API src

Found 620 results.

Similar terms

s/copernikus/Copernicus/gi

Adaptation Data Base - Aufbau und Operationalisierung von Datenbankkonzepten für die systematische Erfassung anpassungsrelevanter Informationen

Ziel des Vorhabens ist die Digitalisierung des Datenmanagements und der Datenbereitstellung zu Klimafolgen und der Anpassungsstrategie des Bundes, um das Datenangebot für verschiedene Informationsbedarfe nutzbar zu machen und für die konsequente Steuerung zeitnah Informationen und Daten über Klimawandelfolgen und Anpassung zu erfassen und bereit zu stellen. Dazu sollen künftig quantifizierte Informationen über Schäden und Kosten physischer Klimawirkungen, die Anpassung auf subnationaler Ebene in Bundesländern und Kommunen und in den Sektorpolitiken, sowie die Finanzierung von vorsorgenden Anpassungsmaßnahmen der öffentlichen Hand (Bund, Länder, Kommunen) systematisch und kontinuierlich erfasst werden. Bereits vorhanden ist das Monitoringsystem zur DAS, das derzeit alle vier Jahre über Klimawirkungen und Anpassung anhand eines ressortabgestimmten Indikatorensystems auf nationaler Ebene berichtet. Im Vor-haben wird das Datenmanagement des Monitoringsystems zur DAS weiterentwickelt und mit dem im Aufbau befindlichen Datennutzungskonzept des UBA abgestimmt. Eine vergleichende Betrachtung vorhandener Umsetzungsmöglichkeiten vor dem Hintergrund laufender UBA Entwicklungen (z. B. DataCube), bestehenden IT-Infrastrukturen (Hosting und Datenmanagement UBA intern) sowie externen Optionen (Cloud) soll vorgenommen werden. Soweit möglich und fachlich sinnvoll, sollen bestehende Infrastrukturen oder Produkte genutzt bzw. auf laufende Prozesse aufgesetzt werden. Die Erfassung und Digitalisierung von quantifizierten Informationen über Schäden und Kosten physischer Klimawirkungen (Klimaschadenskataster) und die Finanzierung von vorsorgender Anpassung der öffentlichen Hand (Bund, Länder, Kommunen) soll neu aufgebaut werden. Dazu kann auf bereits vorhandenen methodischen Konzepten aufgesetzt werden. Notwendig ist die (Weiter)Entwicklung eines methodischen Konzepts für die systematische Erfassung von Informationen über Anpassungsfortschritte auf subnationaler Ebene und in den Sektorpolitiken und die Vorbereitung der Umsetzung. Es sollen Konzepte sowie institutionelle Vorschläge erarbeitet werden, mit denen Akteure auf subnationaler Ebene in die Lage versetzt werden, an den Bund zu berichten. Die Ergebnisse des Vorhabens 'Adaptation Data Base' werden in die UBA Datenstrategie und die darin abgeleiteten Maßnahmenvorschläge zum Datenmanagement und zur Datenbereitstellung eingegliedert. Im Eigenforschungsvorhaben sollen aus Fernerkundungsdiensten Verfahren zur Überwachung von Klimafolgen entwickelt und erprobt werden. Beispielsweise wird erwartet, dass aus dem Katastrophen- und Krisendienst von Copernicus mittelfristig Eingangsdaten für ein Klimaschadenskataster abgeleitet werden könnten. Im Ergebnis würde eine mittelfristige Ergänzung von in-situ-Daten zu Klimafolgen und Anpassungsmaßnahmen möglich.

KI-basierte Erfassung und Monitoring von klimainduzierten Naturkatastrophen und Analyse der Exposition, KI-basierte Erfassung und Monitoring von klimainduzierten Naturkatastrophen und Analyse der Exposition

Sentinel-5P TROPOMI Surface Nitrogendioxide (NO2), Level 4 – Regional (Germany and neighboring countries)

The TROPOMI instrument onboard the Copernicus SENTINEL-5 Precursor satellite is a nadir-viewing, imaging spectrometer that provides global measurements of atmospheric properties and constituents on a daily basis. It is contributing to monitoring air quality and climate, providing critical information to services and decision makers. The instrument uses passive remote sensing techniques by measuring the top of atmosphere solar radiation reflected by and radiated from the earth and its atmosphere. The four spectrometers of TROPOMI cover the ultraviolet (UV), visible (VIS), Near Infra-Red (NIR) and Short Wavelength Infra-Red (SWIR) domains of the electromagnetic spectrum. The operational trace gas products generated at DLR on behave ESA are: Ozone (O3), Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2), Formaldehyde (HCHO), Carbon Monoxide (CO) and Methane (CH4), together with clouds and aerosol properties. This product displays the Nitrogen Dioxide (NO2) near surface concentration for Germany and neighboring countries as derived from the POLYPHEMUS/DLR air quality model. Surface NO2 is mainly generated by anthropogenic sources, e.g. transport and industry. POLYPHEMUS/DLR is a state-of-the-art air quality model taking into consideration - meteorological conditions, - photochemistry, - anthropogenic and natural (biogenic) emissions, - TROPOMI NO2 observations for data assimilation. This Level 4 air quality product (surface NO2 at 15:00 UTC) is based on innovative algorithms, processors, data assimilation schemes and operational processing and dissemination chain developed in the framework of the INPULS project. The DLR project INPULS develops (a) innovative retrieval algorithms and processors for the generation of value-added products from the atmospheric Copernicus missions Sentinel-5 Precursor, Sentinel-4, and Sentinel-5, (b) cloud-based (re)processing systems, (c) improved data discovery and access technologies as well as server-side analytics for the users, and (d) data visualization services.

Sentinel-5P TROPOMI - Aerosol Optical Depth (AOD), Level 3 - Global

Aerosol optical depth (AOD) as derived from TROPOMI observations. AOD describes the attenuation of the transmitted radiant power by the absence of aerosols. Attenuation can be caused by absorption and/or scattering. AOD is the primary parameter to evaluate the impact of aerosols on weather and climate. Daily AOD observations are binned onto a regular latitude-longitude grid. The TROPOMI instrument onboard the Copernicus SENTINEL-5 Precursor satellite is a nadir-viewing, imaging spectrometer that provides global measurements of atmospheric properties and constituents on a daily basis. It is contributing to monitoring air quality and climate, providing critical information to services and decision makers. The instrument uses passive remote sensing techniques by measuring the top of atmosphere solar radiation reflected by and radiated from the earth and its atmosphere. The four spectrometers of TROPOMI cover the ultraviolet (UV), visible (VIS), Near Infra-Red (NIR) and Short Wavelength Infra-Red (SWIR) domains of the electromagnetic spectrum. The operational trace gas products generated at DLR on behave ESA are: Ozone (O3), Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2), Formaldehyde (HCHO), Carbon Monoxide (CO) and Methane (CH4), together with clouds and aerosol properties. This product is created in the scope of the project INPULS. It develops (a) innovative retrieval algorithms and processors for the generation of value-added products from the atmospheric Copernicus missions Sentinel-5 Precursor, Sentinel-4, and Sentinel-5, (b) cloud-based (re)processing systems, (c) improved data discovery and access technologies as well as server-side analytics for the users, and (d) data visualization services.

Sentinel-5P TROPOMI – Aerosol Index (AI), Level 3 – Global

Aerosol Index (AI) as derived from TROPOMI observations. AI is an indicator for episodic aerosol plumes from dust outbreaks, volcanic ash, and biomass burning. The TROPOMI instrument onboard the Copernicus SENTINEL-5 Precursor satellite is a nadir-viewing, imaging spectrometer that provides global measurements of atmospheric properties and constituents on a daily basis. It is contributing to monitoring air quality and climate, providing critical information to services and decision makers. The instrument uses passive remote sensing techniques by measuring the top of atmosphere solar radiation reflected by and radiated from the earth and its atmosphere. The four spectrometers of TROPOMI cover the ultraviolet (UV), visible (VIS), Near Infra-Red (NIR) and Short Wavelength Infra-Red (SWIR) domains of the electromagnetic spectrum. The operational trace gas products generated at DLR on behave ESA are: Ozone (O3), Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2), Formaldehyde (HCHO), Carbon Monoxide (CO) and Methane (CH4), together with clouds and aerosol properties. This product is created in the scope of the project INPULS. It develops (a) innovative retrieval algorithms and processors for the generation of value-added products from the atmospheric Copernicus missions Sentinel-5 Precursor, Sentinel-4, and Sentinel-5, (b) cloud-based (re)processing systems, (c) improved data discovery and access technologies as well as server-side analytics for the users, and (d) data visualization services.

Sentinel-5P TROPOMI - Aerosol Single-Scattering Albedo (ASSA), Level 3 - Global

Aerosol single-scattering albedo (ASSA) as derived from TROPOMI observations. ASSA is a measure of how much light is scattered by aerosols compared to how much is absorbed. It is important for understanding the impact of aerosols on climate and radiative forcing. ASSA is unitless; a value of unity implies that extinction is completely due to scattering; conversely, a single-scattering albedo of zero implies that extinction is completely due to absorption. Daily ASSA observations are binned onto a regular latitude-longitude grid. The TROPOMI instrument onboard the Copernicus SENTINEL-5 Precursor satellite is a nadir-viewing, imaging spectrometer that provides global measurements of atmospheric properties and constituents on a daily basis. It is contributing to monitoring air quality and climate, providing critical information to services and decision makers. The instrument uses passive remote sensing techniques by measuring the top of atmosphere solar radiation reflected by and radiated from the earth and its atmosphere. The four spectrometers of TROPOMI cover the ultraviolet (UV), visible (VIS), Near Infra-Red (NIR) and Short Wavelength Infra-Red (SWIR) domains of the electromagnetic spectrum. The operational trace gas products generated at DLR on behave ESA are: Ozone (O3), Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2), Formaldehyde (HCHO), Carbon Monoxide (CO) and Methane (CH4), together with clouds and aerosol properties. This product is created in the scope of the project INPULS. It develops (a) innovative retrieval algorithms and processors for the generation of value-added products from the atmospheric Copernicus missions Sentinel-5 Precursor, Sentinel-4, and Sentinel-5, (b) cloud-based (re)processing systems, (c) improved data discovery and access technologies as well as server-side analytics for the users, and (d) data visualization services.

Sentinel-5P TROPOMI – Aerosol Layer Height (ALH), Level 3 – Global

Aerosols are an indicator for episodic aerosol plumes from dust outbreaks, volcanic ash, and biomass burning. Daily observations are binned onto a regular latitude-longitude grid. The Aerosol layer height is provided in kilometres. The TROPOMI instrument onboard the Copernicus SENTINEL-5 Precursor satellite is a nadir-viewing, imaging spectrometer that provides global measurements of atmospheric properties and constituents on a daily basis. It is contributing to monitoring air quality and climate, providing critical information to services and decision makers. The instrument uses passive remote sensing techniques by measuring the top of atmosphere solar radiation reflected by and radiated from the earth and its atmosphere. The four spectrometers of TROPOMI cover the ultraviolet (UV), visible (VIS), Near Infra-Red (NIR) and Short Wavelength Infra-Red (SWIR) domains of the electromagnetic spectrum. The operational trace gas products generated at DLR on behave ESA are: Ozone (O3), Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2), Formaldehyde (HCHO), Carbon Monoxide (CO) and Methane (CH4), together with clouds and aerosol properties. This product is created in the scope of the project INPULS. It develops (a) innovative retrieval algorithms and processors for the generation of value-added products from the atmospheric Copernicus missions Sentinel-5 Precursor, Sentinel-4, and Sentinel-5, (b) cloud-based (re)processing systems, (c) improved data discovery and access technologies as well as server-side analytics for the users, and (d) data visualization services.

Sentinel-5P TROPOMI – Ultraviolet Index (UVI), Level 3 – Global

UV Index (UVI) as derived from TROPOMI observations. The UVI describes the intensity of the solar ultraviolet radiation. Values around zero indicate low, values greater than 10 indicate very high UV exposure on the ground. The TROPOMI instrument onboard the Copernicus SENTINEL-5 Precursor satellite is a nadir-viewing, imaging spectrometer that provides global measurements of atmospheric properties and constituents on a daily basis. It is contributing to monitoring air quality and climate, providing critical information to services and decision makers. The instrument uses passive remote sensing techniques by measuring the top of atmosphere solar radiation reflected by and radiated from the earth and its atmosphere. The four spectrometers of TROPOMI cover the ultraviolet (UV), visible (VIS), Near Infra-Red (NIR) and Short Wavelength Infra-Red (SWIR) domains of the electromagnetic spectrum. The operational trace gas products generated at DLR on behave ESA are: Ozone (O3), Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2), Formaldehyde (HCHO), Carbon Monoxide (CO) and Methane (CH4), together with clouds and aerosol properties. This product is created in the scope of the project INPULS. It develops (a) innovative retrieval algorithms and processors for the generation of value-added products from the atmospheric Copernicus missions Sentinel-5 Precursor, Sentinel-4, and Sentinel-5, (b) cloud-based (re)processing systems, (c) improved data discovery and access technologies as well as server-side analytics for the users, and (d) data visualization services.

Das 1,5-Grad-Ziel nach dem Übereinkommen von Paris

<p>Was ist eigentlich wirklich damit gemeint, wenn vom „1,5-Grad-Ziel“ für das Klima gesprochen wird? Woher kommt dieser Wert und wie wird er gemessen? Was passiert, wenn wir das Ziel überschreiten – gibt es danach noch ein Zurück unter 1,5 Grad Erderwärmung? Dieser Text geht auf die Hintergründe des 1,5-Grad-Ziels ein und erklärt, warum wir dieses Ziel in Reichweite halten müssen.</p><p>Mit der Verabschiedung des Übereinkommens von Paris (ÜvP) auf der Weltklimakonferenz im Dezember 2015 setzte sich die Weltgemeinschaft das gemeinsame Ziel, dass „der Anstieg der durchschnittlichen Erdtemperatur deutlich unter 2 °C über dem vorindustriellen Niveau gehalten wird und Anstrengungen unternommen werden, um den Temperaturanstieg auf 1,5 °C über dem vorindustriellen Niveau zu begrenzen […]“. Das darin enthaltene <a href="https://www.umweltbundesamt.de/dokument/das-15-degc-ziel-nach-dem-uebereinkommen-von-paris/">1,5-Grad-Ziel</a> wurde in den folgenden Jahren zum Maßstab des politischen Handelns im globalen ⁠<a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klimaschutz#alphabar">Klimaschutz</a>⁠. Die Bedeutung dieser Temperaturobergrenze für den Schutz von Menschen und Umwelt wurde unter anderem durch den <a href="https://www.de-ipcc.de/256.php">Sonderbericht des Weltklimarats</a> (Intergovernmental Panel on Climate Change, ⁠<a href="https://www.umweltbundesamt.de/service/glossar/i?tag=IPCC#alphabar">IPCC</a>⁠) aus dem Jahr 2018 über 1,5 Grad globale Erwärmung unterstrichen.</p><p>Hier das <a href="https://www.umweltbundesamt.de/sites/default/files/medien/11901/dokumente/20250415_uba50_factsheet_1komma5_grad_ziel_final.pdf">UBA-Positionspapier zum 1,5-Grad-Ziel</a> lesen.&nbsp;</p><p>Was bedeutet das 1,5-Grad-Ziel?</p><p>Das 1,5-Grad-Klimaziel, das 2015 im ÜvP festgelegt wurde, bezieht sich auf den Anstieg der globalen Durchschnittstemperatur im Vergleich zum vorindustriellen Niveau (1850-1900). Eine Erwärmung um 1,5 Grad würde zwar immer noch erhebliche Auswirkungen haben, aber diese wären deutlich weniger katastrophal als eine Erwärmung von zwei Grad oder mehr.</p><p>Im ÜvP selbst wurde die Basislinie, also der genaue Referenzzeitraum, für vorindustrielle Messungen nicht definiert. Der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/i?tag=IPCC#alphabar">IPCC</a>⁠ verwendet jedoch eine Basislinie von 1850 bis 1900. Dies ist der früheste Zeitraum mit zuverlässigen, nahezu globalen Messungen.</p><p>Ein kurzer Ausflug in die Geschichte</p><p>Das 1,5-Grad-Ziel wurde 2015 im Rahmen des ÜvP festgelegt, aber seine Wurzeln reichen weiter zurück:</p><p>Warum 1,5 Grad?</p><p>Wissenschaftliche Erkenntnisse und Studien, größtenteils zusammengetragen in den Berichten des ⁠<a href="https://www.umweltbundesamt.de/service/glossar/i?tag=IPCC#alphabar">IPCC</a>⁠, haben gezeigt, dass eine Erwärmung über 1,5 Grad hinaus schwerwiegende und möglicherweise irreversible Auswirkungen auf das ⁠<a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klima#alphabar">Klima</a>⁠ haben kann. Schon bei 1,5 Grad Erwärmung sind Meeresspiegelanstiege, der Verlust großer Eisflächen, Hitzewellen und die Bedrohung für Inselstaaten signifikant. Bei zwei Grad globaler Erwärmung und darüber hinaus werden sehr wahrscheinlich irreversible Kipppunkte erreicht, die das ⁠<a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klimasystem#alphabar">Klimasystem</a>⁠ destabilisieren und unumkehrbare Veränderungen nach sich ziehen würden.</p><p>Zu den drastischen Auswirkungen des fortschreitenden Klimawandels zählen:</p><p>Haben wir die 1,5-Grad-Marke schon überschritten?</p><p>Im Jahr 2024 wurde durch aktuelle Messdaten der europäischen Klimadaten-Agentur Copernicus bestätigt, dass die Erde erstmals ein volles Jahr lang eine Erwärmung von mehr als 1,5 Grad über dem vorindustriellen Niveau erreicht hat. <br>Das bedeutet jedoch noch nicht, dass das langfristige Ziel des ÜvP bereits überschritten ist. Die globale Erwärmung wird als langjährige Durchschnittstemperatur (in der Regel 20- bis 30-jährige Mittel) gemessen, nicht anhand einzelner heißer Jahre oder Monate, da kürzere Zeiträume stark von natürlichen Schwankungen dominiert werden können. Legt man den aktuellen Erwärmungstrend zugrunde, würde die Welt zwischen 2030 und 2040 das 1,5-Grad-Ziel langfristig überschreiten.</p><p>Wie lässt sich das 1,5-Grad-Ziel noch erreichen?</p><p>Die Debatte um die Einhaltbarkeit und die Auslegung des 1,5-Grad-Ziels verdeutlicht, wie dringend wir globalen und wirksamen ⁠<a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klimaschutz#alphabar">Klimaschutz</a>⁠ brauchen und wie komplex die politischen, wirtschaftlichen und technologischen Herausforderungen sind, die damit einhergehen. Während einige Fachleute skeptisch sind, ob das ÜvP-Ziel überhaupt noch erreichbar ist, gibt es immer noch Hoffnung, dass der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klimawandel#alphabar">Klimawandel</a>⁠ durch rasches Handeln auf ein erträgliches Maß begrenzt werden kann. Um das Ziel von 1,5 Grad zu erreichen, müssten die globalen Treibhausgasemissionen bis 2030 um 43 Prozent im Vergleich zu 2019 reduziert werden, bis 2035 dann um 60 Prozent, und spätestens in den frühen 2050er Jahren muss die Bilanz des Ausstoßes und der Entnahme von CO2 aus der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/a?tag=Atmosphre#alphabar">Atmosphäre</a>⁠ mittels Senken ausgeglichen sein - also globale CO2-Neutralität erreicht werden.</p><p>Dies erfordert drastische Maßnahmen wie die Reduktion der Abhängigkeit von fossilen Brennstoffen und eine ambitioniertere Förderung erneuerbarer Energien. Weltweit müssen die Emissionen stark gesenkt und bis auf nicht vermeidbare Restemissionen reduziert werden. Internationale Kooperationen im Klimaschutz, insbesondere zwischen großen Emittenten wie den USA, China und der EU, werden als entscheidend angesehen.</p><p>Ein Überblick der wichtigsten Klimaschutz-Maßnahmen:</p><p>Was passiert, wenn wir 1,5 Grad überschreiten? Gibt es danach noch einen Weg zurück?</p><p>Ein „Overshoot“, also ein Überschreiten der 1,5-Grad-Marke würde schwerwiegende Folgen haben. Beispielsweise wäre das Schmelzen der Eisschilde auf Grönland und in der Antarktis kaum mehr aufzuhalten, was den Meeresspiegel langfristig ansteigen ließe. Auch das Risiko von Extremwetterereignissen wie Dürren und Hitzewellen würde zunehmen.</p><p>Es wäre theoretisch möglich, auch nach einem Overshoot wieder eine Absenkung unter die 1,5-Grad-Marke zu erreichen. Dies würde aber enorme Anstrengungen und neben der ohnehin nötigen Stärkung natürlicher CO2-Senken wie Wäldern den großflächigen Einsatz von Technologien zur Kohlenstoffdioxidabscheidung und -speicherung bedeuten. Diese Technologien, die CO2 aus der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/a?tag=Atmosphre#alphabar">Atmosphäre</a>⁠ entfernen und beispielsweise in geologischen Formationen speichern, sind bisher nur in kleinem Maßstab verfügbar, extrem teuer, ressourcenintensiv und ihre potenziellen Auswirkungen auf die Umwelt sind (noch) nicht absehbar. Deshalb ist es wichtig, den globalen Temperaturanstieg so gering wie möglich zu halten: Jede noch so kleine vermiedene Temperaturerhöhung zählt. Eine vorübergehende Überschreitung der 1,5-°C-Marke muss im Ausmaß so gering und in der Dauer so kurz wie möglich gehalten werden. Denn jedes Überschreiten kann schwerwiegende und möglicherweise irreversible Veränderungen im ⁠<a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klimasystem#alphabar">Klimasystem</a>⁠ zur Folge haben, mit unvorhersehbaren Auswirkungen auf Menschen und Umwelt. Daher gilt weiterhin die Prämisse, frühzeitig und konsequent zu handeln, um solche Szenarien zu vermeiden.</p><p>Für wen gilt das 1,5-Grad-Ziel?</p><p>Das 1,5-Grad-Ziel gilt für alle Länder, die das ÜvP unterzeichnet haben. Insgesamt 195 Länder haben sich verpflichtet, nationale <a href="https://www.umweltbundesamt.de/themen/klima-energie/internationale-eu-klimapolitik/zukunft-der-klimapolitik/ausgestaltung-nationaler-klimaschutzbeitraege-ndc">Klimaschutzbeiträge (Nationally Determined Contributions, NDCs)</a> zu erstellen, um ihre Treibhausgasemissionen zu reduzieren und Anpassungsstrategien zu entwickeln. Diese Unterschiede sind wichtig:</p><p>Fazit: Das 1,5-Grad-Ziel ist nach wie vor von zentraler Bedeutung für die internationale Klimapolitik. Ziel ist, die Begrenzung des globalen Temperaturanstiegs auf 1,5 Grad in Reichweite zu halten. Darüber hinaus ist das ÜvP völkerrechtlich bindend. Um gefährliche Auswirkungen ungebremster Erderwärmung zu verhindern oder zu minimieren, muss die Weltgemeinschaft weiterhin ambitionierte Klimaschutzmaßnahmen umsetzen. Die Begrenzung der Erderwärmung bedeutet eine lebenswertere Zukunft für uns alle und ist für vulnerable Gesellschaften und Gruppen sowie auch für viele bedrohte Arten und die ⁠<a href="https://www.umweltbundesamt.de/service/glossar/b?tag=Biodiversitt#alphabar">Biodiversität</a>⁠ überlebensnotwendig.</p><p>Hier weiterlesen: Das <a href="https://www.umweltbundesamt.de/sites/default/files/medien/11901/dokumente/20250415_uba50_factsheet_1komma5_grad_ziel_final.pdf">UBA-Positionspapier zum 1,5-Grad-Ziel nach dem Übereinkommen von Paris</a>.</p>

BodenBewegungsdienst Deutschland (BBD) 2019-2023 L2B Ascending (WMTS)

Die vielfältige Geologie Deutschlands sowie die sich hieraus ergebende Nutzung sind Ursachen für verschiedenste Bodenbewegungen, wie z.B. Bodenkompaktion, Erdrutsche, Grundwasserentnahme, Erdgasförderung, (Alt-)Bergbau- und Kavernenspeicherbetrieb. Die Produkte des BodenBewegungsdienst Deutschland (BBD) basieren auf SAR Daten der Copernicus Sentinel-1 Mission und einer Persistent Scatterer Interferometrie (PSI) Verarbeitung. Das BBD Portal enthält PSI Daten der gesamten Bundesrepublik Deutschland (ca. 360.000 km²). Die PSI Technologie ermöglicht präzise Messungen von Bewegungen der Erdoberfläche im mm Bereich. Die Messpunkte (Persistent Scatterer, PS) entsprechen bereits am Boden vorhandenen Objekten, wie z.B. Gebäuden, Infrastruktur oder natürlichen Objekten, wie Gesteinen und Schuttflächen. Jeder PS wird durch einen über mehrere Jahre gemittelten Geschwindigkeitswert (ausgedrückt in mm/Jahr) und eine Zeitreihe der Verschiebungen charakterisiert. Für jeden PS kann die Zeitreihe der Verschiebungen von der ersten Sentinel-1 Aufnahme bis zur letzten ausgewerteten Sentinel-1 Aufnahme eingesehen werden. Die PS werden nach der mittleren Geschwindigkeit entlang der Sichtlinie der Sentinel-1 Satelliten, Line of Sight (LOS), gemäß der folgenden Konvention im BBD Portal visualisiert: - die grüne Farbe entspricht den PS, deren mittlere Geschwindigkeit sehr gering ist, zwischen -2,0 und +2,0 mm/Jahr, d.h. im Empfindlichkeitsbereich der PSI Technologie; - in den Farben von gelb bis rot werden diejenigen PS mit negativer Bewegungsrate visualisiert, d.h. Bewegungen vom Satelliten weg; - mit den Farben von türkis bis blau werden diejenigen PS mit positiver Bewegungsrate visualisiert, d.h. PS die sich dem Satelliten nähern. Die Präzision der dargestellten PSI Daten liegt in der Größenordnung von typischerweise +- 2 mm/Jahr für die mittlere Geschwindigkeit in LOS.

1 2 3 4 560 61 62