API src

Found 201 results.

Related terms

Abschätzung der Vegetationsgefährdung durch Ozon in Hessen

Die Konzentrationen vieler Luftinhaltsstoffe sind aufgrund vielfältiger menschlicher Aktivitäten in den letzten Jahren beträchtlich angestiegen. Als vegetationsgefährdende Komponente gewinnt dabei Ozon in der Bundesrepublik Deutschland zunehmend an Bedeutung, während z.B. Schwefeldioxid aufgrund der erfolgreichen Emissionsminderungsmaßnahmen in den Hintergrund tritt. Bei der Erstellung von Luftreinhalteplänen/Wirkungskatastern geht es darum, die räumliche und zeitliche Variabilität der Schadgaskonzentrationen im Hinblick auf eine mögliche Beeinträchtigung der Vegetation zu bewerten. Darüber hinaus gilt es, mögliche Entwicklungen der Immissionsbelastung prospektiv zu beurteilen, um frühzeitig evtl. notwendige Gegenmaßnahmen einleiten zu können. Dies bedarf integrierender Konzepte, in denen physikalisch/chemische Messprogramme und Verfahren der Bioindikation miteinander verknüpft werden. Das gemeinsam mit dem Hessischen Landesamt für Umwelt und Geologie durchgeführte Untersuchungsprogramm gliedert sich in fünf Schritte: - In einem ersten Schritt wurden potentielle Ertragsverluste durch Ozon anhand von Dosis-Wirkung-Funktionen aus der Literatur unter Verwendung hessischer Ozon-Messdaten für verschiedene Kulturpflanzen abgeschätzt. - In einem zweiten Schritt wurde eine flussorientierte Kenngröße für die Ozon-Belastung der Vegetation unter Verwendung von Messgrößen abgeleitet, die in den Ländermessnetzen erhoben werden. - In einem dritten Schritt wurde ein Modell für die Bestimmung des Gasaustausches zwischen Vegetation und bodennaher Atmosphäre entwickelt. - In einem vierten Schritt wurden sog. kritische absorbierte Ozon-Dosen (critical loads) für standardisiert exponierte Rezeptoren abgeleitet. - In einem fünften Schritt werden die aktuell in Europa diskutierten Grenzwerte zum Schutz der Vegetation vor Ozon und die ihnen zu Grunde liegenden Dosis-Wirkung-Funktionen auf ihre Übertragbarkeit auf bzw. Relevanz für die deutschen Verhältnisse untersucht. Die Methodik zur Ableitung kritischer absorbierter Ozon-Dosen (critical loads) wird weiterentwickelt sowie die Gefährdung der Vegetation durch Ozon auf regionaler Ebene realistisch abgeschätzt.

Überschreitung der Belastungsgrenzen für Eutrophierung

<p>Nährstoffeinträge (vor allem Stickstoff) aus der Luft belasten Land-Ökosysteme und gefährden die biologische Vielfalt. Zur Bewertung dieser Belastung stellt man ökosystemspezifische Belastungsgrenzen (Critical Loads) den aktuellen Stoffeinträgen aus der Luft gegenüber. Trotz rückläufiger Stickstoffbelastungen in Deutschland besteht weiterhin Handlungsbedarf – vor allem bei den Ammoniak-Emissionen.</p><p>Situation in Deutschland</p><p>Im Jahr 2019 (letzte verfügbare Daten) wurden die ökologischen Belastungsgrenzen für ⁠<a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Eutrophierung#alphabar">Eutrophierung</a>⁠ durch Stickstoff in Deutschland auf 69 % der Flächen empfindlicher Ökosysteme überschritten (siehe Karte „Überschreitung des Critical Load für Eutrophierung durch die Stickstoffeinträge im Jahr 2019“). Die zur Flächenstatistik dieser Überschreitung herangezogenen Ökosystemtypen stammen aus dem CORINE-Landbedeckungsdatensatz von 2012 und bilden vor allem Waldökosysteme ab (ca. 96 %). Besonders drastisch sind die Überschreitungen in Teilen Nordwestdeutschlands. Aufgrund der dort ansässigen Landwirtschaft und intensiv betriebenen Tierhaltung ist der Stickstoffeintrag dort besonders hoch. So sind etwa zwei Drittel der Stickstoffeinträge auf Ammoniakemissionen zurückzuführen.</p><p>Im Rahmen eines ⁠<a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UBA#alphabar">UBA</a>⁠-Vorhabens zur Modellierung der Stickstoffdeposition (PINETI-4, Abschlussbericht in prep.) konnte die Entwicklung der Belastung methodisch konsistent für eine lange Zeitreihe (2000 bis 2019) rückgerechnet werden. Die nationalen Zeitreihendaten zeigen, dass der Anteil der Flächen in Deutschland, auf denen die ökologischen Belastungsgrenzen überschritten wurden, von 84 % im Jahr 2000 auf 69 % im Jahr 2019 zurückging (siehe Abb. „Anteil der Fläche empfindlicher Land-Ökosysteme mit Überschreitung der Belastungsgrenzen für Eutrophierung“). Die Abnahme der Belastungen spiegelt größtenteils den Rückgang der Emissionen durch Luftreinhaltemaßnahmen wider.</p><p>Handlungsbedarf trotz sinkender Stickstoffeinträge</p><p>Auch in den nächsten Jahren ist wegen der bisher nur unwesentlich abnehmenden<a href="https://www.umweltbundesamt.de/daten/luft/luftschadstoff-emissionen-in-deutschland/ammoniak-emissionen">Ammoniak-Emissionen</a>– vornehmlich aus der Tierhaltung – mit einer weiträumigen ⁠<a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Eutrophierung#alphabar">Eutrophierung</a>⁠ naturnaher Ökosysteme zu rechnen. Bei der Minderung von diffusen Stickstoffemissionen in die Luft besteht daher erheblicher Handlungsbedarf.</p><p>Was sind ökologische Belastungsgrenzen für Eutrophierung?</p><p>Zur Bewertung der Stoffeinträge werden ökologische Belastungsgrenzen (⁠<a href="https://www.umweltbundesamt.de/service/glossar/c?tag=Critical_Loads#alphabar">Critical Loads</a>⁠) ermittelt. Nach heutigem Stand des Wissens ist bei deren Einhaltung nicht mit schädlichen Wirkungen auf Struktur und Funktion eines Ökosystems zu rechnen. ⁠<a href="https://www.umweltbundesamt.de/service/glossar/%C3%B6?tag=kologische_Belastungsgrenzen#alphabar">Ökologische Belastungsgrenzen</a>⁠ sind somit ein Maß für die Empfindlichkeit eines Ökosystems und erlauben eine räumlich differenzierte Gegenüberstellung der Belastbarkeit eines Ökosystems mit aktuellen atmosphärischen Stoffeinträgen.</p><p>Das dadurch angezeigte Risiko bedeutet nicht, dass in dem betrachteten Jahr tatsächlich schädliche chemische Kennwerte erreicht oder biologische Wirkungen sichtbar sind. Es kann Jahrzehnte dauern, bis Ökosysteme auf Überschreitungen der ökologischen Belastungsgrenzen reagieren. Im Rückschluss ist auch die Erholung des Ökosystems auf vorindustrielles Niveau sehr langwierig, wenn nicht sogar eine irreversible Schädigung des Ökosystems vorliegt. Beide Prozesse sind abhängig von Stoffeintragsraten, meteorologischen und anderen Randbedingungen sowie von chemischen Ökosystemeigenschaften. Daher sind absolute Schadprognosen mittels der Überschreitungen der ökologischen Belastungsgrenzen prinzipiell nicht möglich.</p><p>Stickstoffdepositionen – ein Treiber des Biodiversitätsverlusts</p><p>Ein übermäßiger atmosphärischer Eintrag (⁠<a href="https://www.umweltbundesamt.de/service/glossar/d?tag=Deposition#alphabar">Deposition</a>⁠) von Nährstoffen (vor allem Stickstoff) und deren Anreicherung in Land-Ökosystemen kann auf lange Sicht Ökosysteme stark beeinträchtigen. So kann es zu chronischen Schäden der Ökosystemfunktionen (wie der Primärproduktivität und des Stickstoffkreislaufs) kommen. Auch Veränderungen des Pflanzenwachstums und der Artenzusammensetzung zugunsten stickstoffliebender Arten (⁠<a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Eutrophierung#alphabar">Eutrophierung</a>⁠) können hervorrufen werden. Außerdem wird die Anfälligkeit vieler Pflanzen gegenüber Frost, ⁠<a href="https://www.umweltbundesamt.de/service/glossar/d?tag=Drre#alphabar">Dürre</a>⁠ und Schädlingsbefall erhöht.</p><p>Atmosphärische Einträge führen zu einer weiträumigen Angleichung der Stickstoffkonzentrationen im Boden auf einem nährstoffreichen Niveau. Die derzeit hohen Stickstoffeinträge in natürliche und naturnahe Land-Ökosysteme sind eine Folge menschlicher Aktivitäten, wie Landwirtschaft oder Verbrennungsprozesse. Diese sind mit hohen Emissionen von chemisch und biologisch wirksamen (reaktiven) Stickstoffverbindungen in die Luft verbunden. Aus der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/a?tag=Atmosphre#alphabar">Atmosphäre</a>⁠ werden diese Stickstoffverbindungen über Regen, Schnee, Nebel, Raureif, Gase und trockene Partikel wieder in Land-Ökosysteme eingetragen. Die resultierende Überdüngung ist eine der Hauptursachen für den Rückgang der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/b?tag=Biodiversitt#alphabar">Biodiversität</a>⁠. Fast die Hälfte der in der Roten Liste für Deutschland aufgeführten Farn- und Blütenpflanzen sind durch Stickstoffeinträge gefährdet.</p><p>Ziele und Maßnahmen zur Verringerung der Stickstoffeinträge</p><p>Ein langfristiges Ziel der Europäischen Union (EU) und der Genfer Luftreinhaltekonvention (⁠<a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UNECE#alphabar">UNECE</a>⁠ Convention on Long-Range Transboundary Air Pollution, CLRTAP) ist die dauerhafte und vollständige Unterschreitung der ökologischen Belastungsgrenzen für ⁠<a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Eutrophierung#alphabar">Eutrophierung</a>⁠. International wurden deshalb in der sog. neuen ⁠<a href="https://www.umweltbundesamt.de/service/glossar/n?tag=NEC-Richtlinie#alphabar">NEC-Richtlinie</a>⁠ (<a href="https://eur-lex.europa.eu/legal-content/DE/TXT/?qid=1542011736987&amp;uri=CELEX:32016L2284">Richtlinie (EU) 2016/2284</a>vom 14.12.2016) für alle Mitgliedstaaten weitere Minderungen der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Emission#alphabar">Emission</a>⁠ von reaktiven Stickstoffverbindungen (NHx, Stickstoffoxide (NOx)) vereinbart, die bis 2030 erreicht werden müssen. Für Deutschland ergeben sich folgende nationale Emissionsminderungsverpflichtungen für Stickstoff für das Jahr 2030 und darüber hinaus im Vergleich zum Basisjahr 2005:</p><p>(siehe auch<a href="https://www.umweltbundesamt.de/themen/luft/emissionen-von-luftschadstoffen">„Emissionen von Luftschadstoffen“</a>).<br>Konkrete nationale Maßnahmen, die zum Erreichen der oben genannten Minderungsverpflichtungen geeignet sind, werden derzeit in einem Nationalen Luftreinhalteprogramm zusammengestellt. Maßnahmen zur Begrenzung der negativen Auswirkungen des reaktiven Stickstoffs, zu denen auch die Eutrophierung von Ökosystemen zählt, sind in der Veröffentlichung des Umweltbundesamtes"Reaktiver Stickstoff in Deutschland"enthalten. Auch das Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (⁠BMU⁠) verfolgt den Ansatz einer nationalenStickstoffminderungsstrategie. Weitere Informationen bietet auch das Sondergutachten des SRU„Stickstoff: Lösungen für ein drängendes Umweltproblem“. Hintergrundwissen zur Modellierung von atmosphärischen Stoffeinträgen bietet derBerichtzum Forschungsvorhaben „PINETI-4: Modelling and assessment of acidifying and eutrophying atmospheric deposition to terrestrial ecosystems“.

Überschreitung der Belastungsgrenzen für Versauerung

<p>Die versauernden Schwefel- und Stickstoffeinträge aus der Luft in Land-Ökosysteme haben in den letzten Jahren stark abgenommen. Zur Bewertung dieser Belastung stellt man ökosystemspezifische Belastungsgrenzen (Critical Loads) den aktuellen Stoffeinträgen aus der Luft gegenüber. Ammoniumstickstoffeinträge aus der Landwirtschaft sind mittlerweile die Hauptursache für Versauerung.</p><p>Situation in Deutschland 2019</p><p>Der Anteil der Flächen, auf denen die kritischen Eintragsraten für ⁠<a href="https://www.umweltbundesamt.de/service/glossar/v?tag=Versauerung#alphabar">Versauerung</a>⁠ deutlich bis sehr deutlich überschritten wurden, nahm zwischen 2005 und 2019 von 58 auf 26 % ab. Die Abnahme der Belastungen spiegelt den Rückgang der Emissionen in Folge von Luftreinhaltemaßnahmen wider (siehe Abb. „Flächenanteile mit Überschreitung der Belastungsgrenzen für Versauerung“). Besonders Einträge versauernder Schwefelverbindungen haben deutlich abgenommen. Für versauernde Stickstoffeinträge ist eine so deutliche Abnahme hingegen nicht zu verzeichnen. Sie sind hauptverantwortlich für die andauernden Überschreitungen der ökologischen Belastungsgrenzen (⁠<a href="https://www.umweltbundesamt.de/service/glossar/c?tag=Critical_Loads#alphabar">Critical Loads</a>⁠) für Versauerung in Deutschland (siehe Karte „Überschreitung des Critical Load für Versauerung durch Schwefel- und Stickstoffeinträge im Jahr 2019“).</p><p>Bis Mitte der 1990er Jahre waren die Einträge versauernder Stoffe und die Überschreitungen der ökologischen Belastungsgrenzen in verursachernahen Waldgebieten Thüringens und Sachsens am höchsten. Inzwischen werden die Extremwerte im norddeutschen Tiefland auf empfindlichen Böden als Folge hoher Einträge von Ammoniumstickstoff aus landwirtschaftlichen Quellen, vor allem aus der Intensivtierhaltung, erreicht. In diesen Regionen werden auch die ökologischen Belastungsgrenzen für ⁠<a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Eutrophierung#alphabar">Eutrophierung</a>⁠ am stärksten überschritten.</p><p>Im Rahmen eines ⁠<a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UBA#alphabar">UBA</a>⁠-Vorhabens zur Modellierung der Stickstoffablagerung (PINETI-4, Abschlussbericht in prep.) konnte die Entwicklung der Belastung methodisch konsistent für eine lange Zeitreihe (2000-2019) rückgerechnet werden.</p><p>Was sind ökologische Belastungsgrenzen für Versauerung?</p><p>⁠<a href="https://www.umweltbundesamt.de/service/glossar/%C3%B6?tag=kologische_Belastungsgrenzen#alphabar">Ökologische Belastungsgrenzen</a>⁠ (⁠<a href="https://www.umweltbundesamt.de/service/glossar/c?tag=Critical_Loads#alphabar">Critical Loads</a>⁠) für ⁠<a href="https://www.umweltbundesamt.de/service/glossar/v?tag=Versauerung#alphabar">Versauerung</a>⁠ sind kritische Belastungsraten für luftgetragene Stickstoff- und Schwefeleinträge. Nach heutigem Stand des Wissens ist bei deren Einhaltung nicht mit schädlichen Wirkungen auf Struktur und Funktion eines Ökosystems zu rechnen. Betrachtet werden meist empfindliche Ökosysteme wie Wälder, Heiden, Moore und angrenzende Systeme (zum Beispiel Oberflächengewässer und Grundwasser). Ökologische Belastungsgrenzen sind somit ein Maß für die Empfindlichkeit eines Ökosystems und erlauben eine räumlich differenzierte Gegenüberstellung der Belastbarkeit eines Ökosystems mit aktuellen Luftschadstoffeinträgen.</p><p>Das dadurch angezeigte Risiko bedeutet nicht, dass in dem betrachteten Jahr tatsächlich schädliche chemische Kennwerte erreicht oder biologische Wirkungen sichtbar sind. Es kann Jahrzehnte dauern, bis Ökosysteme auf Überschreitungen der ökologischen Belastungsgrenzen reagieren. Dies ist abhängig von Stoffeintragsraten, meteorologischen und anderen Randbedingungen sowie (bio)chemischen Ökosystemeigenschaften.</p><p>Folgen der Versauerung</p><p>Die Einträge versauernd wirkender Schwefel- und Stickstoffverbindungen aus der Luft führen bei Überschreitung der Pufferkapazität des Bodens zu einer Auswaschung basischer Kationen (Calcium, Magnesium, Kalium und Natrium) und zu Nährstoffungleichgewichten. Hierdurch verändern sie neben anderen chemischen Parametern auch die Nährstoffverfügbarkeit im Boden. Zusätzlich werden Bodenorganismen und die Bodenstruktur negativ beeinflusst. Ein lange anhaltender Säurestress führt über unausgewogene Ernährung zur Minderung der Vitalität von Pflanzen. Dies kann unter anderem zu einer Verschiebung der Artenzusammensetzung oder zu eingeschränkten Abwehrkräften gegenüber sekundären Stressfaktoren (zum Beispiel ⁠<a href="https://www.umweltbundesamt.de/service/glossar/d?tag=Drre#alphabar">Dürre</a>⁠, Frost, Herbivorie) führen. Viele Ökosystemfunktionen können dann nur noch eingeschränkt erfüllt werden.</p><p>Die atmosphärischen Einträge führen weiterhin zu einer weiträumigen Angleichung der Bodenverhältnisse auf einem ungünstigen, versauerten Niveau. Die ⁠<a href="https://www.umweltbundesamt.de/service/glossar/v?tag=Versauerung#alphabar">Versauerung</a>⁠ der Böden kann wiederum die Artenzusammensetzung von Pflanzengesellschaften verändern: Auf neutrale Bodenverhältnisse angewiesene Pflanzenarten und Pflanzengesellschaften werden von im sauren Milieu konkurrenzstärkeren Arten und Gesellschaften verdrängt. Da viele Tierarten auf bestimmte Pflanzenarten spezialisiert sind, wird durch die Versauerung auch die ⁠<a href="https://www.umweltbundesamt.de/service/glossar/f?tag=Fauna#alphabar">Fauna</a>⁠ beeinflusst: indirekt (über Verschiebung der Pflanzenartenzusammensetzung) und direkt (durch das geänderte Milieu; beispielsweise können Regenwürmer in versauerten Böden mit pH unter 4 nicht mehr existieren).</p><p>Strategien zur Emissionsminderung</p><p>Der möglichst umfassende und langfristige Schutz der Ökosysteme vor ⁠<a href="https://www.umweltbundesamt.de/service/glossar/v?tag=Versauerung#alphabar">Versauerung</a>⁠ ist weiterhin ein wichtiges politisches Ziel. International wurden deshalb in der sogenannten neuen ⁠<a href="https://www.umweltbundesamt.de/service/glossar/n?tag=NEC-Richtlinie#alphabar">NEC-Richtlinie</a>⁠ (<a href="https://eur-lex.europa.eu/legal-content/DE/TXT/?qid=1542011736987&amp;uri=CELEX:32016L2284">Richtlinie (EU) 2016/2284</a>vom 14.12.2016) für alle Mitgliedstaaten weitere Minderungsverpflichtungen der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Emission#alphabar">Emission</a>⁠ von Schwefel- und Stickstoff (SO2, NHx, NOx) vereinbart, die bis 2030 erreicht werden müssen. Für Deutschland ergeben sich folgende nationale Reduktionsziele für das Jahr 2030 und darüber hinaus im Vergleich zum Basisjahr 2005:<br>•&nbsp;&nbsp;&nbsp; Ammoniak (NH3): minus 29 %•&nbsp;&nbsp;&nbsp; Stickstoffoxide (NOx): minus 65 %•&nbsp;&nbsp;&nbsp; Schwefeldioxid (SO2): minus 58 %(siehe auch„Emissionen von Luftschadstoffen“).Konkrete nationale Maßnahmen, zur Erreichung der oben genannten Ziele werden derzeit in einem Nationalen Luftreinhalteprogramm zusammengestellt. Maßnahmen zur Minderung der negativen Auswirkungen von reaktivem Stickstoff, zu denen auch die Versauerung von Ökosystemen zählt, sind in der Veröffentlichung des Umweltbundesamtes"Stickstoff - Element mit Wirkung"enthalten. Auch das Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (⁠BMU⁠) verfolgt den Ansatz einer nationalenStickstoffminderungsstrategie. Weitere Informationen bietet auch das Sondergutachten des SRU"Stickstoff: Lösungen für ein drängendes Umweltproblem". Hintergrundwissen zur Modellierung von atmosphärischen Stoffeinträgen bietet derBerichtzum Forschungsvorhaben „PINETI-4: Modelling and assessment of acidifying and eutrophying atmospheric deposition to terrestrial ecosystems“.

Forstliches Umweltmonitoring

Waldökosysteme sind vielfältigen Belastungen ausgesetzt. Um rechtzeitig ungünstigen Entwicklungen entgegensteuern zu können, ist eine fortlaufende Überwachung des Waldzustandes notwendig. Dieses forstliche Umweltmonitoring erfolgt in Rheinland-Pfalz mit Hilfe von landesweiten Übersichtserhebungen (Level-I: Kronenzustandserhebung, Bodenzustandserhebung oder Waldernährungserhebung auf einem systematischen Raster) und anhand von Intensivuntersuchungen an Waldökosystem-Dauerbeobachtungsflächen (Level-II kontinuierliche Messungen der Luftschadstoffbelastung und der Witterungsverläufe sowie eine fortlaufende Beobachtung der Reaktionen der Waldökosysteme auf natürliche und anthropogene Stresseinflüsse an ausgewählten für die wichtigsten Waldstandorte in Rheinland-Pfalz charakteristischen Flächen). Erfasst werden u.a.: Kronenzustand (terrestrisch und aus IRC-Luftbildern); Waldwachstum; Nährstoffversorgung; Bodenvegetation; Bodenzustand; Baumflechten; Feinwurzeln; Mykorrhiza; Streufall; Ozonschadsymptome; Phänologie; Klima; Witterung; Luftschadstoffimmission; Luftschadstoffdeposition; Bodenwasser; Quellwasser. Anhand dieser Ergebnisse erfolgen Bewertungen zu den Themen: Wasserhaushalt, Bioelementhaushalt, Bodenversauerung, Stickstoffsättigung, Überschreitungen der ökologischen Belastungsgrenzen durch Luftschadstoffe (critical loads, AOT 40 etc.). Alle wesentlichen Befunde und umfangreiche Bewertungen können auch unter www.fawf.wald-rlp.de und hier unter: Forschungsschwerpunkte/Forstliches Umweltmonitoring eingesehen werden.

Critical Levels und Critical Loads Baden-Württemberg 2020, Teil CL1: Methoden- und Datengrundlagen der Stickstoffanleitung

Das Kernvorhaben zur Umsetzung des ersten Forschungswettbewerbs in StickstoffBW konkretisiert die Simple-Mass-Balance Methode und entwickelt eine Fachkonvention für die behördliche Festsetzung von Critical Level und Critical Loads (CL). Die Ergebnisse sollen die in 2014 veröffentlichte 'CL-Datenmappe' ablösen. Im Einzelnen sollen die Forschenden 1. eine Anleitung zur Ermittlung der Critical Levels und Critical Loads orientierend mit Karten und abschließend mit Anleitung (Ing. Regioplus Mainz) einschließlich 2. einer Kartieranleitung zur Differenzierung der Biotoptypen nach Empfindlichkeit gegenüber Stickstoffeinträgen (Breunig Karlsruhe) und 3. einer Analyse der historischen Grünlandnutzung als Orientierungshilfe für die Definition von Trophiezonen für den Viehbesatz und die Düngungsintensität erarbeiten (Ing. Hohenheim).

PV-Module aus Perowskit-Silizium Tandemsolarzellen auf Basis der Q.ANTUM Technologie, Teilvorhaben: Entwicklung einer wasserdampfundurchlässigen Randversiegelung für Tandem PV-Module

Perowskit-Silizium-Tandemsolarzellen sind die aktuell vielversprechendste Möglichkeit, den Wirkungsgrad von zukünftigen photovoltaischen (PV) Produkten kosteneffizient über das Limit von ausschließlich auf Silizium basierten Solarzellen hinaus zu steigern. Neben der Zelltechnologie ist die Verschaltung und Einkapselung in langzeitstabile Solarmodule die Hauptherausforderung für eine zukünftige Kommerzialisierung von Tandemsolarzellen. Das Ziel des Projektes MoQa ist die Entwicklung eines langzeitstabilen Modulverbunds für Tandemsolarzellen mit industriell geeigneten Prozessen. Um dieses Ziel zu erreichen, werden Tandemsolarzellen auf die Integration in Solarmodule hin optimiert und verschiedene Metallisierungsverfahren auf ihre Eignung evaluiert und weiterentwickelt. Darüber hinaus liegt der Projektschwerpunkt auf der Entwicklung von innovativen Verschaltungstechnologien und der Einkapselung der Tandemsolarzellen, um den Schritt der Tandem-Technologie auf die Modul- und damit die Produktebene zu realisieren. Im zweiten Schwerpunkt des Projektes wird die Einkapselungstechnologie für Tandemsolarzellen entwickelt. Zentrale Herausforderungen sind der Feuchtigkeitsausschluss, die Entwicklung eines Laminationsprozesses sowie die Verwendung von geeigneten Einkapselungsmaterialien. Im Bereich der Langzeitstabilität liegt der Fokus auf der Erarbeitung von Erkenntnissen zur Beschleunigung der für die Tandem Technologie kritischen Belastungen: Der Wasserdampfdurchlässigkeit der Einkapselung, der thermomechanischen Stabilität der entwickelten Verbindungstechnik sowie der UV-Belastung.

PV-Module aus Perowskit-Silizium Tandemsolarzellen auf Basis der Q.ANTUM Technologie, Teilvorhaben: Prozessentwicklung und Charakterisierung

Perowskit-Silizium-Tandemsolarzellen sind die aktuell vielversprechendste Möglichkeit, den Wirkungsgrad von zukünftigen photovoltaischen (PV) Produkten kosteneffizient über das Limit von ausschließlich auf Silizium basierten Solarzellen hinaus zu steigern. Neben der Zelltechnologie ist die Verschaltung und Einkapselung in langzeitstabile Solarmodule die Hauptherausforderung für eine zukünftige Kommerzialisierung von Tandemsolarzellen. Das Ziel des Projektes MoQa ist die Entwicklung eines langzeitstabilen Modulverbunds für Tandemsolarzellen mit industriell geeigneten Prozessen. Um dieses Ziel zu erreichen, werden Tandemsolarzellen auf die Integration in Solarmodule hin optimiert und verschiedene Metallisierungsverfahren auf ihre Eignung evaluiert und weiterentwickelt. Darüber hinaus liegt der Projektschwerpunkt auf der Entwicklung von innovativen Verschaltungstechnologien und der Einkapselung der Tandemsolarzellen, um den Schritt der Tandem-Technologie auf die Modul- und damit die Produktebene zu realisieren. Im zweiten Schwerpunkt des Projektes wird die Einkapselungstechnologie für Tandemsolarzellen entwickelt. Zentrale Herausforderungen sind der Feuchtigkeitsausschluss, die Entwicklung eines Laminationsprozesses sowie die Verwendung von geeigneten Einkapselungsmaterialien. Im Bereich der Langzeitstabilität liegt der Fokus auf der Erarbeitung von Erkenntnissen zur Beschleunigung der für die Tandem Technologie kritischen Belastungen: Der Wasserdampfdurchlässigkeit der Einkapselung, der thermomechanischen Stabilität der entwickelten Verbindungstechnik sowie der UV-Belastung.

Empirical Critical Loads of nitrogen for Europe

This brochure summarizes the revised empirical critical loads for N compared to 2011. 40 % of ecosystems react more sensitively to N than previously assumed. The ecosystems studied have been visualized to make them easier to understand. Two maps show the distribution of natural and semi-natural ecosystems on the one hand and the distribution of forest ecosystems in Europe and the neighboring countries of Eastern Europe, the Caucasus and Central Asia (EECCA) on the other. This brochure was developed as a low-threshold information tool for scientists, but also for politicians and the interested public in the EU and the EECCA countries.

Empirical Critical Loads of nitrogen for Europe

This brochure summarizes the revised empirical critical loads for N compared to 2011. 40 % of ecosystems react more sensitively to N than previously assumed. The ecosystems studied have been visualized to make them easier to understand. Two maps show the distribution of natural and semi-natural ecosystems on the one hand and the distribution of forest ecosystems in Europe and the neighboring countries of Eastern Europe, the Caucasus and Central Asia (⁠ EECCA ⁠) on the other. This brochure was developed as a low-threshold information tool for scientists, but also for politicians and the interested public in the EU and the EECCA countries. Veröffentlicht in Broschüren.

Manual on Methodologies and Criteria for Modelling and Mapping Critical Loads and Levels and Air Pollution Effects, Risks, and Trends - Update 2024

This report is an important collection of tools used in the framework of the Geneva Convention on Long-Range Transboundary Air Pollution (CLRTAP). Thus, it provides for example a scientific basis on the application of critical levels and loads, their interrelationships, and the consequences for abatement. After the transfer of the Coordination Center for Effects from the Netherlands to Germany this edition is published by the German Environment Agency (⁠ UBA ⁠). With this edition recent technical updates where transferred in the document. The changes of chapter 3 from the Ammonia-workshop decided 2023 have been incorperated.The information on backgrounddatabase (BGDB) (5.2) and the new receptor map were implemented in chapter 5.6. Veröffentlicht in Texte | 123/2024.

1 2 3 4 519 20 21