The Arctic PASSION Polar Monthly Mean IST data set (AP-MMIST) is a combined surface temperature product covering open ocean, marginal ice zone and closed sea ice areas, represented by Sea Surface Temperatures (SST), Marginal Ice Zone Temperatures (MIZT) and sea Ice Surface Temperatures (IST). Beside ocean and sea ice the data set also includes surface temperatures from the Greenland and Antarctic ice sheets. AP-MMIST has been jointly developed and produced by Arctic PASSION WP-1 and the Sea Ice Thematic Assembly Centre (Sea Ice TAC) under the Copernicus Climate Change Service (C3S - service contract: 2022/C3S2_312b_MOi_SC1). The AP-MMIST is a monthly averaged temperature product based on the C3S daily IST CDR and ICDR level 3 data. The daily mean C3S IST data set is a resampled and averaged daily mean IST product using Global Area Coverage - Advanced Very High-Resolution Radiometer (AVHRR) IST level 2 data as input. The level 2 and 3 CDR and ICDR data records are described in Algorithm Theoretical Baseline Document (Eastwood et al., 2023). The surface temperature retrieval algorithm used to produce the basic level 2 product is a traditional split window algorithm using two Thermal InfraRed (TIR) channels to compensate for atmosphere and angular emissivity dependency. This is described in the Algorithm Theoretical Baseline Document (Eastwood et al., 2023). The level 1 TIR input data set is the full data record from the AVHRR on-board NOAA satellite platforms since 1982, as well as AVHRR records on-board Metop satellites since 2006. The product output format is NetCDF with standard attributes, following CF convention to the degree possible. The monthly data are divided into 2 monthly files, one for each hemisphere, SH and NH.
GRACE/GRACE-FO-derived time series of gridded terrestrial water storage anomalies with respect to the mean over the period 2003-01 - 2022-12. The product is based on monthly COST-G RL02 GRACE/GRACE-FO Level-2B Products ( Meyer et al., 2025, doi: 10.5880/COST-G.ICGEM_02_L2) provided at 0.5° latitude-longitude grids as defined over all continental regions. The TWS anomaly grids are provided in NetCDF format, containing three different variables: 1) 'twsa': gravity-based terrestrial water storage anomaly 2) 'std_twsa': gravity-based terrestrial water storage anomaly standard deviations 3) 'flag_filter': Flag indicating the filter strength File History: The Copernicus Climate Change Service (C3S) groups its datasets into Climate Data Records (CDRs), representing major version releases, and Intermediate Climate Data Records (ICDRs), which only extend the existing data and do not involve any processing changes. 12 September 2025: CDR: C3S_TWSA_GLOBAL_MONTHLY_200204_202503_v1.0.nc Data set covering April 2002 to March 2025 5 January 2026: ICDR: C3S_TWSA_GLOBAL_MONTHLY_200204_202509_v1.0.nc Data set covering April 2002 to September 2025
Der UHI -MAP Klimadienst (deutsch- städtische Wärmeinsel) soll die Bundesregierung, die Bundesländer und Kommunen bei ihrer Aufgabe unterstützen, die Wärmeinselintensität in Städten langfristig zu monitoren. Hierfür wurden in Anlehnung an den BAU-I-2 Indikator des Monitoringberichtes zur Deutschen Anpassungsstrategie an den Klimawandel die mittlere und maximale städtische Wärmeinselintensität für einen bestimmten Zeitraum, basierend auf den UHI-Tagesmaxima, berechnet. Ferner wird ein dritter Indikator bereitgestellt, der anhand stündlicher Temperatur-Rasterdaten die Erhöhung der Anzahl der Tropennächte (Nächte mit Minimumtemperaturen ≥ 20 Grad Celsius) durch die städtische Wärmeinsel beschreibt. Alle drei Indikatoren stehen für verschiedene zeitliche Aggregationsstufen (monatlich, saisonal und jährlich) ab dem Jahr 1995 zur Verfügung. Zielgruppe Der UHI -MAP Klimadienst soll die Bundesregierung, die Bundesländer und Kommunen bei ihrer Aufgabe unterstützen, die Wärmeinselintensität in Städten langfristig zu monitoren. Auch für Forschung und Lehre sowie interessierte Privatpersonen sind die Daten von Interesse. Wissenschaftlicher Hintergrund Die Grundlage des UHI -MAP Klimadienstes ist der HOSTRADA Datensatz. Der Datensatz enthält verschiedene meteorologische Variablen, die als stündliche Rasterdaten für ganz Deutschland im Open Data Bereich des CDC heruntergeladen werden können. Die HOSTRADA Daten der städtischen Wärmeinsel wurden auf Basis der Copernicus CORINE Land Cover Daten 2018 berechnet. Für den UHI-MAP Klimadienst wurden zusätzlich die stündlichen Rasterfelder der 2 Meter Lufttemperatur und der UHI für verschiedene Copernicus CORINE Land Cover Layer (1990, 2000, 2006, 2012 und 2018) berechnet. Daher ist es möglich sich die Änderung der Landbedeckung seit 1990 und die damit einhergehende Änderung der drei Indikatoren je Gitterzelle anzuschauen.
Boosting remote-sensing companies through cross-cluster support: The PARSEC project is focused on designing sustainable services to help European SMEs raise their competitive profile globally through access to a platform providing among other things geospatial information. Taking advantage of the EU's Copernicus database and other resources, the system will provide remote-sensing companies access to support, technology, capital and markets. It will facilitate this through cross-cluster collaboration at European level, encouraging innovation and creating new markets globally. This will help innovative SMEs make better use of the vast Earth Observation geospatial information available, to provide improved productivity, a better carbon footprint and expansion into more sectors and countries. Objective: Emerging industries, as high-potential growth sectors in early stage development, can be effectively supported by cross-sectoral cluster-facilitated innovation towards the creation of new value chains and the opening up of new markets. Earth Observation-derived information has been widely proven to improve productivity (e.g. reduced fertiliser, pesticide, water, labour inputs in precision agriculture), outputs (e.g. solar farm yield), and eco-friendliness (e.g. carbon footprint monitoring of industrial activities) in the emerging food, energy and environment industries. In designing, developing and delivering sustainable services that meet the needs of these industries, European SMEs need to be supported in accessing knowledge, capital, technology and markets. Recognising this need, PARSEC aspires to build a cross-sectoral/cross-border ecosystem whereby SMEs and innovative start-ups will gain: Access to knowledge (provision of a holistic portfolio of support services, including market, technology and investment training/ information as well as tailored coaching support); Access to technology (through three large scale demonstrators, acting as enablers for the development of new EO-based products/services); Access to capital (an innovative selection and funding scheme to ensure selection of high-potential ideas); Access to market (incl. cross-border and cross-sectoral matchmaking, investment readiness, export promotion). By providing access to these resources, PARSEC will concretely contribute to the establishment of new value chains bustling with innovative SMEs that can translate the large public investments in the Copernicus programme and numerous sector specific initiatives (related to food, water, energy, climate change, biodiversity, etc.) into applications and services meeting user needs and market demands, for the benefit of European economy and society.
The raster dataset of urban heat island modelling shows the fine-scale (100m pixel size) temperature differences (in degrees Celsius °C) across 100 European cities, depending on the land use, soil sealing, anthropogenic heat flux, vegetation index and climatic variables such as wind speed and incoming solar radiation. In the framework of the Copernicus European Health contract for the Copernicus Climate Change Service (C3S), VITO provided 100m resolution hourly temperature data (2008-2017) for 100 European cities, based on simulations with the urban climate model UrbClim (De Ridder et al., 2015). As the cities vary in size, so do the model domains. They have been defined with the intention to have a more or less constant ratio of urban vs. non-urban pixels (as defined in the CORINE land use map), with a maximum of 400 by 400 pixels (due to computational restraints). From this data set, the average urban heat island intensity is mapped for the summer season (JJA), which is the standard way of working in the scientific literature (e.g. Dosio, 2016). The UHI is calculated by subtracting the rural (non-water) spatial P10 temperature value from the average temperature map. The 100 European cities for the urban simulations were selected based on user requirements within the health community.
This raster dataset provides the modelling of the climate suitability index values (0-100%) for tiger mosquito (Aedes albopictus) for 100 European cities for the years 2008-2009, with a resolution of 100 m. Aedes Albopictus has become a common occurrence in Southern Europe and transmits diseases such as Zika, dengue and chikungunya. The climatic suitability for tiger mosquito depends on factors such as sufficient amounts of rainfall, high summer temperatures and mild winters. Climate change is anticipated to further facilitate the spread of tiger mosquitoes across Europe by changing temperature and precipitation patterns, thereby increasing the suitable habitat. In the framework of the Copernicus Climate Change Service (C3S) SIS European Health, VITO has provided to the Climate Data Store 100m resolution hourly temperature data for 100 European cities, based on simulations with the urban climate model UrbClim (De Ridder et al., 2015). From this dataset, this climate suitability dataset has been generated based on annual precipitation and the average temperature in January and during the summer period (months June, July and August) for the years 2008-2009, following the methodology by European Centre for Disease Prevention and Control (ECDC, 2009). The 100 European cities for the urban simulations were selected based on user requirements within the health community.
Climate variability and change (CVC) embody sizeable economic, social and environmental risks in Europe and globally . Climate services (CSs) (Brasseur and Gallardo, 2016; Brooks, 2013; Lourenco et al., 2015) are essential for catalysing economic and societal transformations that not only reduce these risks and/or improve societal resilience, but also unlock Europe's innovation potential, competitiveness and economic growth. As a part of European efforts to catalyse the potential of climate services for more efficient natural resource management and improved disaster risk management and resilience, the CLARA project will boost innovation and uptake of climate services based on front line seasonal and decadal forecasts and climate projections. Building upon the advancements in climate modelling and science in the context of the Copernicus Climate Change Service (C3S), the CLARA project will illustrate genuine benefits and economic value of CSs in the face of climate variability and short-term climate change. A portfolio of user co-designed and co-developed climate services will help to improve policy and decision makings in the five priority areas GFCS: disaster risk reduction, water resource management, agriculture and food (security), renewable energy sources, and public health. Carefully designed business and marketing strategies will promote their uptake, help to energise the European market with climate services, and foster the European innovation potential.
UERRA is a European FP7 reanalysis project of meteorological observations. Its' main focus is the model-based reanalysis of European climate. The project includes recovery of historical (last century) data, estimating uncertainties in the reanalyses and user friendly data services. It aims to contribute to a future Copernicus climate change service. DWD leads the workpackage 'Assessing uncertainties by evaluation against independent observational datasets'.
Am 13. Oktober 2017 startete der jüngste Satellit des Europäischen Erdbeobachtungsprogramms Copernicus Sentinel-5P um 11.27 Uhr Mitteleuropäischer Sommerzeit an Bord einer Rockot-Trägerrakete vom nordrussischen Weltraumbahnhof in Plesetsk ins All. Der rund 820 Kilogramm schwere Sentinel-5P beobachtet aus 824 Kilometern Höhe die Spurengase der Erdatmosphäre. Mit seinem Messinstrument TROPOMI (Tropospheric Monitoring Instrument) ist der Satellit in der Lage, Tag für Tag wichtige Information über die Luftverschmutzung, den Zustand der Atmosphäre sowie die Änderung des Klimas zu liefern. Mit einem Sichtfeld von 2600 Kilometern, knapp 1000 hochauflösenden Spektralkanälen und einer hohen räumlichen Auflösung wird Sentinel-5P jeden Tag unseren gesamten Planeten kartieren und setzt auch technisch neue Standards: TROPOMI misst im ultravioletten, sichtbaren, nahen und kurzwelligen infraroten Wellenlängenbereich und kann einen weiten Bereich an Luftschadstoffen wie Stickoxide, Ozon, Formaldehyd, Schwefeloxide, Methan und Kohlenmonoxid beobachten. Die Produkte zu diesen Spurengasen werden im Copernicus Atmosphärendienst eingesetzt, um Daten auch zu regionaler Luftverschmutzung zur Verfügung zu stellen. Die Mission soll aber auch andere Daten bereitstellen wie zum Beispiel für die Überwachung von Vulkanasche für die Flugsicherheit oder für Warnungen vor zu hoher UV-Strahlung. Bedeutend ist die Fortsetzung der Zeitreihen der Messinstrumente GOME, SCIAMACHY, GOME-2 und MIPAS durch Sentinel-5P: Langjährige Klimadatensätze werden damit fortgeschrieben und finden Eingang in den Copernicus Klimadienst.
SECTEUR (Sector Engagement for the Copernicus Climate Change Service: Translating European User Requirements) is part of the Copernicus Climate Change Service (C3S) Evaluation and Quality Control (EQC) work. The project is led by the Institute for Environmental Analytics and brings together 11 organisations with vast expertise in climate and business, from 6 European countries, to - engage directly with end-users and analyse their requirements, - identify gaps - and deliver recommendations on future needs to support better decision-making. The Sectors covered are: Agriculture & Forestry, Coastal areas, Health, Infrastructure, Insurance and Tourism. The rationale for the work is that the climate is changing and organisations are vulnerable to these changes. Climate change will have a wide range of impacts such as rising sea levels, increase risk of flood, drought and heat waves. Organisations need to plan for the impact and challenges that our changing climate will bring therefore having the appropriate tools and data to make evidence-based decisions is essential. From data and models to decision-making: The Copernicus Climate Change Service (C3S) provides information to help society and business sectors improve decision-making and planning regarding climate mitigation and adaptation. C3S is based on a combination of science and data and an advanced understanding of the market needs. The SECTEUR approach: SECTEUR is engaging and interacting with a wide number of stakeholders across six sectors through surveys, workshops and interviews to establish an inventory of existing policy needs and user requirements in terms of climate data and climate impact indicators. For example, information on future flooding and heat waves would be important for civil engineering firms when planning new infrastructure designs. Working with users in each sector will allow us to focus on technical feasibility, market needs and gaps that could be filled with additional research. The ultimate aim is to translate these user requirements into services for the C3S Sectoral Information System (SIS).
| Origin | Count |
|---|---|
| Bund | 7 |
| Europa | 2 |
| Wissenschaft | 2 |
| Type | Count |
|---|---|
| Daten und Messstellen | 1 |
| Ereignis | 1 |
| Förderprogramm | 5 |
| Text | 1 |
| unbekannt | 3 |
| License | Count |
|---|---|
| geschlossen | 1 |
| offen | 10 |
| Language | Count |
|---|---|
| Deutsch | 2 |
| Englisch | 9 |
| Resource type | Count |
|---|---|
| Datei | 2 |
| Keine | 5 |
| Webdienst | 2 |
| Webseite | 5 |
| Topic | Count |
|---|---|
| Boden | 9 |
| Lebewesen und Lebensräume | 10 |
| Luft | 10 |
| Mensch und Umwelt | 11 |
| Wasser | 8 |
| Weitere | 11 |