API src

Found 41 results.

From laboratory to field - Research on insecticide resistance using the example of a chimeric cytochrome P450 monooxygenase

Das Projekt "From laboratory to field - Research on insecticide resistance using the example of a chimeric cytochrome P450 monooxygenase" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Max-Planck-Institut für chemische Ökologie.Development of insecticide resistance in insect pest species is one of the main threats of agriculture nowadays. The cotton bollworm, Helicoverpa armigera, is the noctuid species possessing by far the most reported cases of insecticide resistance worldwide, correlated with one of the widest geographical distributions of any agricultural pest species. This turns H. armigera into an adequate model to study resistance mechanisms in detail. The main mechanisms underlying insecticide resistance are target side insensitivity and metabolism, mainly due to carboxylesterases and cytochrome P450 monooxygenases. Just recently, the resistance mechanism of an Australian H. armigera strain toward the pyrethroid fenvalerate was ascribed to a single P450, CYP337B3. CYP337B3 is a naturally-occurring chimera between CYP337B2 and CYP337B1 evolved by an unequal crossing-over event. This enzyme had acquired new and exclusive substrate specificities resulting in the detoxification of fenvalerate. This is the first known case of recombination as an additional genetic mechanism, besides over-expression and point mutation, leading to insecticide resistance. Therefore, CYP337B1, CYP337B2, and CYP337B3 are ideal candidates for studying structure-function relationships in P450s. The project aims to characterize amino acids that are crucial for the activity of CYP337B3 toward detoxification of fenvalerate. Additionally, cross-resistance conferred by CYP337B3 enables the determination of common structural moieties of pyrethroids favoring detoxification by CYP337B3 and those leading to resistance breaking. Pyrethroids with identified resistance breaking moieties could be used to control even pyrethroid-resistant populations of H. armigera. Another advantage of this system is the conferment of insecticide resistance by CYP337B3 that is not restricted to Australia but seems to be a more common mechanism as recently revealed by the finding of the chimeric P450 in a cypermethrin-resistant Pakistani strain. To shed light on the contribution of CYP337B3 to pyrethroid resistance of H. armigera and even closely related species worldwide, field populations from different countries will be screened by PCR for the presence of CYP337B3 and its parental genes. If applicable, the allele frequency of CYP337B3 will be determined being a convenient method to conclude the resistance level of the tested populations. Finally, the project will result in advising farmers on the control of populations of H. armigera and related species possessing CYP337B3. This will even become more important due to the climate change allowing H. armigera to spread northward including central Europe, where H. armigera is not yet able to survive wintertime.

Verhalten von Mikroorganismen unter wechselnden Umweltbedingungen

Das Projekt "Verhalten von Mikroorganismen unter wechselnden Umweltbedingungen" wird/wurde ausgeführt durch: Eidgenössische Anstalt für Wasserversorgung, Abwasserreinigung und Gewässerschutz, Abteilung Mikrobiologie.Die Anpassung an wechselnde Umweltbedingungen wurde am Beispiel von Transienten zwischen oxischem und denitrifizierendem Wachstum von Paracoccus denitrificans studiert. Bei solchen Wechseln muss die membrangebundene Elektronentransportkette jeweils den neuen Bedingungen angepasst werden. Diese Vorgaenge wurden anhand der Aenderungen in der Zusammensetzung der Cytochrome analysiert. Im weiteren wurde auch den Endprodukten der Denitrifikation besondere Beachtung geschenkt. Es zeigte sich, dass das Verhaeltnis zwischen molekularem Stickstoff und Lachgas bei der Denitrifikation durch drei Parameter beeinflusst werden kann: durch die Art der Kohlenstoff-/Energiequelle, durch die vorhandenen Stickstoffquellen und durch das pH des Mediums.

ERACoBioTECH Call 1 - Merit: Mikroalgen als nachhaltige und innovative grüne Zellfabriken, ERACoBioTECH Call 1 - Merit: Mikroalgen als nachhaltige und innovative grüne Zellfabriken

Das Projekt "ERACoBioTECH Call 1 - Merit: Mikroalgen als nachhaltige und innovative grüne Zellfabriken, ERACoBioTECH Call 1 - Merit: Mikroalgen als nachhaltige und innovative grüne Zellfabriken" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Universität Bielefeld, Centrum für Biotechnologie.

RiSKWa - MiWa: Mikroplastik im Wasserkreislauf - Probenahme, Probenbehandlung, Analytik, Vorkommen, Entfernung und Bewertung, Teilprojekt 10

Das Projekt "RiSKWa - MiWa: Mikroplastik im Wasserkreislauf - Probenahme, Probenbehandlung, Analytik, Vorkommen, Entfernung und Bewertung, Teilprojekt 10" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Universität Heidelberg, Institut für Zoologie, Abteilung V Morphologie & Ökologie, Arbeitsgruppe Aquatische Ökologie und Toxikologie.Plastikmaterialien sind ubiquitär in Ökosystemen nachzuweisen; sie sind zumeist schlecht abbaubar, und Verwitterungsprozesse führen zu Fragmenten, die als Mikroplastik (MP) im Mikro m- bis mm-Bereich von Suspensions- und Sedimentfressern in Nahrungsnetze gelangen. MPs können aufgrund von Additiven per se toxisch sein, sie können aber auch persistente Substanzen (PPs) anreichern. Die Ziele von MiWa bestehen darin, (1) eine einheitliche Methodik zur Bestimmung der Abundanz von MP in Süßgewässern zu entwickeln, (2) verschiedene Umweltsysteme gezielt auf Quellen, Senken und den Verbleib von MPs zu untersuchen, sowie (3) toxikologische und ökotoxikologische Untersuchungen zu Effekten von MPs und PPs mit Testsystemen unterschiedlicher Komplexität und Trophiestufen durchzuführen. Ziel des Verbundes MiWa ist die nachvollziehbare und übergreifende Bewertung von MPs im Wasserkreislauf. Das Ziel des vorgeschlagenen Teilprojekts B4 besteht darin, den etablierten Modellorganismus Zebrabärbling (Danio rerio) für den Nachweis potentiell adverser Wirkungen von Mikroplastikpartikeln und partikelassoziierten Schadstoffen auf Fische zu etablieren, wobei aus Tierschutzgründen vor allem mit Embryonen gearbeitet wird. Die Wirkung von direkt aus dem Wasser aufgenommenen MPs und PPs wird mit der Aufnahme entlang von einfachen Modellnahrungsketten verglichen. Als weitere tierversuchsfreie Systeme werden Zellkulturen eingesetzt, um grundlegende Prozesse der Aufnahme und Wirkung von MPs und PPs zu verstehen. Die toxikologischen Endpunkte umfassen Embryo-, Neuro-, Cyto- und Gentoxizität sowie Teratogenität, Induktion von Cytochrom P450 und endokrine Wirkungen.

BioHARZ - Biotechnologische Harzsäureproduktion

Das Projekt "BioHARZ - Biotechnologische Harzsäureproduktion" wird/wurde gefördert durch: Bundesministerium für Ernährung und Landwirtschaft. Es wird/wurde ausgeführt durch: Phytowelt GreenTechnologies GmbH.Ziel des Projekts ist der Aufbau und die Evaluierung eines biotechnologischen Produktionsverfahrens zur fermentativen Synthese von Harzsäuren. Identifizierung, rekombinante Expression und Evaluierung geeigneter Enzyme zur Synthese von Harzsäuren bzw. entsprechender Ester aus GGPP. Relevante Enzymklassen sind Diterpen-Synthasen, spezifische Cytochrom-P450-Monooxygenasen, sowie Esterasen (Lipasen). Erfolgreich getestete Einzelenzyme der verschiedenen Klassen werden dann zur Implementierung und Testung eines synthetischen Stoffwechselwegs verwendet. Bei erfolgreichem Nachweis der Produktbildung erfolgt im Anschluss die Ausbeuteoptimierung des Verfahrens über geeignete Stammentwicklung (i.a. Feinabstimmung der Enzymaktivitäten, Einsatz von Helferproteinen). Weitere Arbeiten widmen sich der Evaluierung von Möglichkeiten zur gezielten Herstellung neuartiger Produktqualitäten über die Koexpression weiteren Enzyme. Die gezielte Erzeugung von Harzsäuregemischen definierter Zusammensetzung und insbesondere auch die bio-katalytischen Herstellung von Harzsäure-Estern steht hier im Fokus.

Teilprojekt 6^Anpassung und Weiterentwicklung von innovativen, nicht-invasiven Monitoringsystemen und Auswerteverfahren für die Fischereiforschung (AutoMAT)^Teilprojekt 7^Teilprojekt 5, Teilprojekt 4

Das Projekt "Teilprojekt 6^Anpassung und Weiterentwicklung von innovativen, nicht-invasiven Monitoringsystemen und Auswerteverfahren für die Fischereiforschung (AutoMAT)^Teilprojekt 7^Teilprojekt 5, Teilprojekt 4" wird/wurde gefördert durch: Bundesministerium für Ernährung und Landwirtschaft. Es wird/wurde ausgeführt durch: Max Rubner-Institut Bundesforschungsinstitut für Ernährung und Lebensmittel, Institut für Sicherheit und Qualität bei Milch und Fisch.Der zentrale Ostatlantik ist eine der wichtigsten Fisch-Herkunftsregionen für den europäischen Markt, darunter auch für Deutschland (Brashares et al. 2004). Dementsprechend wurden die Fangmengen seit 1950 etwa um das 10fache gesteigert, verbunden mit einem Rückgang von Beständen sowohl in Küstengewässern als auch offshore (FAO 2007). Neben einigen anderen Nationen sind vor allem EU-Fischereifahrzeuge in westafrikanischen Gewässern präsent (Kaczynski and Fluharty 2002). Die im Vergleich zu Gewässern der gemäßigten Breiten hohe Artenvielfalt und das häufige Fehlen jeglicher Fischereikontrollen führt immer wieder zur Fehldeklaration von importierten Fischereiprodukten. Um die vorgeschriebenen Handelsbezeichnungen effektiv überprüfen zu können, müssen zum einen geeignete Nachweisverfahren vorhanden sein und zum anderen notwendige Vergleichsdaten oder Standards, d.h. Referenzfische zur Verfügung stehen. Durch Forschungsarbeiten der vergangenen Jahre stehen dem Max Rubner (MRI)- und Thünen-Institut (TI) geeignete genetische Nachweisverfahren zur Verfügung, die eine Identifikation hinsichtlich der Fischart sicher ermöglichen. Das Thünen-Institut für Fischerökologie verfügt aufgrund ausgedehnter Sammlungstätigkeit der letzten zehn Jahre über ausreichend Probenmaterial der wichtigsten kommerziell genutzten westafrikanischen Arten, die es erlauben, erstmalig eine Referenzdatenbank aufzubauen, die sowohl für die Veterinär- und Verbraucherschutzbehörden des Bundes als auch der Länder von erheblichem Nutzen wäre. Ziel dieses Arbeitspaketes ist es, gemeinsam mit der Firma Impetus GmbH & Co aus Bremerhaven eine umfangreiche und international abrufbare Datenbank zur Identifizierung und Rückverfolgbarkeit von westafrikanischen Fischarten und daraus hergestellten Fischerzeugnissen mittels molekularbiologischer Nachweisverfahren zu erstellen. Die Genamplifikation erfolgt mittels universeller Primer, die in zahlreichen Fischtaxa verwendet wurden. Insgesamt sollen vier Gene von ca. 400 Fischarten amplifiziert werden. Das MRI wird das 389 Nukleotid umfassende DNA-Segment aus dem Rhodopsingen RH1 amplifizieren und sequenzieren. Das Arbeitspaket des TI beinhaltet die PCR-Amplifikation und teilweise Sequenzierung bestimmter Abschnitte der mitochondrialen Gene Cytochrom-c-Oxidase I (COX) und Cytochrom b (Cytb) sowie eines nukleären Gens. Zusätzlich erarbeiten das TI und Impetus GmbH & Co gemeinsam mit dem Centre for Ecological and Evolutionary Synthesis der Universität Oslo in einem Next-Generation-Sequencing-Verfahren SNP-Marker zur Entwicklung eines Herkunftsnachweises auf Basis einer SNP-chip-Technologie für den Gelbflossenthun (Thunnus albacares).

KMU-innovativ-8: AELMON - Artifizieller Elektronentransfer und pflanzliche Monooxygenasen als Basis innovativer Katalysesysteme^Teilprojekt 4, Teilprojekt 3

Das Projekt "KMU-innovativ-8: AELMON - Artifizieller Elektronentransfer und pflanzliche Monooxygenasen als Basis innovativer Katalysesysteme^Teilprojekt 4, Teilprojekt 3" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Westfälische Wilhelms-Universität Münster, Institut für Biologie und Biotechnologie der Pflanzen.Das Projekt erschließt neuartige Grundlagen für die Nutzung pflanzlicher Enzymsysteme in industriellen Produktionssystemen. AELMON ist das Akronym für 'Artifizieller ELektronentransfer und pflanzliche Monooxygenasen als Basis innovativer Katalysesysteme'. Der wissenschaftliche Hintergrund ist die industrielle Nutzung einer Familie von Pflanzenenzymen - den so genannten P450-Enzymen, deren herausragende Eigenschaften schon seit langem bekannt sind, die sich aber bisher nicht wirtschaftlich für chemische Synthesen einsetzen lassen. 'Durch die Mitarbeit in diesem Projekt kann sich die Autodisplay-Technologie weiter als Lösungsansatz für die Darstellung schwierig zu handhabender Enzyme wie den P450-Enzymen positionieren,' sagt Dr. Ruth Maas, Geschäftsführerin der Autodisplay Biotech. Das Projekt stellt für die Firmenstrategie der Phytowelt, Know-how der Pflanzenbiotechnologie für neue, zum Teil überraschende Anwendungsgebiete einsatzfähig zu machen, einen wichtigen Meilenstein dar. 'Die spezielle Thematik besetzt die Schnittstelle zwischen Grüner und Weißer Biotechnologie und hat das Potenzial, völlig neue Wertschöpfungsketten zu erschließen,' kommentiert Dr. Peter Welters, Geschäftsführer der Phytowelt das Projekt. Ein wesentlicher Schwerpunkt der im Projektrahmen zu untersuchenden Systeme ist die Biosynthese eines Terpens, dessen potente pharmakologische Eigenschaften es bereits in den Fokus der Krebsforschung gerückt haben. Ein weiteres Teilprojekt wird die Untersuchung neuer Synthesemethoden von Grundbausteinen für innovative Kunststoffe mit Premiumeigenschaften sein. Besonderes Innovationspotenzial bezieht AELMON aus neuartigen Verfahren zur Produktion der P450-Enzyme bei den Partnern Uni Münster und AutoDisplay, aber auch aus der geplanten Entwicklung eines neuen biotechnologischen Verfahrens unter Einsatz der Elektrochemie. Die Kombination von Elektrochemie und Biokatalyse stellt einen Forschungsschwerpunkt der DECHEMA dar, der das Design besonders nachhaltiger Produktionsprozesse mit P450-Monooxygenasen zum Ziel hat.

KMU-innovativ-8: AELMON - Artifizieller Elektronentransfer und pflanzliche Monooxygenasen als Basis innovativer Katalysesysteme, Teilprojekt 2

Das Projekt "KMU-innovativ-8: AELMON - Artifizieller Elektronentransfer und pflanzliche Monooxygenasen als Basis innovativer Katalysesysteme, Teilprojekt 2" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: DECHEMA Forschungsinstitut Stiftung bürgerlichen Rechts.Pflanzen sind 'grüne' Fabriken, die mehr als 200.000 bioaktive Naturstoffe produzieren (z.B. Artemisinin, Taxol und Thapsigargin), bei deren Synthese Cytochrom P450-Monooxygenasen (P450) eine Schlüsselrolle spielen. Die P450-Enzyme sind die größte Protein-Familie in Pflanzen, deren Gene bei einigen Pflanzen bis zu 1 Prozent der Erbinformation ausmachen. Entsprechend umfangreich und vielfältig sind die Substratspezifitäten und das katalytische Potential dieser pflanzlichen Enzyme. Dennoch stehen pflanzliche Monooxygenasen bisher nicht für eine technische Nutzung zur Verfügung. Unzureichende Verfügbarkeit der Enzyme, Schwierigkeiten bei der rekombinanten Expression sowie unbekannte bzw. nicht exprimierbare Redoxpartner sind die Haupthinderungsgründe. Die kosteneffiziente Bereitstellung des benötigten Cofaktors NAD(P)H stellt eine weitere Herausforderung für die technische Nutzung der Enzyme dar. Hier können elektrochemische Ansätze innovative, erfolgversprechende Lösungen für neue ressourceneffiziente (Bio)-Prozesse liefern. Über die Realisierung der direkten Ankopplung pflanzlicher Monooxygenasen an einen artifiziellen elektrochemischen Elektronentransfer soll im Rahmen des Projektes, das an der Schnittstelle der grünen und weißen Biotechnologie positioniert ist, die technologische Basis für die künftige Nutzung des geschilderten katalytische Potential der pflanzlichen P450 - Enzyme geschaffen werden.

BioIndustrie2021 - CLIB 2021: BISON - Biotechnologische Synthese von Carboxyaminen und Carboxyalkoholen^BioIndustrie2021 - CLIB 2021: BISON - Biotechnologische Synthese von Carboxyaminen und Carboxyalkoholen, BioIndustrie2021 - CLIB 2021: BISON - Biotechnologische Synthese von Carboxyaminen und Carboxyalkoholen

Das Projekt "BioIndustrie2021 - CLIB 2021: BISON - Biotechnologische Synthese von Carboxyaminen und Carboxyalkoholen^BioIndustrie2021 - CLIB 2021: BISON - Biotechnologische Synthese von Carboxyaminen und Carboxyalkoholen, BioIndustrie2021 - CLIB 2021: BISON - Biotechnologische Synthese von Carboxyaminen und Carboxyalkoholen" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Technische Universität München, Wissenschaftszentrum Weihenstephan, Forschungsdepartment Biowissenschaftliche Grundlagen, Lehrstuhl für Biologische Chemie.Ziel des Verbundprojekts ist die Entwicklung eines technisch umsetzbaren biotechnologischen Prozesses zur Synthese von omega-Carboxyalkoholen und omega-Carboxyaminen, insbesondere von omega-Aminolaurinsäure aus dem allgemein verfügbaren Laurinsäuremethylester. Eine wesentliche Rolle für die regiospezifische Funktionalisierung eines Alkans bzw. einer Carbonsäure spielen hier zwei Enzyme: eine Monoxygenase und eine Transaminase. Für diese beiden Reaktionsschritte zuvor identifizierte Biokatalysatoren mit initialer Substraterkennung (z.B. AlkBGT und pQR800) sollen mit gentechnischen Methoden dargestellt sowie biochemisch und strukturell charakterisiert werden. Zudem soll durch Protein-Engineering eine Optimierung hinsichtlich der industriell relevanten Substrate vorgenommen und eine gekoppelte Reaktionskette in vitro etabliert werden. Pilze insbesondere der Gattung Candida besitzen bereits die Fähigkeit, mit Hilfe sehr effizienter Cytochrom-P450-Monoxygenasen über die so genannte omega-Oxidation aus Fettsäuren alpha,omega-Dicarbonsäuren herzustellen, aus denen omega-Aminocarbonsäuren leicht zugänglich sind. Daher sollen die relevanten Enzyme rekombinant hergestellt, charakterisiert und zur biotechnologischen Produktion von hydroxylierten Fettsäuren eingesetzt werden.

KMU-innovativ-8: AELMON - Artifizieller Elektronentransfer und pflanzliche Monooxygenasen als Basis innovativer Katalysesysteme, Teilprojekt 1

Das Projekt "KMU-innovativ-8: AELMON - Artifizieller Elektronentransfer und pflanzliche Monooxygenasen als Basis innovativer Katalysesysteme, Teilprojekt 1" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Phytowelt GreenTechnologies GmbH.

1 2 3 4 5