API src

Found 42 results.

From laboratory to field - Research on insecticide resistance using the example of a chimeric cytochrome P450 monooxygenase

Development of insecticide resistance in insect pest species is one of the main threats of agriculture nowadays. The cotton bollworm, Helicoverpa armigera, is the noctuid species possessing by far the most reported cases of insecticide resistance worldwide, correlated with one of the widest geographical distributions of any agricultural pest species. This turns H. armigera into an adequate model to study resistance mechanisms in detail. The main mechanisms underlying insecticide resistance are target side insensitivity and metabolism, mainly due to carboxylesterases and cytochrome P450 monooxygenases. Just recently, the resistance mechanism of an Australian H. armigera strain toward the pyrethroid fenvalerate was ascribed to a single P450, CYP337B3. CYP337B3 is a naturally-occurring chimera between CYP337B2 and CYP337B1 evolved by an unequal crossing-over event. This enzyme had acquired new and exclusive substrate specificities resulting in the detoxification of fenvalerate. This is the first known case of recombination as an additional genetic mechanism, besides over-expression and point mutation, leading to insecticide resistance. Therefore, CYP337B1, CYP337B2, and CYP337B3 are ideal candidates for studying structure-function relationships in P450s. The project aims to characterize amino acids that are crucial for the activity of CYP337B3 toward detoxification of fenvalerate. Additionally, cross-resistance conferred by CYP337B3 enables the determination of common structural moieties of pyrethroids favoring detoxification by CYP337B3 and those leading to resistance breaking. Pyrethroids with identified resistance breaking moieties could be used to control even pyrethroid-resistant populations of H. armigera. Another advantage of this system is the conferment of insecticide resistance by CYP337B3 that is not restricted to Australia but seems to be a more common mechanism as recently revealed by the finding of the chimeric P450 in a cypermethrin-resistant Pakistani strain. To shed light on the contribution of CYP337B3 to pyrethroid resistance of H. armigera and even closely related species worldwide, field populations from different countries will be screened by PCR for the presence of CYP337B3 and its parental genes. If applicable, the allele frequency of CYP337B3 will be determined being a convenient method to conclude the resistance level of the tested populations. Finally, the project will result in advising farmers on the control of populations of H. armigera and related species possessing CYP337B3. This will even become more important due to the climate change allowing H. armigera to spread northward including central Europe, where H. armigera is not yet able to survive wintertime.

Verhalten von Mikroorganismen unter wechselnden Umweltbedingungen

Die Anpassung an wechselnde Umweltbedingungen wurde am Beispiel von Transienten zwischen oxischem und denitrifizierendem Wachstum von Paracoccus denitrificans studiert. Bei solchen Wechseln muss die membrangebundene Elektronentransportkette jeweils den neuen Bedingungen angepasst werden. Diese Vorgaenge wurden anhand der Aenderungen in der Zusammensetzung der Cytochrome analysiert. Im weiteren wurde auch den Endprodukten der Denitrifikation besondere Beachtung geschenkt. Es zeigte sich, dass das Verhaeltnis zwischen molekularem Stickstoff und Lachgas bei der Denitrifikation durch drei Parameter beeinflusst werden kann: durch die Art der Kohlenstoff-/Energiequelle, durch die vorhandenen Stickstoffquellen und durch das pH des Mediums.

ERACoBioTECH Call 1 - Merit: Mikroalgen als nachhaltige und innovative grüne Zellfabriken, ERACoBioTECH Call 1 - Merit: Mikroalgen als nachhaltige und innovative grüne Zellfabriken

RiSKWa - MiWa: Mikroplastik im Wasserkreislauf - Probenahme, Probenbehandlung, Analytik, Vorkommen, Entfernung und Bewertung, Teilprojekt 10

Plastikmaterialien sind ubiquitär in Ökosystemen nachzuweisen; sie sind zumeist schlecht abbaubar, und Verwitterungsprozesse führen zu Fragmenten, die als Mikroplastik (MP) im Mikro m- bis mm-Bereich von Suspensions- und Sedimentfressern in Nahrungsnetze gelangen. MPs können aufgrund von Additiven per se toxisch sein, sie können aber auch persistente Substanzen (PPs) anreichern. Die Ziele von MiWa bestehen darin, (1) eine einheitliche Methodik zur Bestimmung der Abundanz von MP in Süßgewässern zu entwickeln, (2) verschiedene Umweltsysteme gezielt auf Quellen, Senken und den Verbleib von MPs zu untersuchen, sowie (3) toxikologische und ökotoxikologische Untersuchungen zu Effekten von MPs und PPs mit Testsystemen unterschiedlicher Komplexität und Trophiestufen durchzuführen. Ziel des Verbundes MiWa ist die nachvollziehbare und übergreifende Bewertung von MPs im Wasserkreislauf. Das Ziel des vorgeschlagenen Teilprojekts B4 besteht darin, den etablierten Modellorganismus Zebrabärbling (Danio rerio) für den Nachweis potentiell adverser Wirkungen von Mikroplastikpartikeln und partikelassoziierten Schadstoffen auf Fische zu etablieren, wobei aus Tierschutzgründen vor allem mit Embryonen gearbeitet wird. Die Wirkung von direkt aus dem Wasser aufgenommenen MPs und PPs wird mit der Aufnahme entlang von einfachen Modellnahrungsketten verglichen. Als weitere tierversuchsfreie Systeme werden Zellkulturen eingesetzt, um grundlegende Prozesse der Aufnahme und Wirkung von MPs und PPs zu verstehen. Die toxikologischen Endpunkte umfassen Embryo-, Neuro-, Cyto- und Gentoxizität sowie Teratogenität, Induktion von Cytochrom P450 und endokrine Wirkungen.

KMU-innovativ-8: AELMON - Artifizieller Elektronentransfer und pflanzliche Monooxygenasen als Basis innovativer Katalysesysteme, Teilprojekt 2

Pflanzen sind 'grüne' Fabriken, die mehr als 200.000 bioaktive Naturstoffe produzieren (z.B. Artemisinin, Taxol und Thapsigargin), bei deren Synthese Cytochrom P450-Monooxygenasen (P450) eine Schlüsselrolle spielen. Die P450-Enzyme sind die größte Protein-Familie in Pflanzen, deren Gene bei einigen Pflanzen bis zu 1 Prozent der Erbinformation ausmachen. Entsprechend umfangreich und vielfältig sind die Substratspezifitäten und das katalytische Potential dieser pflanzlichen Enzyme. Dennoch stehen pflanzliche Monooxygenasen bisher nicht für eine technische Nutzung zur Verfügung. Unzureichende Verfügbarkeit der Enzyme, Schwierigkeiten bei der rekombinanten Expression sowie unbekannte bzw. nicht exprimierbare Redoxpartner sind die Haupthinderungsgründe. Die kosteneffiziente Bereitstellung des benötigten Cofaktors NAD(P)H stellt eine weitere Herausforderung für die technische Nutzung der Enzyme dar. Hier können elektrochemische Ansätze innovative, erfolgversprechende Lösungen für neue ressourceneffiziente (Bio)-Prozesse liefern. Über die Realisierung der direkten Ankopplung pflanzlicher Monooxygenasen an einen artifiziellen elektrochemischen Elektronentransfer soll im Rahmen des Projektes, das an der Schnittstelle der grünen und weißen Biotechnologie positioniert ist, die technologische Basis für die künftige Nutzung des geschilderten katalytische Potential der pflanzlichen P450 - Enzyme geschaffen werden.

BioIndustrie2021 - CLIB 2021: BISON - Biotechnologische Synthese von Carboxyaminen und Carboxyalkoholen^BioIndustrie2021 - CLIB 2021: BISON - Biotechnologische Synthese von Carboxyaminen und Carboxyalkoholen, BioIndustrie2021 - CLIB 2021: BISON - Biotechnologische Synthese von Carboxyaminen und Carboxyalkoholen

Ziel des Verbundprojekts ist die Entwicklung eines technisch umsetzbaren biotechnologischen Prozesses zur Synthese von omega-Carboxyalkoholen und omega-Carboxyaminen, insbesondere von omega-Aminolaurinsäure aus dem allgemein verfügbaren Laurinsäuremethylester. Eine wesentliche Rolle für die regiospezifische Funktionalisierung eines Alkans bzw. einer Carbonsäure spielen hier zwei Enzyme: eine Monoxygenase und eine Transaminase. Für diese beiden Reaktionsschritte zuvor identifizierte Biokatalysatoren mit initialer Substraterkennung (z.B. AlkBGT und pQR800) sollen mit gentechnischen Methoden dargestellt sowie biochemisch und strukturell charakterisiert werden. Zudem soll durch Protein-Engineering eine Optimierung hinsichtlich der industriell relevanten Substrate vorgenommen und eine gekoppelte Reaktionskette in vitro etabliert werden. Pilze insbesondere der Gattung Candida besitzen bereits die Fähigkeit, mit Hilfe sehr effizienter Cytochrom-P450-Monoxygenasen über die so genannte omega-Oxidation aus Fettsäuren alpha,omega-Dicarbonsäuren herzustellen, aus denen omega-Aminocarbonsäuren leicht zugänglich sind. Daher sollen die relevanten Enzyme rekombinant hergestellt, charakterisiert und zur biotechnologischen Produktion von hydroxylierten Fettsäuren eingesetzt werden.

Gentechnologische Konstruktion von Cytochrom P450-Knockout-Maeusen zur Untersuchung Cytochrom P450-abhaengiger Kanzerogenese durch polyzyklische aromatische Kohlenwaserstoffe

An Maeusen mit ausgeschaltetem Cytochrom P450 1B1-Gen konnte nach Exposition gegenueber kanzerogenen polyzyklischen aromatischen Kohlenwasserstoffen wie das Dimethylbenzanthracen demonstriert werden, dass Wildtypmaeuse innerhalb von Wochen zu 100 Prozent Tumoren entwickelten. Hingegen war die 1B1-Knockout durch mangelnde Aktivierung dieser Verbindung geschuetzt.

Teil 2: Bestimmung von Rezeptor-Ligand-Wechselwirkungen mittels ESI/TOF-MS^Direkte wirkungsbezogene Analytik von Umweltschadstoffen in Gewaessern und Trinkwasser, Teil 3: Praeparative Darstellung von rekombinantem Oestrogen- und Ah-Rezeptor

Toxikologische Beurteilung von einzelnen Verbindungen aus der Klasse der polyzyklischen aromatischen Kohlenwasserstoffen in Abhaengigkeit der metabolischen Aktivierung durch Cytochrome P450 an metabolisch kompetenten V79 Zellen

Identifizierung von Dibenzo(a,l)pyren als die bislang kanzerogenste Verbindung unter den polyzyklisch aromatischen Kohlenwasserstoffen. Darstellung der Metabolitenprofile, DNA-Addukte, Zytotoxizitaet, Mikrokernbildung und Mutagenitaet an den metabolisch kompetenten V79 Zelllinien. Speziesspezifische Unterschiede in der metabolischen Aktivierung polyzyklischer aromatischer Kohlenwasserstoffe.

BioHARZ - Biotechnologische Harzsäureproduktion

Ziel des Projekts ist der Aufbau und die Evaluierung eines biotechnologischen Produktionsverfahrens zur fermentativen Synthese von Harzsäuren. Identifizierung, rekombinante Expression und Evaluierung geeigneter Enzyme zur Synthese von Harzsäuren bzw. entsprechender Ester aus GGPP. Relevante Enzymklassen sind Diterpen-Synthasen, spezifische Cytochrom-P450-Monooxygenasen, sowie Esterasen (Lipasen). Erfolgreich getestete Einzelenzyme der verschiedenen Klassen werden dann zur Implementierung und Testung eines synthetischen Stoffwechselwegs verwendet. Bei erfolgreichem Nachweis der Produktbildung erfolgt im Anschluss die Ausbeuteoptimierung des Verfahrens über geeignete Stammentwicklung (i.a. Feinabstimmung der Enzymaktivitäten, Einsatz von Helferproteinen). Weitere Arbeiten widmen sich der Evaluierung von Möglichkeiten zur gezielten Herstellung neuartiger Produktqualitäten über die Koexpression weiteren Enzyme. Die gezielte Erzeugung von Harzsäuregemischen definierter Zusammensetzung und insbesondere auch die bio-katalytischen Herstellung von Harzsäure-Estern steht hier im Fokus.

1 2 3 4 5