Wissenschaftler sowie Politiker erwägen die regionale Verwendung von Marine Cloud Brightening (RegMCB) als mögliche Solar Radiation Management Technologie um die Erderwärmung durch anthropogene Treibhausgase gezielt zu verlangsamen. Während theoretische Arbeiten bezeugen, dass dieser Ansatz prinzipiell einen kühlenden Effekt im Klimasystem erzeugen kann, verbleiben enorme Unsicherheiten bezüglich der Wirksamkeit und der potentiellen Auswirkungen dieses Ansatzes. Dennoch werden erste MCB Feldexperimente in Australien bereits durchgeführt und sind auch in anderen Ländern in der Planung.Der aufhellende Effekt in marinen Wolken durch die kontinuierliche Emission von Seesalz in die untere Troposphäre ist bis heute nur hinreichend verstanden. Der Grad der Wirksamkeit dieser Technologie basiert hauptsächlich auf entweder hoch-aufgelösten Modellrechnungen, welche räumlich und zeitlich stark eingeschränkt sind, oder auf globalen Klimamodellrechnungen, welche auf stark vereinfachten Annahmen über den Ausstoß von Seesalzpartikeln basieren. Diese Lücke zwischen bisher verwendeten Modellansätzen werden wir innerhalb dieses Forschungsantrags schließen. Mit Hilfe von Simulationen von möglichen MCB Strategien innerhalb des Kalifornischen Stratocumulus Wolkendecks, werden wir den Wirksamkeitsgrad dieser Technologie unter realistischen Annahmen quantifizieren, und gleichzeitig potentielle Auswirkungen auf der regionalen Skala identifizieren und quantifizieren können.Innerhalb dieses Projektes werden wir eine vereinfachte Version von ICON-HAM, einem Klimamodell mit einer umfassenden Parametrisierung der Aerosolmikrophysik inklusive Strahlungskopplung und Aerosol-Wolken-Wechselwirkungen, entwickeln und verifizieren. Unser Modellansatz beinhaltet die volle Komplexität ICON-HAMs für Seesalzgrößenverteilungen während alle anderen Aerosolspezien mit konstanten Hintergrundkonzentrationen vorgeschrieben werden. Diese Modellversion wird wir mithilfe von Beobachtungen des Kalifornischen Stratocumulus Wolkendecks verifiziert werden. Das Kalifornische Deck ist eins der vier subtropischen Stratocumulusregionen weltweit und ist im Vergleich zu den anderen Decks am umfassendsten vermessen und verstanden. Innerhalb von RegMCB werden wissenschaftliche Erkenntnisse gewonnen welche uns helfen werden den Wirksamkeitsgrad und die Grenzen dieser Technologie zu quantifizieren. Innerhalb dieses Antrages werden erstmals Simulationen durchgeführt welche auf realistischen MCB Szenarien basieren und die nötige Komplexität beinhalten Aerosol-Wolken-Wechselwirkungen korrekt abzubilden. Gleichzeitig tragen die hier vorgeschlagenen Arbeiten zu einer Verbesserung unseres Verständnisses und der Repräsentation von Aerosol-Wolken-Wechselwirkungen in marinen Stratocumuli allgmein bei.
Das Kernvorhaben zur Umsetzung des ersten Forschungswettbewerbs in StickstoffBW konkretisiert die Simple-Mass-Balance Methode und entwickelt eine Fachkonvention für die behördliche Festsetzung von Critical Level und Critical Loads (CL). Die Ergebnisse sollen die in 2014 veröffentlichte 'CL-Datenmappe' ablösen. Im Einzelnen sollen die Forschenden 1. eine Anleitung zur Ermittlung der Critical Levels und Critical Loads orientierend mit Karten und abschließend mit Anleitung (Ing. Regioplus Mainz) einschließlich 2. einer Kartieranleitung zur Differenzierung der Biotoptypen nach Empfindlichkeit gegenüber Stickstoffeinträgen (Breunig Karlsruhe) und 3. einer Analyse der historischen Grünlandnutzung als Orientierungshilfe für die Definition von Trophiezonen für den Viehbesatz und die Düngungsintensität erarbeiten (Ing. Hohenheim).
<p>Bodennahes Ozon kann Pflanzen schädigen. Wirkungsschwellenwerte (Critical Levels, CL) markieren, welche Ozonbelastung nicht überschritten werden darf, um Schäden an Kultur- und Wildpflanzen zu vermeiden. Die Zielwerte zum Schutz der Vegetation nach EU-Richtlinie 2024/2881 werden in Deutschland vielerorts überschritten. Neue Bewertungsmethoden führen zu einer noch präziseren Risikobewertung.</p><p>Wirkungen von bodennahem Ozon auf Pflanzen</p><p>Pflanzen, die zu viel Ozon durch ihre Spaltöffnungen aufnehmen, tragen oft Schäden davon. Als sichtbare Anzeichen treten Verfärbungen und abgestorbene Blattteile auf (siehe Foto „Sichtbare Blattschäden bei Kartoffelpflanzen“). Diese und andere, nicht sichtbare Stoffwechselveränderungen in den Pflanzen, führen bei Kulturpflanzen zu Ertrags- und Qualitätsverlusten. Bäume werden ebenfalls geschwächt. Experimente belegen langfristig verminderte Zuwachsraten und eine erhöhte Empfindlichkeit gegenüber anderen Stressfaktoren (siehe Foto „Zuwachsminderung bei jungen Eichen durch die Einwirkung von Ozon“). Es gibt auch deutliche Hinweise darauf, dass sich bodennahes Ozon auf die biologische Vielfalt und die Ökosystemfunktionen auswirken kann (<a href="https://www.umweltbundesamt.de/publikationen/assessment-of-the-impacts-of-ozone-on-biodiversity">Bergmann 2015)</a>.</p><p>Hier mehr zur<a href="https://www.umweltbundesamt.de/daten/luft/ozon-belastung">Entstehung von bodennahem Ozon.</a></p><p>Critical Levels für Ozon – Schutzwerte für Pflanzen</p><p>„Critical Levels“ sind Wirkungsschwellenwerte zum Schutz der Vegetation, die im Internationalen Kooperativprogramm zur Bewertung von Luftverunreinigungen auf die Vegetation (<a href="http://icpvegetation.ceh.ac.uk/">ICP Vegetation</a>) im Rahmen der<a href="https://www.umweltbundesamt.de/themen/luft/regelungen-strategien/internationale-uebereinkommen">Genfer Luftreinhaltekonvention</a>definiert wurden. Wie hoch das Risiko durch bodennahes Ozon für Pflanzen ist, hängt neben den Ozonkonzentrationen auch vom Witterungsverlauf im entscheidenden Zeitabschnitt ab. Zwei unterschiedliche Herangehensweisen in der Risikobewertung sind zu unterscheiden:<br>AOT40:Die Abkürzung AOT kommt aus dem Englischen und bedeutet„Accumulation Over a Threshold“. Bei dieser Methodik werden alle Überschreitungen eines Stundenmittels der Ozonkonzentration von 40 Teilen pro Milliarde (parts per billion, ppb) − das entspricht 80 Mikrogramm pro Kubikmeter während der Tageslichtstunden − über die Zeitspannen mit intensivem Wachstum summiert (Critical Levels als AOT40: siehe Tab. „Konzentrationsbasierte Critical Levels für Ozon“). In dieser Zeit reagieren Pflanzen besonders empfindlich auf Ozon.Phytotoxische Ozondosis (POD):Eine weiterentwickelte Methodik, die das tatsächliche Risiko wesentlich präziser abbildet, bezieht sich auf den Ozonfluss aus der Atmosphäre über die Spaltöffnungen in die Pflanzen. Sie berücksichtigt, dass sich die Spaltöffnungen unter bestimmten Witterungsbedingungen schließen und dadurch der Ozonfluss unterbunden ist. Die Berechnung erfolgt spezifisch für verschiedene Pflanzenarten. Es ist zu erwarten, dass sich dieser Risikoindikator zum Schutz der Pflanzen sowohl international als auch in Deutschland durchsetzen wird (Critical Levels als POD-Werte: siehe Tab. „Critical Levels für Ozon bezogen auf kritische Ozonflüsse in die Pflanzen, standortbezogene Risikobewertung“).Einzelheiten zu diesen und weiteren Methoden der Critical Levels-Berechnung stehen im Kapitel 3 desMethodenhandbuchsder Genfer Luftreinhaltekonvention (Manual on Methodologies and Criteria for Modelling and Mapping Critical Loads and Levels and Air Pollution Effects, Risks, and Trends).Zielwerte der Europäischen Union zum Schutz der VegetationNach derEU-Richtlinie 2024/2881gilt als Zielwert für den Schutz der Vegetation nach wie vor der Expositionsindex AOT40 von 18.000 Mikrogramm pro Kubikmeter und Stunde (µg/m³*h), gemittelt über fünf Jahre. Dieser soll seit 2010 an jeder ländlichen Hintergrundstation eingehalten werden (siehe Abb. „Ozon AOT40 – gleitende 5-Jahres-Mittelwerte, gemittelt über alle ländlichen Hintergrundstationen“). Langfristig soll flächendeckend ein niedrigerer Zielwert von 6.000 µg/m³*h zum Schutz der Vegetation eingehalten werden (siehe Abb. „Ozon AOT40-Mittelwerte (Schutz der Vegetation) für Einzeljahre, gemittelt über alle ländlichen Hintergrundstationen“). Dieser langfristige Zielwert entspricht dem Critical Level für Ozon als AOT40 für landwirtschaftliche Nutzpflanzen (Weizen) (siehe Tab. „Konzentrationsbasierte Critical Levels für Ozon“).Die im Dezember 2016 überarbeiteteEU-Richtlinie 2016/2284über die Reduktion der nationalen Emissionen bestimmter Luftschadstoffe, empfiehlt bereits ozonflussbasierte Indikatoren und Critical Levels zur langfristigen Beobachtung und Bewertung der Wirkungen von bodennahem Ozon auf die Vegetation. Die konkreten Anforderungen für die Umsetzung dieses Wirkungsmonitorings werden in einer internationalen Expertengruppe abgestimmt.Entwicklung und Ziele bei der OzonbelastungSowohl konzentrationsbasierte als auch flussbasierte Critical Levels (CL) für Ozon werden in Europa und auch in Deutschland großflächig überschritten. Seit 2009 wird die Ozonbelastung für Pflanzen in Deutschland im Rahmen der Berichtspflichten neben dem AOT40-Ansatz auch mit dem flussbasierten POD-Ansatz erfasst, der neben der Ozonkonzentration auch meteorologische Einflüsse und die physiologische Aktivität der Pflanzen berücksichtigt und pflanzenspezifisch ist. Die Auswertungen bis 2021 zeigen, dass die CL für Weizen und Buche in allen Jahren und Regionen deutlich überschritten wurden. Während Weizen eine stärkere zeitliche und räumliche Variabilität aufweist, liegen die Werte bei Buche konstant auf hohem Niveau. Besonders hohe Belastungen traten in warmen, trockenen Jahren wie 2010 und 2018 auf. Selbst bei sinkenden Ozonkonzentrationen kann sich durch längere Vegetationsperioden die aufgenommene Ozondosis erhöhen. Ziel ist es, die Emissionen der Vorläuferstoffe Stickoxide und flüchtige organische Verbindungen weiter zu senken, um Vegetationsbestände und Ökosysteme langfristig zu schützen (Wallek 2024).Die Abbildung “Ozon AOT40-5-Jahres-Mittelwerte, gemittelt über alle ländlichen Hintergrundstationen“ zeigt die über fünf Jahre gemittelten Werte für alle ländlichen Hintergrundstationen; für die Berechnung werden im gesamten Zeitraum die Werte von durchschnittlich 65 Stationen pro Jahr herangezogen. Die Mittelung über 5 Jahre dient dazu, witterungsbedingte Schwankungen auszugleichen. Die Situation kann an einzelnen Stationen deutlich besser oder schlechter sein als der Durchschnitt der Stationen, wie die Abbildung „Ozon AOT40 - Einhaltung des Zielwertes zum Schutz der Vegetation (nur ländlicher Hintergrund)“ zeigt. Ziel der Europäischen Union ist es, neben dem seit 2010 einzuhaltenden Zielwert auch den langfristigen Zielwert bis zum 1. Januar 2050 immer an allen ländlichen Hintergrundstationen einzuhalten (siehe Abb. „Ozon AOT40-Mittelwerte (Schutz der Vegetation) für Einzeljahre, gemittelt über alle ländlichen Hintergrundstationen“).Die scheinbar deutliche Senkung der 5-Jahres-Mittelwerte für den Zeitraum 2007 bis 2016 ist vor allem darauf zurückzuführen, dass das Jahr 2006, welches besonders hohe Ozonkonzentrationen aufwies (siehe Abb. „Ozon AOT40-Mittelwerte (Schutz der Vegetation) für Einzeljahre, gemittelt über alle ländlichen Hintergrundstationen“), aus dem Berechnungszeitraum herausfiel. 2018 war erneut ein Jahr mit sehr hoher Ozonbildung. Der erste 5-Jahres-Durchschnittswert, bei dem dieses Jahr einbezogen ist, liegt deshalb wieder deutlich höher, wenn auch unterhalb des Zielwertes.Im Gegensatz zum Zielwert ab 2010 gilt der langfristige Zielwert zum Schutz der Vegetation für jedes einzelne Jahr. Die AOT40-Jahreswerte lagen von 1995 bis 2024 auch im Mittel der ländlichen Messstationen weit über dem langfristigen Zielwert und zeigten keinen eindeutigen Trend (siehe Abb. “Ozon AOT40 – Mittelwerte für Einzeljahre zum Schutz der Vegetation (nur ländlicher Hintergrund)“). Den starken Einfluss meteorologischer Verhältnisse auf die Ozonbelastung veranschaulichen vor allem die Werte der Jahre 1995, 2003, 2006 und 2018. In diesen Jahren traten während der Vegetationsperiode sehr hohe Temperaturen und Strahlungsintensitäten und somit für die Ozonbildung besonders günstige Bedingungen auf.
This report is an important collection of tools used in the framework of the Geneva Convention on Long-Range Transboundary Air Pollution (CLRTAP). Thus, it provides for example a scientific basis on the application of critical levels and loads, their interrelationships, and the consequences for abatement. After the transfer of the Coordination Center for Effects from the Netherlands to Germany this edition is published by the German Environment Agency ( UBA ). With this edition recent technical updates where transferred in the document. The changes of chapter 3 from the Ammonia-workshop decided 2023 have been incorperated.The information on backgrounddatabase (BGDB) (5.2) and the new receptor map were implemented in chapter 5.6. Veröffentlicht in Texte | 123/2024.
The International Cooperative Programme on Modelling and Mapping of Critical Levels and Loads and Air Pollution Effects, Risks and Trends (ICP Modelling and Mapping) develops and uses critical loads to recommend science-based emission reductions to policy makers within the UN Air Convention (CLRTAP). A critical load defines the deposition of a pollutant below which significant harmful effects on a sensitive ecosystem element are not expected to occur. The Simple Mass Balance (SMB) model is the most widely used steady-state model under the Air Convention to estimate critical loads for nutrient nitrogen (eutrophication) and sulphur together with nitrogen (acidification). Within the SMB model, so-called critical limits define chemical threshold values to prevent harmful effects in the ecosystem. In this report, the currently used critical limits for terrestrial ecosystems were reviewed. The project was motivated to ensure continuous uptake of scientific advances in the effects work. Experts of the National Focal Centres (NFC) and beyond were invited to comment and discuss preliminary results of the project during the ICP Modelling and Mapping Task Force meetings and a workshop. Results will be used by the Coordination Centre for Effects (CCE) to review the Mapping Manual for calculating critical loads. Veröffentlicht in Texte | 93/2024.
Vascular plants, mosses and lichens react sensitively to the exposure to air pollutants and pollution from ammonia (NH 3 ). Critical concentration values for ammonia to protect vegetation (so-called critical levels) were defined for risk assessment in the Geneva Convention on Long-Range Transboundary Air Pollution (CLRTAP). The project was used to review the current scientific status of those impact thresholds. In addition, extensive experimental studies were carried out to test the sensitivity of numerous native vascular plant species to NH 3 . The focus here was on species protected under the Natura2000 legislation and common in habitats in Germany. Veröffentlicht in Texte | 64/2024.
Vascular plants, mosses and lichens react sensitively to the exposure to air pollutants and pollution from ammonia (NH3). Critical concentration values for ammonia to protect vegetation (so-called critical levels) were defined for risk assessment in the Geneva Convention on Long-Range Transboundary Air Pollution (CLRTAP). The project was used to review the current scientific status of those impact thresholds. In addition, extensive experimental studies were carried out to test the sensitivity of numerous native vascular plant species to NH3. The focus here was on species protected under the Natura2000 legislation and common in habitats in Germany.
The International Cooperative Programme on Modelling and Mapping of Critical Levels and Loads and Air Pollution Effects, Risks and Trends (ICP Modelling and Mapping) develops and uses critical loads to recommend science-based emission reductions to policy makers within the UN Air Convention (CLRTAP). A critical load defines the deposition of a pollutant below which significant harmful effects on a sensitive ecosystem element are not expected to occur. The Simple Mass Balance (SMB) model is the most widely used steady-state model under the Air Convention to estimate critical loads for nutrient nitrogen (eutrophication) and sulphur together with nitrogen (acidification). Within the SMB model, so-called critical limits define chemical threshold values to prevent harmful effects in the ecosystem. In this report, the currently used critical limits for terrestrial ecosystems were reviewed. The project was motivated to ensure continuous uptake of scientific advances in the effects work. Experts of the National Focal Centres (NFC) and beyond were invited to comment and discuss preliminary results of the project during the ICP Modelling and Mapping Task Force meetings and a workshop. Results will be used by the Coordination Centre for Effects (CCE) to review the Mapping Manual for calculating critical loads.
This report is an important collection of tools used in the framework of the Geneva Convention on Long-Range Transboundary Air Pollution (CLRTAP). Thus, it provides for example a scientific basis on the application of critical levels and loads, their interrelationships, and the consequences for abatement. After the transfer of the Coordination Center for Effects from the Netherlands to Germany this edition is published by the German Environment Agency (UBA). With this edition recent technical updates where transferred in the document. The changes of chapter 3 from the Ammonia-workshop decided 2023 have been incorperated.The information on backgrounddatabase (BGDB) (5.2) and the new receptor map were implemented in chapter 5.6.
Origin | Count |
---|---|
Bund | 90 |
Land | 6 |
Type | Count |
---|---|
Förderprogramm | 68 |
Text | 14 |
unbekannt | 13 |
License | Count |
---|---|
geschlossen | 25 |
offen | 69 |
unbekannt | 1 |
Language | Count |
---|---|
Deutsch | 68 |
Englisch | 35 |
Resource type | Count |
---|---|
Bild | 2 |
Datei | 1 |
Dokument | 9 |
Keine | 60 |
Webdienst | 3 |
Webseite | 31 |
Topic | Count |
---|---|
Boden | 95 |
Lebewesen und Lebensräume | 95 |
Luft | 95 |
Mensch und Umwelt | 95 |
Wasser | 95 |
Weitere | 91 |