API src

Found 165 results.

Related terms

Chem-Org\H-FCKW R22-DE-2000

H-FCKW R22-Herstellung durch Umsetzung von Chloroform (CHCl3) mit Fluorwasserstoff nach folgender Gleichung: CHCl3 + 2 HF à CHClF2 (R22) + 2 HCl Die Daten gelten für Deutschland Anfang 90er Jahre. Allokation: Die Allokation der benötigten Chemikalien, der Energie und Emissionen der einzelnen Koppelprodukte erfolgt nach #1 über die obige Gleichung und den erzielbaren Marktpreis, d.h die Belastung der Umwelt wird im Verhältnis ihrer Marktpreise aufgeschlüsselt. Analog zu #1 werden in GEMIS nur die anteiligen Belastungen für R22 aufgenommen (d.h. es werden keine Gutschriften für Chlorwasserstoff erteilt). Genese der Daten: Die Kennziffern für den Einsatz von Chloroform (CHCl3), Fluorwasserstoff (HF), Heizöl EL (100 kW Heizung) und elektrischer Energie (Mittelspannung) stammen alle von #1 und basieren auf Herstellerangaben. Zu prozeßspezifischen Emissionen wurden von den betreffenden Firmen keine Angaben gemacht. Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Chemie gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 71,9% Produkt: Grundstoffe-Chemie

Chem-Org\FCKW R12-DE-2000

FCKW R12-Herstellung durch Umsetzung von Tetrachlorkohlenstoff mit Fluorwasserstoff nach folgender Gleichung: CCl4 + 2 HF à CCl2F2 (R12) + 2 HCl Die Daten gelten für Deutschland, Anfang 90er Jahre. Allokation: Die Allokation der benötigten Chemikalien, der Energie und Emissionen der einzelnen Koppelprodukte erfolgt nach #1 über die obige Gleichung und den erzielbaren Marktpreis, d.h die Belastung der Umwelt wird im Verhältnis ihrer Marktpreise aufgeschlüsselt. Analog zu #1 werden in GEMIS nur die anteiligen Belastungen für R12 aufgenommen (d.h. es werden keine Gutschriften für Chlorwasserstoff erteilt). Genese der Kennziffern Die Kennziffern für den Einsatz von Tetrachlorkohlenstoff (CCl4), Fluorwasserstoff (HF), Heizöl EL (100 kW Heizung) und elektrischer Energie (Mittelspannung) stammen alle aus #1 und basieren auf Herstellerangaben. Zu prozeßspezifischen Emissionen wurden von den betreffenden Firmen keine Angaben gemacht. Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Chemie gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 87,3% Produkt: Grundstoffe-Chemie

Chem-Org\Chloroform-DE-2000

Chloroformherstellung durch Clorierung von Methan nach folgender Gleichung: CH4 + 3 Cl2 à CHCl3 + 3 HCl Die Daten gelten für Deutschland, Anfang Neunziger Jahre. Allokation: Die Allokation der benötigten Chemikalien, der Energie und Emissionen der einzelnen Koppelprodukte erfolgt nach #1 über die obige Gleichung und den erzielbaren Marktpreis, d.h die Belastung der Umwelt wird im Verhältnis ihrer Marktpreise aufgeschlüsselt. Analog zu #1 werden in GEMIS nur die anteiligen Belastungen für Chloroform (CHCl3) aufgenommen (d.h. es werden keine Gutschriften für Chlorwasserstoff erteilt). Genese der Daten: Die Kennziffern für den Einsatz von Methan (Verknüpfung in GEMIS mit Erdgas), Chlor, Heizöl EL (100 kW Heizung) und elektrischer Energie (Mittelspannung) stammen alle von #1 und basieren auf Herstellerangaben. Die Daten in #1 beziehen sich auf H-FCKW R 22 und wurden für GEMIS auf die Vorstufe Chloroform umgerechnet. Zu prozessspezifischen Emissionen wurden von den betreffenden Firmen keine Angaben gemacht. Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Chemie gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 91,4% Produkt: Grundstoffe-Chemie

Chem-Org\Tetrachlorkohlenstoff-DE-2000

Herstellung von Tetrachlorkohlenstoff (CCl4) durch Chlorierung von Methan nach folgender Gleichung: CH4 + 4 Cl2 => CCl4 + 4 HCl. Die Daten gelten für Deutschland, Anfang Neunziger Jahre. Allokation: Die Allokation der benötigten Chemikalien, der Energie und Emissionen der einzelnen Koppelprodukte erfolgt nach #1 über die obige Gleichung und den erzielbaren Marktpreis, d.h die Belastung der Umwelt wird im Verhältnis ihrer Marktpreise aufgeschlüsselt. Analog zu #1 werden in GEMIS nur die anteiligen Belastungen für Tetrachlorkohlenstoff aufgenommen (d.h. es werden keine Gutschriften für Chlorwasserstoff erteilt). Genese der Daten: Die Kennziffern für den Einsatz von Methan (Verknüpfung in GEMIS mit Erdgas), Chlor, Heizöl EL (100 kW Heizung) und elektrischer Energie (Mittelspannung) stammen alle von #1 und basieren auf Herstellerangaben. Die Daten in #1 beziehen sich auf FCKW R 12 und wurden für GEMIS auf die Vorstufe Tetrachlorkohlenstoff umgerechnet. Zu prozeßspezifischen Emissionen wurden von den betreffenden Firmen keine Angaben gemacht. Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Chemie gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 81,8% Produkt: Grundstoffe-Chemie

Definition of best available techniques (BAT) in Europe: BAT for air emission reduction in the chemical industry sector in Germany

Die Europäische Kommission hat im September 2016 einen Informationsaustausch mit den Mitglied-staaten sowie den Industrie- und Umweltverbänden über die besten verfügbaren Techniken zur Ab-gasbehandlung in der chemischen Industrie begonnen. Ziel des Informationsaustausches ist die Erar-beitung eines prozessübergreifenden BVT-Merkblattes zur Abgasbehandlung in der chemischen In-dustrie, auf Englisch ćBREF on Common Waste Gas Treatment in the Chemical Sector̮ (WGC BREF). Mit diesem Forschungsbericht trägt das Umweltbundesamt zum Informationsaustausch bei. Ziel des Vorhabens war es, luftseitige Emissionswerte aus den Anlagen der chemischen Industrie in Deutsch-land zu ermitteln und in Verbindung mit der eingesetzten Minderungstechnik zu bewerten. Der vorlie-gende Bericht analysiert 2.972 Messungen aus 1.209 Emissionsquellen der chemischen Industrie. Dazu wurden 550 Messberichte zu Einzelmessungen erhoben und ausgewertet, so dass etwa jede vierte der rund 2000 Anlagen der chemischen Industrie im Bericht ausgewertet wird. Die Messungen stammen überwiegend aus den Jahren 2012 bis 2015. Es wurden Mittelwerte ausgewertet, die meis-tens auf drei Einzelmessungen beruhen und in der Regel nacheinander am selben Tag unter normalen Betriebsbedingungen im Zustand der höchsten Emissionen durchgeführt wurden. Messberichte zu wiederkehrenden Kurzzeitmessungen beinhalten Informationen zum Kontext der Messung, z.B. zum Abgasreinigungssystem, den angeschlossenen Prozessen und teilweise zu eingesetzten Stoffen. Infor-mationen zu kontinuierlichen Messungen wurden in diesem Projekt nicht erhoben und betrachtet. Das Projekt ermittelte folgende Umweltindikatoren als wesentlich für die chemische Industrie, da sie bei Anwendung von besten verfügbaren Techniken ein europaweites Minderungspotenzial aufweisen: Table 2: Wesentliche Umweltindikatoren der chemischen Industrie Charakter Parameter Summenparameter Staub, TOC, NOx, SOx, PCDD/F, weitere CMR-Stoffe, halogenierte nicht als CMR eingestufte Stoffe, besonders schädliche organische Stoffe, Metalle (drei Klassen) Einzelsubstanzen Ammoniak, Chlorwasserstoff, Chlor, Fluorwasserstoff, Bromwasserstoff, Methanol, Toluol, Benzol, Formaldehyd, Essigsäure, Ethylenoxid, Chlormethan, Propylenoxid, Vinylchlorid, Phenol, Dichlorethan. Die Auswertung zeigte, dass Konzentrationswerte stets zusammen mit dem Massenstrom betrachtet werden sollten. Erhöhte Konzentrationen können geringe Umweltauswirkungen haben, wenn sie mit geringen Abgasvolumina verbunden sind und somit nur kleine Massenströme verursachen. Bei der Festlegung von maximalen Massenströmen als Alternative zu maximalen Konzentrationswerten müs-sen jedoch der Arbeitsschutz und der Schutz der Nachbarschaft mit berücksichtigt werden. Im Ergebnis zeigt die Studie, dass Gewebefilter im Allgemeinen mittlere Staubkonzentrationen unter 5 mg/Nm3 erreichen. Wäscher bewirken i.A. Staubkonzentrationen < 10 mg/Nm3. Wenn keine Abgas-reinigung für Staubemissionen installiert war, lagen mittlere Massenströme unter 150 g/h. Für die Emissionen von Gesamt-C zeigt die Studie, dass mit thermischer Oxidation (TNV, RNV) im Allgemeinen mittlere Konzentrationswerte unter 5 mgC/Nm3 erreicht werden. Wäscher erreichen im Allgemeinen mittlere Werte unter 40 mgC/Nm3. Wenn keine Abgasreinigung für Gesamt-C installiert war, lagen die Massenströme unter 150 g/h. Emissionen von CMR-Einzelstoffen lagen i. A. unter 0,5 mg/Nm3. Für Stickstoffoxid-Emissionen lagen nur wenige Werte nach SCR-Anlagen vor, deren Konzentrations-mittelwerte lagen unter 80 mg/Nm3. NOx-Werte nach thermischen Abgasreinigungen betragen 100 mg/Nm3; gleichzeitig sind CO-Konzentrationen < 60 mg/Nm3 und Gesamt-C-Konzentrationen < 5 mgC/Nm3 erreichbar. Der Ammoniak-Schlupf lässt sich im Allgemeinen auf 3 mg/Nm3 begrenzen. Der Bericht diskutiert alle in Tabelle 2 genannten Emissionswerte. Zusätzlich zu den mit einer Abgas-reinigungstechnik erreichbaren Konzentrationswerten werden Massenstromschwellen vorgeschlagen. Quelle: Forschungsbericht

Markt für Salzsäure, ohne Wasser, in 30%igem Lösungszustand

technologyComment of Mannheim process (RER): Production of sodium sulfate and HCl by the Mannheim process. This process can be summarized with the following overall stoechiometric reaction: 2 NaCl + H2SO4 → Na2SO4 + 2 HCl technologyComment of allyl chloride production, reaction of propylene and chlorine (RER): based on industry data in the US and Europe technologyComment of benzene chlorination (RER): Clorobenzenes are prepared by reaction of liquid benzene with gaseous chlorine in the presence of a catalyst at moderate temperature and atmospheric pressure. Hydrogen chloride is formed as a by-product. Generally, mixtures of isomers and compounds with varying degrees of chlorination are obtained, because any given chlorobenzene can be further chlorinated up to the stage of hexa-chlorobenzene. Because of the directing influence exerted by chlorine, the unfavoured products 1,3-dichlorobenzene, 1,3,5-trichlorobenzene and 1,2,3,5-tetrachlorobenzene are formed to only a small extent if at all. The velocity of chlorination for an individual chlorine compound depends on the compound's structure and, because of this, both the degree of chlorination and also the isomer ratio change continuously during the course of reaction. Sets of data on the composition of products from different reactions are only comparable if they refer to identical reaction conditions and materials having the same degree of chlorination. By altering the reaction conditions and changing the catalyst, one can vary the ratios of different chlorinated products within certain limits. Lewis acids (FeCl3, AlCl3, SbCl3, MnCl2, MoCl2, SnCl4, TiCl4) are used as principal catalysts. The usual catalyst employed in large scale production is ferric chloride, with or without the addition of sulfur compounds. The ratio of resulting chlorobenzenes to one another is also influenced by the benzene:chlorine ratio. For this reason, the highest selectivity is achieved in batch processes. If the same monochlorobenzene:dichlorobenzene ratio expected from a batch reactor is to result from continuous operation in a single-stage reactor, then a far lower degree of benzene conversion must be accepted as a consequence of the low benzene:chlorine ratio). The reaction is highly exothermic: C6H6 + Cl2 --&gt; C6H5Cl + HCl ; delta H = -131.5 kJ/mol Unwanted heat of reaction can be dissipated either by circulating some of the reactor fluid through an external heat exchanger or by permitting evaporative cooling to occur at the boiling temperature. Circulation cooling has the advantage of enabling the reaction temperature to be varied in accordance with the requirements of a given situation. Evaporative cooling is more economical, however. Fractional distillation separates the products. Iron catalyst is removed with the distillation residue.Unreacted benzene is recycled to the reactor. technologyComment of hydrochloric acid production, from the reaction of hydrogen with chlorine (RER): HCl can be either directly prepared or generated as a by-product from a number of reactions. This dataset represents the production of HCl via the combustion of chlorine with hydrogen gas. The process involves burning hydrogen gas and chlorine in a gas combustion chamber, producing hydrogen chloride gas. The hydrogen chloride gas then passes through a cooler to an absorber where process water is introduced, producing aqueous hydrochloric acid. H2 + Cl2 -&gt; 2 HCl (exothermic reaction) References: Althaus H.-J., Chudacoff M., Hischier R., Jungbluth N., Osses M. and Primas A. (2007) Life Cycle Inventories of Chemicals. ecoinvent report No. 8, v2.0. EMPA Dübendorf, Swiss Centre for Life Cycle Inventories, Dübendorf, CH. technologyComment of tetrafluoroethylene production (RER): The production of fluorochemicals and PTFE monomers can be summarized with the following chemical reactions (Cedergren et al. 2001): CaF2 + H2SO4 -&gt; CaSO4 + 2HF (1) CH4 + 3Cl2 -&gt; CHCl3 + 3HCl (2) CHCl3 + 2HF -&gt; CHClF2 + 2HCl (3) 2 CHClF2 + heat -&gt; CF2=CF2 + 2 HCl (4) This dataset represents the last reaction step (4). Parts of the production are carried out at high pressure and high temperature, 590 ºC – 900 ºC. The first reaction (1) takes place in the presence of heat and HSO3 - and steam. The inventory for the production of hydrogen fluoride can be found in the report (Jungbluth 2003a). Reaction (2) is used to produce trichloromethane. Reaction 3 for the production of chlorodifluoromethane takes place in the presence of a catalyst. The production of PTFE (4) takes place under high temperature pyrolysis conditions. Large amounts of hydrochloric acid (HCl) are generated as a couple product during the process and are sold as a 30% aqueous solution. A large number of other by-products and emissions is formed in the processes (benzene, dichloromethane, ethylene oxide, formaldehyde, R134a, and vinyl chloride) and small amounts of the highly toxic perfluoroisobutylene CF2=C(CF3)2. The by-products in the production of monomers can harm the processes of polymerisation. Because of this, the refinement of the production of monomers has to be very narrow. This makes the process complex and it contributes to a high cost for the PTFE-laminates. (Cedergren et al. 2001). References: Althaus H.-J., Chudacoff M., Hischier R., Jungbluth N., Osses M. and Primas A. (2007) Life Cycle Inventories of Chemicals. Final report ecoinvent data v2.0 No. 8. Swiss Centre for Life Cycle Inventories, Dübendorf, CH.

Unterstützung der Erarbeitung einer Verwaltungsvorschrift zum angemessenen Sicherheitsabstand

Gefahrstoffe mit dem Gefahrenmerkmal EUH029 ("Bilden im Kontakt mit Wasser giftige Gase") unterliegen der Störfall-Verordnung. Es wurde eine Kohorte von 30 Stoffen mit diesem Gefahrenmerkmal, die in der Praxis eine gewisse Bedeutung erlangt haben, analysiert. Das mit Abstand häufigste Hydrolyseprodukt (62%) ist Chlorwasserstoff, gefolgt von Phosphin mit 14%, und vereinzelt Fluorwasserstoff, Schwefelwasserstoff, Schwefeldioxid, Ammoniak, Stickoxide und Cyanwasserstoff. Die höchsten Gefahrenpotentialwerte werden für das Hydrolyseprodukt Phosphin gefolgt von Schwefeldioxid und Chlorwasserstoff ermittelt. Phosphin wird in der Kohorte ausschließlich aus Feststoffen generiert, Chlorwasserstoff und Schwefeldioxid hauptsächlich aus Flüssigkeiten. Zur standardisierten Berücksichtigung des Gefahrenpotentials dieser Stoffkategorie erscheint es notwendig hinsichtlich der Hydrolyseprodukte zu unterscheiden. Für die Abschätzung angemessener Sicherheitsabstände ist konservativ von einer 100% igen Umsetzung des Ausgangsstoffs in das Hydrolyseprodukt auszugehen und unter Berücksichtigung der stöchiometrischen Zusammenhänge die relevanten Mengen zu ermitteln und die Abstandsberechnung nach den "Handlungsempfehlungen..." vorzunehmen. Für phosphinentwickelnde (feste) Substanzen wird pauschal die Abstandskategorie VII-VIII (1000m - 1500m), für chlorwasserstoffentwickelnde (feste) Substanzen die Abstandskategorien III-IV (300m - 400m) als abdeckend vorgeschlagen. Für flüssige Stoffe aus denen Chlorwasserstoff generiert werden kann erscheint die Einhaltung eines Sicherheitsabstandes von 500m - 750 m in erster Näherung abdeckend. Quelle: Forschungsbericht

Ethylendichlorid-Herstellung

EDC is produced industrially by the chlorination of ethylene, either directly with chlorine or by using hydrogen chloride (HCl). In practice, both routes are carried out together, the HCl stems from the cracking of EDC to vinyl chloride. HCl from other processes can also be used. The major outlet is for the production of vinyl chloride monomer (VCM). There are both integrated EDC / VCM plants as well as stand-alone EDC plants. In 1997, European production of EDC was 9.4 million tons, according to (IPPC Chemicals, 2002). This makes it Europe’s most produced halogenated product. Global demand is expected to grow at roughly 6% per year in the short run, while future growth depends on the global demand for PVC. Major plants with capacities greater than 600’000 tons per year are located in Belgium, France, the Netherlands, Italy, Norway, the US, Canada, Brazil, Saudi Arabia, Japan and Taiwan. Available data from production sites often refer to the entire EDC/VCM chain and do not differentiate between the production lines. There is some information on stand-alone sites, however, and this data forms the basis for part of the inventory developed in this report. EDC can be produced by two routes, both involving the chlorination of ethylene. One route involves direct chlorination, the other is carried out with hydrochloric acid (HCl) and oxygen. In practice, both routes are carried out together. This study includes an average of the available literature data from both routes. EDC by direct chlorination of ethylene: C2H4 + Cl2  C2H4Cl2 Yield on ethylene 96-98% / on chlorine 98% Liquid chlorine and pure ethylene are reacted in the presence of a catalyst (ferric chloride). The chlorination reaction can be carried out at low or high temperature. In the low-temperature process takes place at 20 ºC – 70 ºC. The reaction is exothermic and heat exchangers are needed. The advantage of this process is that there are few by-products. The high-temperature process takes place at 100 ºC – 150 ºC. The heat generated is used to distill the EDC, which conserves energy. the reaction product consists of more than 99% EDC, the rest being chlorinated hydrocarbons that are removed with the light ends and then combusted or sold. EDC by direct chlorination of ethylene: C2H4 + Cl2  C2H4Cl2 Yield on ethylene 96-98% / on chlorine 98% Liquid chlorine and pure ethylene are reacted in the presence of a catalyst (ferric chloride). The chlorination reaction can be carried out at low or high temperature. In the low-temperature process takes place at 20 ºC – 70 ºC. The reaction is exothermic and heat exchangers are needed. The advantage of this process is that there are few by-products. The high-temperature process takes place at 100 ºC – 150 ºC. The heat generated is used to distill the EDC, which conserves energy. Tthe reaction product consists of more than 99% EDC, the rest being chlorinated hydrocarbons that are removed with the light ends and then combusted or sold. EDC by chlorination and oxychlorination: C2H4 + Cl2  C2H4Cl2 (1) C2H4 + 1/2 O2 + 2HCl  C2H4Cl2 + H2O (2) Yield on ethylene 93-97% / on HCl 96-99% Pure ethylene and hydrogen chloride are heated and mixed with oxygen. The reaction occurs at 200 ºC – 300 ºC at 4-6 bar in the presence of a catalyst (cupric chloride). After reaction the gases are quenched with water. The acid and water are removed, the gases are cooled and the organic layer is washed and dried. If air is used instead of oxygen, the reaction is easier to control. However, oxygen-based processes operate at lower temperatures, reducing vent gas volume. By-products are ethyl chloride, 1,1,2-trichloromethane and chloral (trichloroacetaldehyde). Thermal cracking of EDC: Thermal cracking of dry, pure EDC produces VCM and HCl. Often all the HCl generated in the cracking section is reused in producing EDC by oxychlorination. Plants that exhibit this characteristic and also do not export EDC are called “balanced”. The balanced process is the common process used as a Best Available Technology benchmark. C2H4 + Cl2  C2H4Cl2 (Chlorination of ethylene to EDC) C2H4Cl  CH2CHCl + HCl (Cracking of EDC to form VCM) C2H4 + 1/2 O2 + 2HCl  C2H4Cl2 + H2O (Oxychlorination route to EDC) Reference: IPPC Chemicals, 2002 European Commission, Directorate General, Joint Research Center, “Reference Document on Best Available Techniques in the Large Volume Organic Chemical Industry”, February 2002 Wells, 1999 G. Margaret Wells, “Handbook of Petrochemicals and Processes”, 2nd edition, Ashgate, 1999

Wesentliche Änderung der Anlage G 15 - HCl-Synthese - der Fa. Wacker Chemie AG, Werk Burghausen

Die Firma Wacker Chemie AG, Werk Burghausen, beabsichtigt, die Anlage zur Herstellung und Lagerung von gasförmigem Chlorwasserstoff und zur Herstellung von Salzsäure (Anlage G 15 - HCl-Synthese) durch das Vorhaben (045) - Errichtung und Betrieb des HCl-Puffertanks AB41 und der Tube-Trailer-Abfüllung - wesentlich zu ändern. Für das Vorhaben wurde beim Landratsamt Altötting eine immissionsschutzrechtliche Genehmigung nach § 16 Abs. 1 und 2 BImSchG i. V. m. §§ 1 Abs. 1, 2 Abs. 1 der 4. BImSchV und Nr. 4.1.12 des Anhangs 1 zur 4. BImSchV beantragt. Im Rahmen des Genehmigungsverfahrens wurde gemäß §§ 7, 9 UVPG i. V. m. Nr. 4.2 der Anlage 1 zum UVPG eine allgemeine Vorprüfung des Einzelfalls durchgeführt.

Wesentliche Änderung der Anlage G 15 - HCl-Synthese - der Fa. Wacker Chemie AG, Werk Burghausen

Die Firma Wacker Chemie AG, Werk Burghausen, beabsichtigt, die Anlage zur Herstellung und Lagerung von gasförmigem Chlorwasserstoff und zur Herstellung von Salzsäure (Anlage G 15 - HCl-Synthese) durch das Vorhaben (1005) - Erweiterung Reinst-HCl-Erzeugung mit Mengenerhöhung - wesentlich zu ändern. Für das Vorhaben wurde beim Landratsamt Altötting eine immissionsschutzrechtliche Genehmigung nach § 16 Abs. 1 und 2 BImSchG i. V. m. §§ 1 Abs. 1, 2 Abs. 1 der 4. BImSchV und Nr. 4.1.12 des Anhangs 1 zur 4. BImSchV beantragt. Im Rahmen des Genehmigungsverfahrens wurde gemäß §§ 7, 9 UVPG i. V. m. Nr. 4.2 der Anlage 1 zum UVPG eine allgemeine Vorprüfung des Einzelfalls durchgeführt.

1 2 3 4 515 16 17