Das Südchinesische Meer ist das größte Randmeer der Erde und ausschließlich von stark besiedelten Ländern wie China, Indonesien, Philippinen oder Vietnam umgeben. Klimaänderung und menschliche Einflüsse im Einzugsgebiet des Mekong (18 geplante Stauseen zu Stromgewinnung und Intensivierung der Aquakultur) werden die Flusseinträge drastisch verändern und in der Folge die Biogeochemie der Küstengewässer. Die Geschwindigkeit und Größenordnung dieser Veränderungen lassen es wahrscheinlich erscheinen, dass das hier geplante Feldprogramm eine der wenigen Gelegenheiten sein wird, dieses Meeresgebiet zu erfassen, bevor es sich grundlegend verändert hat. Die gegenwärtige Rolle der Nährstoffeinträge des Mekong für die Produktivität des Südchinesischen Meeres soll im Vergleich zu den Nährstoffeinträgen durch den Auftrieb während des SW Monsuns untersucht werden. Ergebnisse früherer Arbeiten von uns lassen vermuten, dass die Stickstofffixierung von Cyanobakterien, die in Symbiose mit Diatomeen vorkommen, eine zentrale Rolle spielt. Zudem gibt es einzellige und koloniebildende N-Fixierer wie Trichodesmium in der Flussfahne. Die Interaktion von stickstofffixierenden Organismen, die von den Einträgen des Mekong abzuhängen scheinen, ist bislang nicht verstanden und steht im Fokus dieses Projektes. Die Nährstoffzusammensetzung in Wasser und die Aufnahme von markierten Kohlenstoff und Stickstoffverbindungen wird in der Flussfahne und im Auftriebsgebiet quantifiziert. Zudem wird auf Zellebene der Austausch von Stickstoff und Kohlenstoff zwischen Diatomeen und ihren stickstofffixierenden Symbionten mittels NanoSIMS analysiert. Zeitgleich wird die Gemeinschaft der Stickstofffixierer entlang der Flussfahne und im offenen südchinesischen Meer von amerikanischen und vietnamesischen Kollegen durch genomische, molekularbiologische und taxonomische Methoden erfasst. In der Synthesephase des Projektes soll durch die Zusammenführung aller Ergebnisse ein tiefgreifendes Verständnis des menschlichen Einflusses auf die Biogeochemie des Küstenmeeres vor Vietnam erreicht werden. Zwei Expeditionen in das Gebiet des Mekongausstroms sind bereits durch einen genehmigten Antrag des Schmidts Oceanographic Institute aus den USA abgesichert, so dass Probennahmen und Experimente an Board geplant werden können. Aufgrund des früheren, sehr erfolgreichen DFG finanzierten Vorhabens bestehen enge Kontakte zum Institute of Oceanography in Nha Trang, Vietnam, auf die hier aufgebaut wird.
Untersuchungen ueber das Verhalten von trichalen Blaualgen (Phormidium spec.) gegenueber Testsubstanzen (hauptsaechlich Herbizide) und Erschliessung dieses Biotestverfahrens fuer einen routinemaessigen Einsatz bei der Roh- und Trinkwasserueberwachung. Die Algenmotilitaet dient als Bewertungskriterium. Sie wird ueber eine photoelektrische Messvorrichtung verfolgt. Neben der Ermittlung von Dosis-Wirkung-Beziehungen relevanter Herbizide sowie anderer toxischer und ueblicherweise nicht toxischer Substanzen, wird der Testeinsatz zur Untersuchung von Wasserproben verschiedener Qualitaet erprobt. Die Konservierbarkeit des Testmaterials durch Einfrieren und Gefriertrocknen wird im Hinblick auf die Verfuegbarkeit ebenfalls untersucht.
Die zunaechst aus Saeugetieren und Pilzen beschriebene Alkylhydroperoxid Reduktase ist in photoautotrophen Organismen in Chloroplasten lokalisiert. Sie dient dort offenbar der Entgiftung von Alkylhydroperoxiden, die als Nebenprodukte der Lipidsynthese und als Folge der Photochemie entstehen und ueber groessere Distanzen hinweg oxidativen Schaden bewirken koennen. Gegenstand dieses Vorhabens ist die Analyse der biochemischen und genetischen Regulation der Alkylhydroperoxid Reduktase. Inzwischen liegen transgene Suppressionsmutanten von Arabidopsis thaliana und der Blaualge Synechocystis vor, die eine erhoehte Stress-, vor allem Lichtempfindlichkeit aufzeigen.
Terrestrische Grünalgen sind typische und häufige Komponenten biologischer Bodenkrusten der Polarregionen. Biologische Bodenkrusten bilden wasserstabile Aggregate und üben ökologisch wichtige Funktionen hinsichtlich Primärproduktion, Stickstofffixierung, Nährstoffkreislauf, Wasserretention und Bodenstabilisierung aus. Obwohl kaum Daten über Grünalgen in der Arktis und Antarktis vorliegen, wird ihre funktionelle Bedeutung als Ökosystem-Entwickler nährstoffarmer Gebiete als sehr hoch eingeschätzt. Die Biodiversität der Algen und Cyanobakterien polarer Bodenkrusten ist in den letzten Jahren zum ersten Mal von uns mit klassischen und molekularen Methoden (Metatranskriptomik und Metabarcoding) untersucht worden. In dem neuen Projekt wollen wir nun den physiologischen Zustand von Bodenkrusten der Antarktis aus Metatranskriptomen ermitteln. Dazu wollen wir die Sequenzen der Metatranskriptome einzelnen Arten (Gattungen, Familien oder anderen systematischen Kategorien) zuordnen und funktionell qualitativ und quantitativ untersuchen. Neben Datenbankvergleichen (KOG, KEGG, GO) können die spezifischen Submetatranskriptome auch mit den unter unterschiedlichen Laborbedingungen (Flüssigkultur/Agarplatten Kultur, Trockenstress, Temperaturstress, Lichtstress) gewonnenen Transkriptomen von Klebsormidium und sowie den in diesem Projekt geplanten neuen Transkriptomen je zweier antarktischer Klebsormidium und Coccomyxa Arten verglichen werden. Diese Daten werden erstmals einen molekularen Einblick in die Physiologie arktischen Arten in-situ im natürlichen Habitat zum Zeitpunkt der Probennahme und die Identifizierung von Schlüsselgenen für das Überleben in der Antarktis ermöglichen.
Antarktische Böden sind ideal geeignet, um bisher unerforschte besondere Eigenschaften von Bodenmikroalgen und -cyanobakterien zu untersuchen. Dazu gehören das Aufdecken von Pinionierarten bei der Besiedlung junger nährstoffarmer Böden sowie die Entwicklung von Mikroalgengesellschaften im Boden unbeeinflusst von anthropogenen Störungen oder dem Einfluss einer Deckschicht von Gefäßpflanzen. Zentrales Forschungsthema des Projektes ist es mögliche Korrelationen in Veränderungen der Algen- und Cyanobakteriengesellschaften mit verschiedenen Entwicklungsstadien der Böden, Stadien der (biogenen) Verwitterung sowie einer Reihe von abiotischen Bodenparametern zu untersuchen. Die Analysen werden die Rolle der Mikroalgen und Cyanobakterien bei der Bereitstellung von photosynthetischer Energie für Verwittungsvorgänge in jungen Böden als auch ihre Beiträge zu geochemischen Zyklen in den Böden aufklären. Schließlich werden die Analysen Rückschlüsse auf funktionelle und ökophysiologische Eigenschaften der Antarktischen Bodenalgen erlauben. Außerdem wird untersucht, ob die geographische Abgeschiedenheit der Antarktis und ihre besonders rauen Umweltbedingungen die Ausbildung besonders angepasster Antarktischer Populationen von Bodenalgen ermöglicht haben, die auf genotypischer Ebene unterschiedlich von ihren Entsprechungen der gemäßigten Breiten sind. Es werden mit Schwerpunkt Bodenproben entlang von Chronosequenzen aus Antarktischen Gletschervorfeldern der Maritimen Antarktis und dem Östlichen Antarktischer Kontinent, aber auch der trockeneren Polygonböden des Coal Nunatak untersucht. Die Proben wie auch die Bestimmung ihrer abiotischen Parameter werden durch Kooperationen innerhalb des SPP 1158 zur Verfügung gestellt. Unsere ersten Gruppen-spezifischen PCR-Amplifikationen zeigen bereits das Vorhandensein von Vertretern der Chlorophyta, Klebsormidium und Xanthophyceae in verschiedenen Bodenentwicklungsstadien entlang zweier Chronosequenzen aus Gletschervorfeldern.
Der Algenaufwuchs in Fliessgewaessern wird mit qualitativen und semiquantitativen Methoden untersucht. Grundlage dafuer stellt eine genaue Aufsammlung im Feld verschiedener Substrate in schnellfliessenden Gewaessern aber insbesondere von steinigen Substraten dar. Grundlage fuer alle weiteren oekologischen Untersuchungen stellt dabei die genaue Bestimmung dar, die fuer die meisten Algengruppen (Blaualgen, Gruenalgen, Chrysophyceen) moeglichst in lebendem Zustand erfolgt. Kieselalgen werden aus gereinigten Dauerpraeparaten bearbeitet. Hinsichtlich Gewaesserguetebeurteilung von Bild der Aufwuchsalgen wird eine gesamtbiozoenotische Betrachtungsweise (und insbesondere der Veraenderungen der Biozoenosen) der bisher meist ueblichen Indikator-Arten-Methode vorgezogen. Gleichzeitig werden physikalische und chemische Parameter duch die Abteilung fuer Limnologie am Institut fuer Zoologie der Universitaet Innsbruck erfasst.
Hier finden Sie eine Auflistung der bekanntesten und größten Berliner Gewässer. Die kleineren Fließgewässer wurden zusätzlich mit einer kurzen Beschreibung versehen. Weitere Informationen finden Sie unter Oberflächengewässer . Ferner stellt die Senatsverwaltung das vollständige Gewässerverzeichnis des Landes Berlin und die Karten der Gewässerstrukturgütebewertung zur Verfügung. Havel Länge: ca. 325 km, davon rund 27 km in Berlin Quellen: bei Ankershagen/Mecklenburg-Vorpommern Mündung: in die Elbe (bei Gnevsdorf/Brandenburg) Einzugsgebiet: rd. 24.096 km² Gewässerstruktur: deutlich bis vollständig verändert (Gewässerstrukturklassen 4 – 7) Gewässertyp: Flusssee des Norddeutschen Tieflandes mit großem Einzugsgebiet (Verweilzeit des Wasser 3-30 Tage) Nutzung: Bundeswasserstraße (kanalisierte Havel zwischen Spreemündung und Pichelssee) Dahme Länge: ca. 95 km, davon rund 16 km in Berlin Quelle: bei Kolpien/Brandenburg Mündung: in die Spree (in Berlin-Köpenick) Einzugsgebiet: rd. 1.894 km² Gewässerstruktur: deutlich bis vollständig verändert (Gewässerstrukturklassen 4 – 7) Gewässertyp: Flusssee des Norddeutschen Tieflandes Nutzung: Bundeswasserstrasse Spree Länge: ca. 382 km, davon rund 46 km in Berlin Quellen: bei Ebersbach-Spreedorf, Neugersdorf und am Kottmar (Sachsen) Mündung: in die Havel (in Berlin-Spandau) Einzugsgebiet: 10.100 km² Gewässerstruktur: stark bis vollständig verändert (Gewässerstrukturklassen 6 – 7) Gewässertyp: sandgeprägter Tieflandfluss (Typ 15 groß), vollständig verändertes Gewässer (HMWB) Nutzung: Bundeswasserstraße Dämeritzsee Fläche: 103 ha Mittlere Tiefe: 2,7 m / maximale Tiefe: 4,5 m Mittlere Sichttiefe: ca. 1 m von Plankton getrübt, kaum Blaualgen Lage: Bezirk Köpenick von Berlin / Stadt Erkner Gewässertyp: Flusssee (Typ 12), durchflossen von Spree und Löcknitz Wasseraufenthaltszeit < 30 d, nährstoffreich Großer Müggelsee Fläche: 766 ha Mittlere Tiefe: 4,8 m / maximale Tiefe: 8,9 m Mittlere Sichttiefe: ca. 1,50 m Lage: Bezirk Treptow-Köpenick von Berlin Gewässertyp: von der Spree durchflossener See (Typ 11), nährstoffreich, im Sommer können Blaualgen auftreten Wasseraufenthaltszeit 60 d NATURA 2000-Gebiet Seddinsee Fläche: 262 ha Mittlere Tiefe: 4,0 m / maximale Tiefe: 7,5 m Mittlere Sichttiefe: ca. 1,0 m Lage: Bezirk Treptow-Köpenick von Berlin Gewässertyp: von der Spree durchflossener Flusssee (Typ 12), nährstoffreich, im Sommer können zeitweise Blaualgen auftreten Zeuthener See Fläche: 233 ha Mittlere Tiefe: 2,5 m / maximale Tiefe: 4,9 m Mittlere Sichttiefe: ca. 0,5 m, getrübt durch Phytoplankton Lage: Bezirk Treptow-Köpenick von Berlin / Gemeinde Zeuthen Gewässertyp: von der Dahme durchflossener Flusssee (Typ 12), sehr nährstoffreich, im Sommer dominieren Blaualgen Wasseraufenthaltszeit Erpe / Neuhagener Mühlenfließ Länge: ca. 31 km, davon rund 5 km in Berlin Quellen: oberhalb von Werneuchen/Land Brandenburg Mündung: in die Spree (Bezirk Köpenick) Einzugsgebiet: rd. 220 km² Gewässerstruktur: deutlich bis vollständig verändert (Gewässerstrukturklassen 4 – 7), in Berlin vollständig verändert Gewässertyp: organisch geprägter Bach (Typ 11) bzw. organisch geprägter Fluss (Typ 12) sowie sandgeprägter Tieflandbach (Typ 14) Außerhalb der Städte Altlandsberg und Werneuchen sowie der Gemeinden Hoppegarten und Neuenhagen durchfließt das Neuenhagener Mühlenfließ überwiegend gering verändert die Barnimhochfläche. Dennoch weist sie zum Teil erhebliche ökologische Beeinträchtigungen auf. Hauptdefizite sind fehlende Gewässerstrukturen und stoffliche Belastungen. Eine erhebliche Einflussgröße ist der Kläranlagenzulauf des Klärwerkes Münchehofe. Neben diesen gewässerökologischen Qualitätsdefiziten besteht für die Erpeanlieger in Berlin ein Hochwasserrisiko. Diese Situation zu verbessern ist Ziel der Maßnahmenplanung im Rahmen des Gewässerentwicklungskonzeptes Erpe. Panke Länge: ca. 27 km, davon rund 18 km in Berlin Quelle: Pankeborn nordöstlich von Bernau frühere Mündung: in die Spree Schiffbauerdamm 2 (vor dem Berliner Ensemble) heutige Mündung: in den Nordhafen im Berlin-Spandauer Schifffahrtskanal (Bezirk Mitte) Gefälle: ca. 40 m Einzugsgebiet: ca. 201 km² Namensgeber: von Berlin-Pankow und der 2003 gebildeten Gemeinde Panketal Gewässerstruktur: stark bis vollständig verändert (Gewässerstrukturklassen 5 – 7) Gewässertyp: in Brandenburg organisch geprägter Bach (Typ 11) bis Ossietzkystraße sandgeprägter Bach (Typ 14) bis zur Mündung kleines Niederungsfließgewässer (Typ 19) Die Hydromorphologie und die Hydraulik der Panke weichen stark vom natürlichen Zustand ab – insbesondere im Einflussbereich des Berliner Misch- und Trennsystems. Die strukturellen Defizite sind besonders für die wasserlebenden Tiere (Makorzoobenthos) von großem Nachteil. Die Fischfauna ist aufgrund der mangelnden Habitat- bzw. Strukturvielfalt und der durch Querbauwerke erschwerten Durchwanderbarkeit sowie der Nährstoffeinträge überwiegend in einem schlechten Zustand (Bewertungsergebnisse für das Jahr 2007). Die geringe Wasserpflanzenvielfalt und verarmte wirbellose Fauna weisen auf die Nährstoffbelastung der Panke hin. Diese Defizite greift das Gewässerentwicklungskonzept Panke mit dem Ziel auf, den guten ökologischen Zustand mittelfristig wieder herzustellen. Tegeler Fließ Länge: ca. 27 km, davon rund 14,5 km in Berlin Quellen: zwei Quellen bei Basdorf in Brandenburg Mündung: in den Tegeler See (Bezirk Reinickendorf) Gefälle: im Brandenburger Teil ca. 12 m, in Berlin gering (ca. 1,5 m) Einzugsgebiet: rd. 153 km² Gewässerstruktur: durchschnittlich deutlich verändert, (Gewässerstrukturklasse 4, vertreten sind alle Klassen von 2 – 7) Gewässertyp: organisch geprägter Bach (Typ 11) Dieses Gebiet ist in Berlin und Brandenburg von großer Bedeutung, denn es ist reich an wertvollen Lebensräumen und zahlreichen fließgewässertypische schützenswerten und bedrohten Arten. Es ist auf der Berliner Landesseite als Natura 2000 (d.h. FFH- und Vogelschutz-Gebiet) Tegeler Fließtal geschützt. Im Land Brandenburg ist das Tegeler Fließtal Bestandteil von zwei FFH-Gebieten. Trotzdem das Fließ zu den naturnäheren Gewässern Berlins gehört, zeigt die Bewertung des ökologischen Zustandes und der Gewässerstruktur hydromorphologische Defizite und eine zu geringe Lebensraumvielfalt, die derzeit dem guten Zustand abträglich sind. Diese Mängel sollen mit dem Gewässerentwicklungskonzept Tegeler Fließ behoben werden. Wuhle Länge: ca. 16,5 km, davon rund 15 km in Berlin Quellen: im brandenburgischen Ahrensfelde Mündung: in die Spree (Bezirk Köpenick) Gefälle: ca. 21 m Einzugsgebiet: rd. 101 km² Gewässerstruktur: wird erhoben Gewässertyp: organisch geprägter Bach (Typ 11) Die Wuhle verläuft von der Barnimhochfläche kommend durch den Osten Berlins in der eiszeitlichen Schmelzwasser-Rinne des Wuhletals. 1984 wurde die sogenannte “Neue Wuhle” als Klarwasser-Ableiter für das Klärwerk Falkenberg in Betrieb genommen. Sie fließt parallel zur Alten Wuhle bis sie sich im Wuhleteich mit ihr vereint. Das Klärwerk hat die Hydraulik der Wuhle in fast 20 Jahren stark verändert. 2003 wurde das Klärwerk außer Betrieb genommen – und auch das hatte weitreichende Folgen für die Landschaft und den Wasserhaushalt. In der Agenda 21 engagierte Bürger initierten Renaturierungsprojekte (z.B. Feuchtgebiet Fabiansteich) und die Senatsverwaltung für Stadtentwicklung ergriff erste Maßnahmen zur Renaturierung der Wuhle im Bezirk Marzahn-Hellersdorf (bis zur Bundesstraße B1/B5) von 2006 bis 2008. An diese Maßnahmen schließt sich das Gewässerentwicklungskonzept Wuhle an.
Aktuell sind sechs Badeseen in Rheinland-Pfalz von Blaualgen-Massenentwicklungen betroffen. Vier befinden sich in der 1. Warnstufe und zwei Seen in der 2. Warnstufe. Aktuell ist der Schwellenwert für die Warnstufe 1 an sechs Badeseen überschritten: Waldsee Argenthal, Stadtweiher Baumholder, Bärenlochweiher, Krombachtalsperre (Warnstufe 1). Ab einem Schwellenwert von 12 Mikrogramm Blaualgen-Chlorophyll a pro Liter Wasser werden Warnhinweise im Internet veröffentlicht und an den Badegewässern selbst aufgehängt. Der Postweiher im Westerwald und der Nachtweideweiher Lambsheim in der Vorderpfalz befinden sich in der 2. Warnstufe (>24 Chlorophyll-a μg/l), so dass vom Baden dringend abgeraten wird. Blaualgen zeigen sich als grüne Schlieren oder schwimmende, grüne Teppiche. Blaualgen können Giftstoffe (Cyanotoxine) ins Wasser absondern. Gewässer- und Uferbereiche mit deutlich grüner Färbung und geringer Sichttiefe sind zu meiden, auch Hunde sind von den Gewässern fernzuhalten. Gesundheitsrisiken gehen vom Schlucken größerer Wassermengen aus. Hautkontakt mit Cyanobakterien kann bei manchen Personen zu (Schleim)Hautreaktionen führen. Informationen zu den einzelnen rheinland-pfälzischen Badeseen finden Sie im Badegewässeratlas unter www.badeseen.rlp.de . Weitere ausführliche Antworten zu häufig gestellten Fragen zum Thema Blaualgen finden Sie in den FAQ . Vor und während der gesetzlich festgelegten Badesaison vom 1. Juni bis 31. August werden die 66 in Rheinland-Pfalz ausgewiesenen EU-Badegewässer von den Gesundheitsämtern der Kreisverwaltungen und dem Landesamt für Umwelt (LfU) untersucht. Die Überwachung der Gewässer erfolgt durch Besichtigungen, Probenahmen und Analysen der Proben. Während die Gesundheitsämter die Keimbelastung messen, kontrolliert das LfU die chemische, physikalische und biologische Beschaffenheit, darunter auch auf Blaualgen-Massenentwicklungen.
<p>Die wichtigsten Fakten</p><p><ul><li>Seit 2015 sollen alle Badegewässer der EU in einem mindestens ausreichenden Zustand sein.</li><li>Im Jahr 2024 erfüllten 97,8 % aller Badegewässer in Deutschland die EU-Vorgabe. Damit wurde das Ziel nur knapp verfehlt.</li><li>Schließt man die nicht beurteilten Badegewässer aus, erfüllten 2024 sogar 99,6 % der Badegewässer die EU-Vorgaben.</li><li>Rund 91 % der Binnengewässer und gut 88 % der Küstengewässer hatten 2024 eine ausgezeichnete Qualität.</li></ul></p><p>Welche Bedeutung hat der Indikator?</p><p>Baden in natürlichen Gewässern kann mit Risiken für die Gesundheit verbunden sein. Badegewässer werden wie alle Gewässer vielfältig genutzt und sie sind unterschiedlichen Veränderungen ausgesetzt, die das Auftreten von Krankheitserregern beeinflussen können.</p><p>Der <a href="https://www.umweltbundesamt.de/service/glossar/i?tag=Indikator#alphabar">Indikator</a> basiert auf der Feststellung der hygienischen Qualität der Badegewässer: Gemessen wird die Wasserbelastung mit Fäkalbakterien. Wenn diese Bakterien in hoher Konzentration im Badegewässer vorkommen, besteht das Risiko, dass auch Krankheitserreger vorhanden sind. Diese können beispielsweise Infektionskrankheiten mit Fieber, Durchfall und Erbrechen auslösen. Eine solche Gefahr entsteht u.a. nach <a href="https://www.umweltbundesamt.de/service/glossar/s?tag=Starkregen#alphabar">Starkregen</a> durch Mischwasserüberläufe aus Kläranlagen oder durch Abschwemmungen aus landwirtschaftlich genutzten Flächen. Hohe Temperaturen und ein hohes Nährstoffangebot (Stickstoffe, Phosphate) können die hygienische Qualität eines Badegewässers verändern und es kann zu einer Massenentwicklung von <a href="https://www.umweltbundesamt.de/service/glossar/c?tag=Cyanobakterien#alphabar">Cyanobakterien</a> kommen. Treten diese Bakterien in Massen auf, müssen Maßnahmen ergriffen werden. Das Vorkommen von Cyanobakterien fließt jedoch nicht in die Qualitätseinstufung ein.</p><p>Wie ist die Entwicklung zu bewerten?</p><p>Die Badegewässer Deutschlands sind in einem guten Zustand. Im Jahr 2024 erfüllten 97,8 % aller Badegewässer die Qualitätsanforderungen der EU (Binnengewässer 97,8 %, Küstengewässer 98,8 %). Berücksichtigt man, dass nicht alle Badegewässer beurteilt werden können (z.B. weil sie neu angemeldet wurden und noch nicht bewertet werden konnten), erfüllten sogar 99,6 % der beurteilten Badegewässer die Vorgaben. Rund 91 % der Binnengewässer und gut 88 % der Küstengewässer erreichten sogar eine ausgezeichnete Badegewässerqualität. Zwischen 1992 und 2001 stieg der Anteil der richt- und grenzwerteeinhaltenden Badegewässer beständig an. Seitdem ist die Qualität der Badegewässer auf konstant hohem Niveau mit nur leichten Schwankungen. In der europäischen <a href="https://eur-lex.europa.eu/legal-content/DE/TXT/?qid=1534167377521&uri=CELEX:02006L0007-20140101">Richtlinie über die Qualität der Badegewässer</a> (2006/7/EG) ist festgelegt, welche Werte Badegewässer für die verschiedenen Stufen der hygienischen Qualität einhalten müssen. Seit 2015 sollten alle Badegewässer mindestens eine ausreichende Qualität haben. Dieses Ziel wurde 2024 knapp verfehlt. Im europäischen Vergleich belegt <a href="https://www.eea.europa.eu/en/topics/in-depth/bathing-water/state-of-bathing-water/bathing-water-country-factsheets-2024/germany_bathing_water_2024.pdf">Deutschland</a> dennoch weiterhin einen der vorderen Plätze.</p><p>Wie wird der Indikator berechnet?</p><p>In allen europäischen Badegewässern müssen vor und während der Badesaison nach einem festgelegten Überwachungszeitplan Wasserproben entnommen werden. Das Vorkommen und die Häufigkeit von Fäkalbakterien der Art <em>„Escherichia coli“</em> (<em>E. coli</em>) sowie der Gruppe der „Intestinalen Enterokokken“ werden bestimmt. Für die verschiedenen Qualitätsstufen sind bestimmte Kriterien einzuhalten, die im Anhang I der EU-Badegewässerrichtlinie festgehalten sind. Eine ausführliche Beschreibung der Vorgehensweise findet sich in der EU-Badegewässerrichtlinie sowie im <a href="https://www.eea.europa.eu/en/analysis/publications/european-bathing-water-quality-in-2024">Badegewässerbericht</a> der Europäischen Umweltagentur.</p><p><strong>Ausführliche Informationen zum Thema finden Sie im Daten-Artikel <a href="https://www.umweltbundesamt.de/daten/umwelt-gesundheit/qualitaet-von-badegewaessern">"Qualität von Badegewässern“</a>.</strong></p>
| Origin | Count |
|---|---|
| Bund | 406 |
| Land | 102 |
| Wissenschaft | 112 |
| Zivilgesellschaft | 1 |
| Type | Count |
|---|---|
| Chemische Verbindung | 2 |
| Daten und Messstellen | 23 |
| Ereignis | 2 |
| Förderprogramm | 303 |
| Gesetzestext | 1 |
| Kartendienst | 2 |
| Taxon | 2 |
| Text | 90 |
| Umweltprüfung | 1 |
| unbekannt | 158 |
| License | Count |
|---|---|
| geschlossen | 130 |
| offen | 363 |
| unbekannt | 88 |
| Language | Count |
|---|---|
| Deutsch | 393 |
| Englisch | 231 |
| Resource type | Count |
|---|---|
| Archiv | 10 |
| Bild | 8 |
| Datei | 58 |
| Dokument | 49 |
| Keine | 248 |
| Multimedia | 2 |
| Unbekannt | 2 |
| Webdienst | 2 |
| Webseite | 248 |
| Topic | Count |
|---|---|
| Boden | 300 |
| Lebewesen und Lebensräume | 424 |
| Luft | 269 |
| Mensch und Umwelt | 580 |
| Wasser | 394 |
| Weitere | 581 |