The VIIIth International Conference on Toxic Cyanobacteria (ICTC), held in September 2010 Istanbul, Turkey, included a session in which scientists and regulators reported approaches to controlling hazards from toxic cyanobacteria implemented or discussed in their country, as well as awareness of the issue. Presentations demonstrated substantial recent progress in the per-ception of cyanotoxins as risk to human health and in risk management, particularly when com-paring the current status of regulatory approaches to that reported six years earlier at the VIth ICTC in Bergen, Norway. Again, differences and similarities between countries in the approach-es to managing this risk proved very much worth sharing, and it became clear that the booklet of regulatory approaches compiled after the Bergen conference should be updated, particularly with contributions from countries who have implemented regulatory approaches since then. Veröffentlicht in Texte | 63/2012.
Hellweger et al. (Reports, 27 May 2022, pp. 1001) predict that phosphorus limitation will increase concentrations of cyanobacterial toxins in lakes. However, several molecular, physiological, and ecological mechanisms assumed in their models are poorly supported or contradicted by other studies. We conclude that their take-home message that phosphorus load reduction will make Lake Erie more toxic is seriously flawed. © 2022 the authors
Fatal dog poisoning after uptake of neurotoxic cyanobacteria associated with aquatic macrophytes in Tegeler See (Berlin, Germany) raised concerns about critical exposure of humans, especially children, to cyanotoxins produced by macrophyte associated cyanobacteria during recreational activity. From 2017 to 2021 a total of 398 samples of macrophytes washed ashore at bathing sites located at 19 Berlin lakes were analysed for anatoxins, microcystins, and cylindrospermopsins, as were 463 water samples taken in direct proximity to macrophyte accumulations. Cyanotoxins were detected in 66 % of macrophyte samples and 50 % of water samples, with anatoxins being the most frequently detected toxin group in macrophyte samples (58 %) and cylindrospermopsins in water samples (41 %). Microcoleus sp. associated with the water moss Fontinalis antipyretica was identified as anatoxin producing cyanobacterium in isolated strains as well as in field samples from Tegeler See. Anatoxin contents in macrophyte samples rarely exceeded 1 (micro)g/g macrophyte fresh weight and peaked at 9. 2 (micro)g/g f.w. Based on established toxicological points of departure, a critical anatoxin content of macrophyte samples of 3 (micro)g/g f.w. is proposed. Five samples, all taken in Tegeler See and all associated with the water moss Fontinalis antipyretica, exceeded this value. Contents and concentrations of microcystins and cylindrospermopsins did not reach critical levels. The potential exposure risks to anatoxins for children and dogs are assessed and recommendations are given. © 2022 The Authors
In August 2019, three dogs died after bathing in or drinking from Mandichosee, a mesotrophic reservoir of the River Lech (Germany). The dogs showed symptoms of neurotoxic poisoning and intoxication with cyanotoxins was considered. Surface blooms were not visible at the time of the incidents. Benthic Tychonema sp., a potential anatoxin-a (ATX)-producing cyanobacterium, was detected in mats growing on the banks, as biofilm on macrophytes and later as aggregations floating on the lake surface. The dogsâ€Ì pathological examinations showed lung and liver lesions. ATX and dihydroanatoxin-a (dhATX) were detected by LC-MS/MS in the stomachs of two dogs and reached concentrations of 563 and 1207 Ìg/L, respectively. Anatoxins (sum of ATX and dhATX, ATXs) concentrations in field samples from Mandichosee ranged from 0.1 Ìg/L in the open water to 68,000 Ìg/L in samples containing a large amount of mat material. Other (neuro)toxic substances were not found. A molecular approach was used to detect toxin genes by PCR and to reveal the cyanobacterial community composition by sequencing. Upstream of Mandichosee, random samples were taken from other Lech reservoirs, uncovering Tychonema and ATXs at several sampling sites. Similar recent findings emphasize the importance of focusing on the investigation of benthic toxic cyanobacteria and applying appropriate monitoring strategies in the future. © 2020 by the authors
Raphidiopsis raciborskii is a freshwater, potentially toxigenic cyanobacterium, originally described as a tropical species that is spreading to northern regions over several decades. The ability of R. raciborskii to produce cyanotoxins - in particular the alkaloid cylindrospermopsin (CYN), which is toxic to humans and animals - is of serious concern. The first appearance of R. raciborskii in Russia was noted in Lake Nero in the summer of 2010. This is the northernmost (57˚N) recorded case of the simultaneous presence of R. raciborskii and detection of CYN. In this study, the data from long-term monitoring of the R. raciborskii population, temperature and light conditions in Lake Nero were explored. CYN and cyr/aoa genes present in environmental samples were examined using HPLC/MS-MS and PCR analysis. A R. raciborskii strain (R104) was isolated and its morphology, toxigenicity and phylogeography were studied. It is supposed that the trigger factor for the strong development of R. raciborskii in Lake Nero in summer 2010 may have been the relatively high water temperature, reaching 29-30 ˚C. Strain R. raciborskii R104 has straight trichomes and can produce akinetes, making it morphologically similar to European strains. Phylogeographic analysis based on nifH gene and 16S-23S rRNA ITS1 sequences showed that the Russian strain R104 grouped together with R. raciborskii strains isolated from Portugal, France, Germany and Hungary. The Russian strain R104 does not contain cyrA and cyrB genes, meaning that it - like all European strains - cannot produce CYN. Thus, while recent invasion of R. raciborskii into Lake Nero has occurred, morphological, genetic, and toxicological data supported the spreading of this cyanobacterium from other European lakes. Detection of CYN and cyr/aoa genes in environmental samples indicated the cyanobacterium Aphanizomenon gracile as a likely producer of CYN in Lake Nero. The article also discusses data on the global biogeography of R. raciborskii. Genetic similarity between R. raciborskii strains isolated from very remote continents might be related to the ancient origin of the cyanobacterium inhabiting the united continents of Laurasia and Gondwana, rather than comparably recent transoceanic exchange between R. raciborskii populations.
Blooms of toxic cyanobacteria in freshwater ecosystems have received considerable attention in recent years, but their occurrence and potential importance at the land-sea interface has not been widely recognized. Here we present the results of a survey of discrete samples conducted in more than fifty brackish water sites along the coastline of southern California. Our objectives were to characterize cyanobacterial community composition and determine if specific groups of cyanotoxins (anatoxins, cylindrospermopsins, microcystins, nodularins, and saxitoxins) were present. We report the identification of numerous potentially harmful taxa and the co-occurrence of multiple toxins, previously undocumented, at several locations. Our findings reveal a potential health concern based on the range of organisms present and the widespread prevalence of recognized toxic compounds. Our results raise concerns for recreation, harvesting of finfish and shellfish, and wildlife and desalination operations, highlighting the need for assessments and implementation of monitoring programs. Such programs appear to be particularly necessary in regions susceptible to urban influence. Quelle: Verlagsinformation
Cyanobacteria are favored by climate change and global warming; however, to date, mostresearch and monitoring programs have focused on planktic cyanobacteria. Benthic cyanobacte-ria blooms also increase and pose a risk to animal and human health; however, there is limitedknowledge of their occurrence, distribution and the toxins involved, especially in relation to theirplanktic conspeciï Ącs. Therefore, we analyzed the benthic and planktic life forms of cyanobacterialcommunities in 34 lakes in Germany, including a monitoring of cyanotoxins. Community analyseswere based on microscopic examination and Illumina sequencing of the 16S rRNA gene. The analysesof cyanotoxins were carried out using LC-MS/MS and ELISA. Observed benthic mats containingcyanobacteria consisted mainly of Nostocales and Oscillatoriales, being present in 35% of the lakes. Ana-toxin was the most abundant cyanotoxin in the benthic samples, reaching maximum concentrationsof 45,000Ìg/L, whereas microcystin was the predominate cyanotoxin in the open-water samples,reaching concentrations of up to 18,000Ìg/L. Based on the results, speciï Ąc lakes at risk of toxiccyanobacteria could be identiï Ąed. Our ï Ąndings suggest that monitoring of benthic cyanobacteria andtheir toxins should receive greater attention, ideally complementing existing open-water samplingprograms with little additional effort. © 2023 by the authors.
Concern is widely being published that the occurrence of toxic cyanobacteria is increasing in consequence of climate change and eutrophication, substantially threatening human health. Here, we review evidence and pertinent publications to explore in which types of waterbodies climate change is likely to exacerbate cyanobacterial blooms; whether controlling blooms and toxin concentrations requires a balanced approach of reducing not only the concentrations of phosphorus (P) but also those of nitrogen (N); how trophic and climatic changes affect health risks caused by toxic cyanobacteria. We propose the following for further discussion: (i) Climate change is likely to promote blooms in some waterbodies - not in those with low concentrations of P or N stringently limiting biomass, and more so in shallow than in stratified waterbodies. Particularly in the latter, it can work both ways - rendering conditions for cyanobacterial proliferation more favourable or less favourable. (ii) While N emissions to the environment need to be reduced for a number of reasons, controlling blooms can definitely be successful by reducing only P, provided concentrations of P can be brought down to levels sufficiently low to stringently limit biomass. Not the N:P ratio, but the absolute concentration of the limiting nutrient determines the maximum possible biomass of phytoplankton and thus of cyanobacteria. The absolute concentrations of N or P show which of the two nutrients is currently limiting biomass. N can be the nutrient of choice to reduce if achieving sufficiently low concentrations has chances of success. (iii) Where trophic and climate change cause longer, stronger and more frequent blooms, they increase risks of exposure, and health risks depend on the amount by which concentrations exceed those of current WHO cyanotoxin guideline values for the respective exposure situation. Where trophic change reduces phytoplankton biomass in the epilimnion, thus increasing transparency, cyanobacterial species composition may shift to those that reside on benthic surfaces or in the metalimnion, changing risks of exposure. We conclude that studying how environmental changes affect the genotype composition of cyanobacterial populations is a relatively new and exciting research field, holding promises for understanding the biological function of the wide range of metabolites found in cyanobacteria, of which only a small fraction is toxic to humans. Overall, management needs case-by-case assessments focusing on the impacts of environmental change on the respective waterbody, rather than generalisations. © 2021 by the authors
Bioaccumulation of several cyanotoxins has been observed in numerous food webs. More recently, the neurotoxic, non-proteinogenic amino acid Î2-N-methylamino-L-alanine (BMAA) was shown to biomagnify in marine food webs. It was thus necessary to assess whether a human exposure risk via a terrestrial food source could exist. As shown for other cyanotoxins, spray irrigation of crop plants with cyanobacterial bloom-contaminated surface water poses the risk of toxin transfer into edible plant parts. Therefore, in the present study, we evaluated a possible transfer of BMAA via spray irrigation into the seeds of one of the worldâ€Ìs most widely cultivated crop plants, Triticum aestivum. Wheat plants were irrigated with water containing 10 Ìg Lâ Ì1 BMAA until they reached maturity and seed-bearing stage (205 days). Several morphological characteristics, such as germination rate, number of roots per seedling, length of primary root and cotyledon, and diameter of the stems were evaluated to assess the effects of chronic exposure. After 205 days, BMAA bioaccumulation was quantified in roots, shoots, and mature seeds of T. aestivum. No adverse morphology effects were observed and no free intracellular BMAA was detected in any of the exposed plants. However, in mature seeds, protein-associated BMAA was detected at 217 Ì 150 ng g FWâ Ì1; significantly more than in roots and shoots. This result demonstrates the unexpected bioaccumulation of a hydrophilic compound and highlights the demand to specify in addition to limit values for drinking water, tolerable daily intake rates for the cyanobacterial-neurotoxin BMAA. Quelle: https://www.tandfonline.com
Cyanobacterial toxins or cyanotoxins are a diverse group of compounds with differing chemistries; hence, a single analytical method can rarely be used to evaluate all potential compounds. Toxicity bioassays have been adapted to assess the toxicity of cyanobacterial samples. The most common of these assays is the Enzyme-Linked Immunosorbent Assay kit using antibodies raised to specific cyanotoxins. Testing with bioassays is expected to show whether the sample contains toxic substances and how toxic these substances may potentially be. Laboratory staff handling samples potentially containing toxic cyanobacteria and cyanobacterial toxins is potentially exposed to health hazards, and appropriate protective measures need to be implemented. Following a sampling trip, the samples arriving in the laboratory need to be processed further for analysis or storage. Three aspects are important for sample handling and storage: safety, sample processing to ensure stability and traceability. Quelle: Chorus, I., & Welker, M. (Eds.). (2021). Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring and Management (2nd ed.). CRC Press. https://doi.org/10.1201/9781003081449, page 747
Origin | Count |
---|---|
Bund | 54 |
Land | 4 |
Type | Count |
---|---|
Förderprogramm | 37 |
Text | 5 |
unbekannt | 16 |
License | Count |
---|---|
geschlossen | 21 |
offen | 37 |
Language | Count |
---|---|
Deutsch | 41 |
Englisch | 30 |
Resource type | Count |
---|---|
Dokument | 4 |
Keine | 37 |
Webseite | 19 |
Topic | Count |
---|---|
Boden | 44 |
Lebewesen & Lebensräume | 57 |
Luft | 39 |
Mensch & Umwelt | 58 |
Wasser | 55 |
Weitere | 55 |