Das Ziel des Projektes besteht darin, das Potential einer auf den Anwendungsfall abgestimmten Herstellung von Ersatzbrennstoffen (EBS) aus Abfällen zu ermitteln. Das Projekt wird in Zusammenarbeit mit der Technischen Universität Clausthal und mit der Bauhaus-Universität Weimar bearbeitet. Die Nutzung von Ersatzbrennstoffen (EBS) aus Abfallfraktionen gewinnt u.a. vor dem Hintergrund der Öffnung des Abfallmarktes und der Einsparung von Primärenergieträgern zunehmend an Interesse. Aus wenigen bekannten Beispielen ist jedoch ersichtlich, dass ein wirtschaftlicher Erfolg der Ersatzbrennstoffherstellung in Kombination mit Abfallbehandlungsverfahren nicht zwangsläufig mit einem ökologischen Vorteil verbunden ist und unter Umständen auch negative Auswirkungen im Vergleich zur klassischen Restabfallverbrennung zur Folge haben kann. Im Rahmen dieser Studie wurde das Hauptaugenmerk auf die Optimierung der Herstellung von Sekundärbrennstoffen aus energetischer Sicht gerichtet; Fragen bezüglich angereicherter Schadstoffgehalte in Ersatzbrennstoffen und Fragen bezüglich der Herstellungskosten von Ersatzbrennstoffen wurden nur ansatzweise berücksichtigt. Die Ergebnisse dieser Studie lassen den Schluss zu, dass die mechanisch-biologische Herstellung von Ersatzbrennstoffen unter Beachtung der oben getroffenen Annahmen aus energetischen Gründen in jedem Fall einer Behandlung von originären Abfällen in einer Müllverbrennungsanlage vorzuziehen ist. Diese Feststellung lässt sich zwar in Anbetracht einer alleinigen energetischen Bilanzierung bejahen, ist aber unter Berücksichtigung einer gesamtheitlichen Betrachtung des MBA-Verwertungsweges zu relativieren. Eine verlässliche Gesamtbewertung ist nur unter Einbeziehung weiterer ökologischer, aber auch ökonomischer Gesichtspunkte zu treffen. Besondere Aufmerksamkeit ist dabei den Schadstoffgehalten der EBS zu widmen, da diese emissionsseitig durch die gesetzlichen Einschränkungen den Einsatz in den Mitverbrennungsanlagen limitieren.
Blatt Goslar zeigt einen sehr interessanten Ausschnitt der Geologie Deutschlands. Im zentralen Teil der Karte ist der Harz, im Norden das Harzvorland mit Subherzyner Senke und im Süden das Thüringer Becken erfasst. Der Harz zählt zu den Mittelgebirgen aus variszisch verfaltetem und verschiefertem Paläozoikum. Ein Großteil der geologischen Einheiten und Störungen streicht Südwest-Nordost. Die Platznahme der magmatischen Intrusivkomplexe (Brocken-, Ramberg- und Oker-Granit bzw. Bad Harzburger Gabbro) fand im Unterkarbon statt, während die Vulkanite bei Ilfeld ("Ilfelder Porphyrit" bzw. "Ilfelder Melaphyr") im Perm aufdrangen. Der Harz kann in drei Zonen gegliedert werden. Zum Oberharz zählen die Clausthaler Kulmfalten-Zone, der Oberharzer Devonsattel sowie die Acker-Bruchberg-Zone zwischen Osterode und Bad Harzburg. Der Mittelharz wird von der Blankenburger Faltenzone mit dem Elbingeröder Komplex, dem Tanner Grauwacken-Zug sowie der Sieber-Mulde gebildet. Zum Unterharz gehören die Harzgeröder Faltenzone (Olisthostrom-Rutschmassen) mit der Selke- und Südharz-Mulde (Gleitdecken) sowie das Epimetamorphikum der Zone von Wippra. Zurückhaltend wurde bei der Darstellung von Störungen verfahren, deren häufiges Auftreten zwar bekannt, deren Verlauf aber oft unsicher ist. Zechstein-Sedimente umranden den Harz, besonders in seiner südlichen bzw. südwestlichen Begrenzung. In der Subherzynen Senke sind kreidezeitliche Sedimente aufgeschlossen, die großflächig von quartärem Löss überlagert sind und von dünnen Ausbissen triassischer Sedimente umrandet werden. Westlich des Harzes zeigt sich der nördliche Leinetal-Graben mit mesozoischen Sedimenten (Keuper bis Malm) und der Erhebung des Rhüdener Sattels, auf dessen Buntsandstein-Formation die niedersächsische Neugliederung des Buntsandsteins beruht. Der Südteil des Blattes wird von der Trias des Eichsfeld-Thüringer Beckens (Keuper bis Buntsandstein) eingenommen, aus dem der Kreide-Ausbiss des Ohmgebirges und die jungpaläozoischen Sedimente des Kyffhäuser-Gebirges mit seinem präkambrischen Kristallinkomplex hervorragen. Auch hier kommt es zu Überlagerungen durch quartäre Lockersedimente, vorwiegend weichselkaltzeitlichem Löss. Neben der Legende, die über Alter, Genese und Petrographie der dargestellten Einheiten informiert, gewährt ein Profilschnitt Einblicke in den Aufbau des Untergrundes. Von Nord nach Süd kreuzt er das subherzyne Becken, die Harz-Nordrand-Aufschiebung, den Harz mit dem Eckergneis und Brockengranit, das Eichsfeld-Thüringer Becken mit dem Ohmgebirge und der Eichenberg-Gothaer Grabenzone.
Die Stadt Goslar verfügt über ca. 600 analoge und digitale Bebauungspläne.
Versorgungsnetz Clausthal-Zellerfeld / OT Buntenbock
Die Daten enthalten alle Bebauungspläne der Berg- und Universitätsstadt Clausthal-Zellerfeld.
Die Daten enthalten alle Bebauungspläne der Berg- und Universitätsstadt Clausthal-Zellerfeld.
Die Daten enthalten alle Bebauungspläne der Berg- und Universitätsstadt Clausthal-Zellerfeld.
Die Daten umfassen das Versorgungsnetz Fernwärme Clausthal-Zellerfeld. Fernwärme gelangt über Leitungen in die angeschlossenen Gebäude. Das Prinzip ist einfach: Zur Wärmeerzeugung strömt Gas in einen Verbrennungsmotor. Kinetische Energie und damit Wärme werden frei. Aus dem verbrannten Gas werden 2/3 Wärme und 1/3 Strom. Die Wärme gelangt gespeichert in heißem Wasser in einen geschlossenen Kreislauf, der Strom wird in das allgemeine Netz eingespeist.
| Origin | Count |
|---|---|
| Bund | 148 |
| Land | 15 |
| Zivilgesellschaft | 8 |
| Type | Count |
|---|---|
| Daten und Messstellen | 8 |
| Förderprogramm | 111 |
| Text | 27 |
| unbekannt | 23 |
| License | Count |
|---|---|
| geschlossen | 42 |
| offen | 122 |
| unbekannt | 5 |
| Language | Count |
|---|---|
| Deutsch | 168 |
| Englisch | 9 |
| Resource type | Count |
|---|---|
| Archiv | 2 |
| Datei | 1 |
| Dokument | 22 |
| Keine | 76 |
| Webdienst | 1 |
| Webseite | 70 |
| Topic | Count |
|---|---|
| Boden | 114 |
| Lebewesen und Lebensräume | 169 |
| Luft | 76 |
| Mensch und Umwelt | 168 |
| Wasser | 56 |
| Weitere | 158 |