://www.umweltbundesamt.de/umwelttipps-fuer-den-alltag/garten-freizeit/bioabfaelle">Biotonne</a>. Aus hygienischen Gründen und wegen der vor Ort verfügbaren Kompostierungs- oder Vergärungstechnik sind Essensreste nicht überall für die Entsorgung in der Biotonne zugelassen. Was vor Ort gilt, kann in den Abfallsatzungen der Städte und Landkreise oder in den Getrenntsammelvorschriften der örtlichen Abfallwirtschaftsbetriebe nachgelesen werden. <br>Auf den heimischen <a href="https://www.umweltbundesamt.de/umwelttipps-fuer-den-alltag/garten-freizeit/kompost-eigenkompostierung">Kompost</a> sollten tierische und gekochte Essensreste nicht geworfen werden, da diese Wildtiere wie Ratten anlocken. Essensreste dürfen auf keinen Fall über Toiletten oder Abwasser entsorgt werden. Grobe Abfälle können die Abwasserrohre verstopfen und sind ein gefundenes Fressen für Ratten. Außerdem machen Essensreste die Abwasserreinigung aufwendiger und damit teurer. Die meisten Kommunen haben daher in ihren Abwassersatzungen das Entsorgen fester Stoffe wie Lebensmittelabfälle, auch in zerkleinerter Form, explizit verboten.</p><p><strong>Was Sie noch tun können:</strong></p><p>Hintergrund</p><p><strong>Im Handel</strong></p><p><strong>Umweltsituation:</strong> Kohlrabi, Radieschen und Bundmöhren werden fast immer mit Blättern angeboten, weil diese als Frischemerkmal für Kund*innen dienen. Verzehrt werden sie selten. Allerdings müssen diese Blätter häufig mit Pflanzenschutzmitteln behandelt und zusätzlich gedüngt werden, damit sie makellos, grün und hochstehend sind. Produkte deren Blätter dann trotzdem beschädigt oder gelb und welk sind, werden vom Handel nicht abgenommen und müssen entsorgt werden, was beispielsweise direkt durch Unterpflügen auf dem Feld geschieht. Zusätzlich verdunsten die großen Blätter an den Knollen und Wurzeln Wasser und lassen so das Gemüse schneller welk werden.</p><p>Einheitliche Größenvorgaben des Handels, z.B. bei Kohlrabi oder Blumenkohl, führen dazu, dass Gemüse, das besonders groß oder klein ist, nicht in den Handel gelangt. Unterschiedliche Größen im Gemüseregal sind aber nicht nur vorteilhaft für die Umwelt, sondern auch wünschenswert für die Konsument*innen, denn ein bedarfsgerechter Einkauf ist nur möglich, wenn 1- und Mehrpersonenhaushalte die passenden Mengen einkaufen können.</p><p>Die Produkte, die den Anforderungen nicht entsprechen, werden den Betrieben nicht abgekauft und müssen entsorgt oder einer Zweitverwertung, zum Beispiel als Futter oder Saft, zugeführt werden. Die Produktionsressourcen, die für die Erfüllung der hohen Anforderungen eingesetzt wurden, sind dann verschwendet worden und belasten unnötigerweise Umwelt und <a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klima#alphabar">Klima</a>. Das Ausmaß und die genauen Folgen solcher umwelt- und klimabelastenden Anforderungen sind bisher wenig erforscht (Ebert et al. 2020). Fachleute schätzen aber, dass in Deutschland jährlich zwischen 10 und 30 Prozent des erzeugten Gemüses auf den Feldern verbleibt, wobei hohe Anforderungen des Handels ein wesentlicher Grund dafür sind (Haenel et al. 2020). Zu ähnlichen Ergebnissen kommt auch eine Studie aus Nordrhein-Westfalen, die zeigt, dass durchschnittliche Lebensmittelverluste von 20 Prozent und mehr für Obst, Gemüse und Kartoffeln von der Ernte bis zur Lieferung an den Einzelhandel normal sind (LANUV 2018). Bei Kartoffeln werden aufgrund optischer Anforderungen und Größenvorgaben rund 30 bis 35 Prozent der ökologisch angebauten und rund 16 Prozent der konventionell angebauten Kartoffeln aussortiert (Brendel 2017). Andere Wissenschaftlerinnen und Wissenschaftler kommen zu dem Schluss, dass hohe kosmetische Anforderungen an frisches Obst und Gemüse dazu führen, dass europaweit zwischen 4 und 37 Prozent der Ernte nicht in den Handel gelangt (Porter at al. 2018).</p><p><strong>Gesetzliche Aspekte:</strong> Das Lebensmittelrecht (LFGB) und die EU-Vermarktungsnormen (EU-VO 543/2011 und EU-VO 1308/2013) stellen sicher, dass das in Deutschland verkaufte Obst und Gemüse gesund und von hoher Qualität ist. Darüber hinaus stellt der Handel zusätzliche unternehmensspezifische Anforderungen an Größe, Gewicht und das Aussehen.<strong><br></strong></p><p>Weitere Informationen finden Sie unter:</p><p> </p><p><strong>Im Haushalt</strong></p><p><strong>Umweltsituation:</strong> Fast 11 Millionen Tonnen Lebensmittel werden in Deutschland jährlich als Abfall entsorgt, davon entfallen etwa 6,5 Millionen Tonnen auf die Privathaushalte. Im Schnitt wirft jeder Bundesbürger 78 Kilogramm Lebensmittel pro Jahr weg. Dies ergab eine <a href="https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Umwelt/Abfallwirtschaft/Tabellen/lebensmittelabfaelle.html">Datenerhebung des Statistischen Bundesamtes für das Jahr 2020</a> (siehe auch <a href="https://www.bmuv.de/pressemitteilung/in-deutschland-entstehen-jaehrlich-11-millionen-tonnen-lebensmittelabfaelle">Pressemitteilung des BMUV</a>). Hierdurch geht zum einen der Nährwert der Lebensmittel verloren, zum anderen werden wertvolle Ressourcen (z.B. Wasser, Energie) verschwendet. Werden Lebensmittelabfälle nicht ordnungsgemäß entsorgt, gehen zudem die enthaltenen Mineralstoffe verloren. Vor etwa 20 Jahren wurde in Deutschland begonnen, biogene Abfälle getrennt zu sammeln. Diese werden kompostiert oder in Biogasanlagen vergoren und anschließend kompostiert. Aus Bioabfällen entstehen nicht nur wertvolle Komposte, sondern sie tragen auch zur regenerativen Energieproduktion durch Biogas bei.</p><p><strong>Gesetzliche Aspekte:</strong> Gemäß Kreislaufwirtschaftsgesetz (KrWG) ist Abfallvermeidung prioritäres Ziel. Die Regelungen zur Verwertung von Bioabfällen finden sich in der Bioabfallverordnung und im Kreislaufwirtschaftsgesetz. Mit dem 1.1.2015 wurde eine flächendeckende getrennte Erfassung von Bioabfällen in Deutschland eingeführt. Die Bestimmungen zum Mindesthaltbarkeits- und Verbrauchsdatum finden sich in der Lebensmittel-Kennzeichnungsverordnung (LMKV).</p><p><strong>Marktbeobachtung:</strong> In den letzten Jahren ist ein genereller Trend zur verstärkten Abfalltrennung und damit zu einer Abnahme des Restmüllaufkommens zu beobachten. Dies ist nicht zuletzt auf die zunehmende Verbreitung der Biotonne zurückzuführen. Leider nutzen noch nicht alle Haushalte eine Biotonne.</p><p>Weitere Informationen finden Sie unter:</p>
Das Beobachtungsprogramm ermittelt Daten zur Wasserbeschaffenheit von etwa 300 Fließgewässermessstellen des Landes Mecklenburg-Vorpommern seit 1974. Seit 1992 erfolgt die regelmäßige Beprobung und Untersuchung der Wasserbeschaffenheit der Fließgewässer auf der Grundlage von Erlassen des Umweltministeriums M-V zu Gewässergüteüberwachung, die regelmäßig fortgeschrieben werden. Derzeit sind etwa 180 Fließgewässermessstellen in das Untersuchungsprogramm einbezogen. Die Auswahl der zu untersuchenden Parameter ergibt sich aus der Klassifizierung der Fließgewässer nach "Sauerstoffhaushalt und organische Belastung" sowie "Nährstoffe". Dazu werden ein Grundmessprogramm Chemie (z.B. Sauerstoffgehalt, BSB5, Phosphor, Stickstoff), ein erweitertes Grundmessprogramm Chemie an ausgewählten Messstellen (z.B. TOC, AOX, Sulfat), ein Grundmessprogramm Biologie (Saprobienindex), ein erweitertes Messprogramm Biologie (z.B. chlorophyll a) angewandt sowie auch Schwermetalle, Arsen, Pestizide, Arzneimittel, Halogenkohlenwasserstoffe, BTX und Komplexbildner in der Wasserphase untersucht. Das Grundmessprogramm Biologie dient der saprobiologischen Gewässeruntersuchung im Rahmen der fünfjährigen (seit 1994) Erstellung der biologischen Gewässergütekarte. Wegen der Nichteignung des bislang daraus ermittelten Saprobienindex für die in M-V typischen langsam fließenden, dür Rückstau beeinflussten Flachlandflüsse wurde als neues Bewertungsverfahren der Standorttypieindex (STI) entwickelt. Dieser bezieht neben der biologischen Gewässerqualität auch den morphologischen Zustand von Sohle, Ufer und Aue bzw. die Auswirkungen anthropogener Einflüsse mit ein. Daneben werden an ausgewählten Messstellen Schwebstoffe (Schwermetall, Arsen, organische Supurenstoffe) sowie Sedimente (Nährstoffe, Schwermetalle, Arsen, Chlorpestizide, PCB, PAK, TBT, Dioxine) untersucht.
Die Digitalen Orthophotos mit einem nahen Infrarotkanal (DOP-CIR) und einer Bodenauflösung von10 cm sind ein ATKIS®-Produkt und geben als georeferenzierte, falschfarbige photographische Abbilder einen Teil der Erdoberfläche wieder. Die Orthophotos bestehen als CIR Ausgabe aus einem 3-Kanal-Colorinfrarotbild (Falschfarben-Infrarot; NIR-Rot-Grün). Der Kanal des nahen Infrarots hat gegenüber den RGB-Kanälen den Vorteil, dass Bereiche mit Vegetation in Rottönen hervortreten, da der Pflanzenfarbstoff Chlorophyll das nahe Infrarot besonders stark reflektiert. Die Abgrenzung zu vegetationsfreien Flächen wie versiegelten Böden, Böden ohne Bewuchs oder Gewässern in Blautönen ist sehr deutlich. Bildflugtage 2025: Bremen: 06.03./07.03./08.03 2025 Bremerhaven: 07.03.2025
Das Dezernat 410 ist eine Organisationseinheit der Abteilung Gemeinschaftslabor für Umweltanalytik im LUNG. Im Dezernat Biologische Gewässeruntersuchungen werden biologische Grundlagendaten aus Stand- und Fließgewässern erhoben. Schwerpunktaufgaben sind: - Bestimmung von Chlorophyll a und Phaeophytin in Fließgewässern und stehenden Gewässern - Mikroskopische Analysen von Planktonproben (Zooplankton und Phytoplankton) aus stehenden Gewässern
Untersucht werden in erster Linie Wirkungen von Ozon allein oder in Kombination mit saurem Nebel unter kontrollierten Bedingungen. Als Arbeitshypothese liegt das Wirkungsschema der LIS zur Entstehung der neuartigen Waldschaeden zugrunde (siehe LIS-Bericht Nr. 28). Zur experimentellen Untersuchung der O3-Wirkung werden Waldbaeume in Plexiglaskammern mit gefilterter Luft unter Zusatz von Ozon begast und die verschiedenen physiologischen Parameter verfolgt. Dabei konnte festgestellt werden, dass unter O3-Einfluss a) die Photosyntheserate reduziert wird, b) die Atmungsrate ansteigt, c) der Chlorophyllgehalt abnimmt. Es laesst sich eine vorlaeufige Rangfolge der Sensitivitaet wie folgt aufstellen 1) Buchen 2) Ahorn 3) Fichte 4) Tanne. Zur Wirkung der kombinierten Behandlung von Fichten mit Ozon und saurem Nebel werden vor allem die aus den Baeumen ausgewaschenen Naehrstoffe analysiert. In Abhaengigkeit von der Ozonkonzentration werden Ca++, Mg++, K+, Mn+, NO3- und SO4-- verstaerkt ausgewaschen, Cl- dagegen nicht. Mit sinkendem pH-Wert in der Nebelloesung nimmt die Menge ausgewaschener Ionen ebenfalls zu.
Im Teilvorhaben 3 wird im Modul 5 (Flächendeckendes satellitengestütztes Monitoring der Wachstumsreaktion) ein satellitenbasiertes räumliches Monitoring der Wachstumsreaktion der Bäume für die Testgebiete entwickelt. Als Wachstumsreaktion wird die Veränderung des Saftflusses sowie des Dickenwachstums als Reaktion auf extreme Hitze- und Trockenperioden definiert. Beide Variablen werden mittels DHC-Stationen in situ gemessen und durch die Kombination mit Satellitendaten in die Fläche überführt. Als Prädiktoren werden neuartige Daten der spektral hochaufgelösten ECOSTRESS (IR hyperspektral), OCO-3 und DESIS (Hyperspektralsensor) herangezogen, die alle auf der ISS installiert und damit optimal für eine solche Datenkombination geeignet sind. Die Daten der punktuellen DHC-Stationen werden verwendet, um maschinelle Lernmodelle auf der Basis der spektral hochaufgelösten neuen Fernerkundungsdaten unter normalen und extremen Klimabedingungen zu trainieren. Die Modelle können auf das Prädiktorgitter angewendet werden, sodass die Zielvariablen räumlich modelliert werden können. Aufgrund der schlechten zeitlichen Auflösung werden diese Daten wiederum als Prädiktoren verwendet, um die Zielvariablen auf konventionelle, zeitlich höher aufgelöste (Sentinel, MODIS) und Kronen auflösende Systeme (Planet) zu transferieren. Damit ist ein räumliches Monitoring unter verschiedenen Klimabedingungen möglich. ECOSTRESS liefert gegitterte Prädiktorvariablen zur Verdunstung, zum Evaporative Stress Index sowie zur Water Use Efficiency in 30 bis 70 m Auflösung, die mit DHC-Messungen des Saftflusses kombiniert werden. OCO-3 liefert Informationen zur fotosynthetischen Aktivität (SIF: solar-induced chlorophyll fluorescence) in etwa 2 km Auflösung, die mit den DHC-Messungen zum Dickenwachstum kombiniert werden. DESIS liefert hyperspektrale Daten in 30 m Auflösung und wird v.a. für die Erhöhung der räumlichen Auflösung der OCO-3 Daten verwendet.
Gletscher sind bedeutende Speicher organischen Kohlenstoffs (OC) und tragen zum Kohlenstofffluss vom Festland zum Meer bei. Aufgrund des Klimawandels wird eine Intensivierung dieser Flüsse erwartet. Der Export von OC aus Gletschern wurde weltweit in verschiedenen Regionen quantifiziert, trotzdem liegen keine vergleichbaren Daten für Island vor, obwohl sich dort die größte europäische außerpolare Eiskappe befindet. Um die globalen Prognosen der glazialen Kohlenstofffreisetzung zu verbessern, ist es das Ziel dieses Pilotprojektes, den Export von gelöstem und partikulärem organischen Kohlenstoff (DOC, POC) aus Islands Gletschern erstmalig zu quantifizieren und neue Kooperationen mit isländischen Wissenschaftler/innen für gemeinsame zukünftige Forschungsprojekte aufzubauen. Hierzu werden 4 Feldkampagnen zu unterschiedlichen Jahreszeiten sowie Treffen mit isländischen Kollegen/innen durchgeführt. In jeder Feldkampagne werden von 23 Gletschern der Eiskappen Vatnajökull, Langjökull, Hofsjökull, Myrdalsjökull und Snaeellsjökull Eisproben entnommen, um die biogeochemische Diversität des glazialen OC zu charakterisieren sowie dessen Export in Verbindung mit Massenbilanzen zu quantifizieren. In Gletscherbächen werden Wasserproben entnommen, um den Austrag von OC direkt am Gletschertor zu bestimmen sowie die Kohlenstoffflüsse entlang von 6 Gletscherbächen mit unterschiedlicher Länge (2 km bis 130 km) beginnend am Gletschertor bis zur Mündung zu untersuchen. Wie sich der Gletscherrückgang langfristig auf ein Gletscherbachökosystem auswirkt, wird durch die taxonomische Bestimmung von Makroinvertebraten im Vergleich zur Bestimmung von Prof. Gíslason aus dem Jahre 1997 beurteilt. Gleichzeitig werden in diesem Gletscherbach Wasserproben zum eDNA-Barcoding entnommen, um eine rasche und gering invasive Methode zur laufenden Beobachtung des zukünftigen Einflusses der Gletscherrückgang zu entwickeln. Vor Ort werden Wassertemperatur, elektr. Leitfähigkeit, pH-Wert, gelöster Sauerstoff, Trübung und Chlorophyll alpha gemessen. Innovative Labormethoden (HPLC, DNA-Barcoding, Picarro, GC, TOC) werden zur Analyse des OC im Eis und Wasser (DOC, DIC, POC, Fluoreszenz, Absorption), der Nährstoffe (P-PO4, N-NO3, N-NO2, N-NH4), stabiler Isotope (18O, 2H), Chlorophyll alpha, CO2 und aquatischen Organismen eingesetzt. Die Anwendung statistischer Methoden (Faktorenanalyse, Hauptkomponentenanalyse) basierend auf Anregungs- und Emissionsmatrizen erlauben die Quellen des OC im Gletschereis sowie -schmelzwasser zu bestimmen und die räumliche Vielfalt des OC zu erklären. Das gewonnene Wissen wird zur Verbesserung globaler Prognosen glazialer Kohlenstofffreisetzung beitragen sowie einen intensiven Einblick in das glaziale Ökosystem geben. Für die antragstellenden Nachwuchswissenschaftler/innen entstehen vielversprechende Kooperationen mit isländischen Wissenschaftlern/innen, fokussierend auf die zeitlichen sowie räuml. Aspekte der glazialen Kohlenstoffflüsse sowie das Ökosystem Gletscher
Erfassung der Planktonbiomasse des Bodensee-Obersees mit rasch, z.T. kontiunierlich messbaren Summenparametern (Protein, Algenpigmente, in-vivo-Fluoreszenz des Phytoplanktons, Coulter-Counter-Volumen, ATP) als Grundlage fuer genauere Biomassenbilanzierungen. Die Messungen werden in woechentlichem Abstand in je 12 bis 42 Seewasserproben durchgefuehrt.
| Origin | Count |
|---|---|
| Bund | 312 |
| Land | 88 |
| Schutzgebiete | 3 |
| Wirtschaft | 1 |
| Wissenschaft | 5159 |
| Type | Count |
|---|---|
| Chemische Verbindung | 14 |
| Daten und Messstellen | 5 |
| Förderprogramm | 233 |
| Gesetzestext | 7 |
| Software | 2 |
| Text | 36 |
| unbekannt | 5207 |
| License | Count |
|---|---|
| geschlossen | 52 |
| offen | 285 |
| unbekannt | 5160 |
| Language | Count |
|---|---|
| Deutsch | 313 |
| Englisch | 5212 |
| Resource type | Count |
|---|---|
| Archiv | 2 |
| Bild | 6 |
| Datei | 42 |
| Dokument | 54 |
| Keine | 213 |
| Webdienst | 8 |
| Webseite | 5219 |
| Topic | Count |
|---|---|
| Boden | 207 |
| Lebewesen und Lebensräume | 4682 |
| Luft | 193 |
| Mensch und Umwelt | 5497 |
| Wasser | 4186 |
| Weitere | 5475 |