Stetig steigende Energiekosten und sich verschärfende gesetzliche Vorschriften machen es notwendig, die Wirkungsgrade in allen Arten von Maschinen und Anlagen konsequent zu erhöhen. Infolgedessen werden Strukturen immer mehr unter Aspekten des Leichtbaus ausgeführt und schwingungsdämpfende Einflüsse systematisch reduziert. Als Konsequenz dieser Maßnahmen ergibt sich eine höhere Empfindlichkeit gegenüber Vibrationen. Deswegen ist es dringend notwendig, Schwingungen mechanischer Strukturen wirksam, gezielt und situationsangepasst zu mindern, ohne dabei die Funktion oder den Wirkungsgrad der Maschine als Ganzes nennenswert zu beeinflussen. Als besonders herausfordernd stellen sich hierbei ausgedehnte Strukturen dar - wie z.B. Verkleidungen, Karosserieteile, Flugzeugflügel, etc. Solche Strukturen weisen etliche Resonanzfrequenzen auf, können über die Oberfläche besonders intensiv Schall abstrahlen und lassen sich meist durch einzelne, konzentriert aufgebrachte Maßnahmen nicht wirksam beruhigen. Flächige Dämpfungsmaßnahmen stellen daher einen naheliegenden Lösungsansatz dar. Die klassischerweise hierbei eingesetzten Dämmmatten erweisen sich jedoch in der Regel als nur bedingt effizient und lassen kaum eine differenzierte Ausgestaltung der Maßnahmen zu. Motiviert durch den vorgenannten Befund besteht das primäre Ziel dieses Antrags in der Entwicklung flächiger induktiver Dämpfungselemente ('smart arrays') mit intelligenten und adaptiven Eigenschaften. Elektromagnetische Konzepte stellen dabei eine vielversprechende Basis dar und können leicht auf Oberflächen ausgedehnter Strukturen aufgebracht werden. Im Vergleich zu klassischen, stark lokalisierten Maßnahmen bieten solche Ansätze eine Reihe von Vorteilen: neben dem Vermeiden örtlich konzentrierter Dissipationsleistung, lassen sich bspw. auch gezielt bestimmte Schwingformen bedämpfen, oder aber Strukturen ortsdifferenziert beeinflussen. Durch die Möglichkeiten zur einfachen Verschaltung und Kombination der Module sowie zur gezielten Auslegung und Nutzung physikalischer Nichtlinearitäten besteht zudem ein besonderes Potential zur Entwicklung situationsadaptiver Anordnungen. Darüber hinaus ist zu erwarten, dass induktionsbasierte Module von einer verteilten Anwendung zusätzlich profitieren: Da lokal geringere Dissipationsleistungen auftreten sinkt auch die magnetische Flussdichte und führt somit auf einen geringeren Materialbedarf und weniger Gewicht. Der vorgeschlagene Ansatz ist durch Vorarbeiten verschiedener Teilprojekte des Schwerpunktprogramms SPP 1897 'calm, smooth and smart' motiviert und fügt sich nahtlos in den Rahmen der zweiten Förderungsphase ein. Über das Schwerpunktprogramm hinaus könnten solche 'smart arrays' zukünftig vielfältige Anknüpfungspunkte für Produktentwicklung, Materialforschung, Additive Fertigung, MEMS und Energy Harvesting entstehen lassen.
Im Landkreis Göttingen werden folgende Deponiearten betrieben: Breitenberg: Deponie für Boden und Bauschutt, Kompostanlage und Recyclinghof Adresse: Herzberger Straße 999, 37115 Duderstadt Annahme von: - Bauschutt unbelastet, nicht verwertbar - Unbelastetem Boden - Boden vermischt mit unbelastetem Bauschutt/Straßenaufbruch - Straßenaufbruch, unbelastet, teerölhaltig und bituminös - Dämmmaterial - Asbestzementabfälle Kompostanlage Annahme von: - Park- und Gartenabfall, kompostierbar - Baum- und Strauchschnitt - Rinden - Sägemehl, unbelastet Recyclinghof Annahme von: - Elektroschrott - Altmetall - Altpapier - Altkleidern - Haus- und Sperrmüll - Altholz Deiderode (EAZD): mechanisch-biologische Abfallbehandlungsanlage (MBA) und Recyclinghof Adresse: Auf dem Mittelberge 1, 37133 Friedland Annahme von: - Restabfällen - Sperrmüll - hausmüllähnliche Gewerbeabfälle zusätzlich von Privathaushalten: kleine Mengen an Altmetallen, Altpapier, Baumschutt, Baum- und Strauchschnitt, Elektroschrott und Schadstoffe Dransfeld: Deponie für Boden und Bauschutt, Kompostanlage und Recyclinghof Adresse: Imbser Weg 999, 37127 Dransfeld Annahme von: - Bauschutt unbelastet, nicht verwertbar - unbelastetem Boden - Boden vermischt mit unbelastetem Bauschutt/Straßenaufbruch - Straßenaufbruch, unbelastet, teerölhaltig und bituminös - Dämmmaterial - Asbestzementabfälle Kompostanlage Annahme von: - Park- und Gartenabfall, kompostierbar - Baum- und Strauchschnitt - Rinden - Sägemehl, unbelastet Recyclinghof Annahme von: - Elektronikschrott - Altmetall - Altpapier - Altkleidern - Haus- und Sperrmüll - Altholz Hattorf am Harz: Deponie für Boden, Bauschutt und andere mineralische Abfälle Annahme von u.a.: - vorzubehandelnde Abfälle - Boden und Bauschutt - Straßenaufbruch - Asbestzementabfälle - Dämmmaterial - Park- und Gartenabfälle - Rasenschnitt - Strauchschnitt - Kleinmengen an Rest- und Sperrmüll, Altholz, Elektronikschrott, Altmetall und Papier/Pappe Benutzerordnung: Für gefährliche Abfälle wird bundesweit das elektronische Nachweisverfahren angewendet. Entsorgungsnachweise und Begleitscheine müssen vom Abfallerzeuger in elektronischer Form erstellt, signiert und versendet werden.
The present dataset from Germany is encompassed in the European Biodiversa BioRodDis project (Managing BIOdiversity in forests and urban green spaces: Dilution and amplification effects on RODent microbiomes and rodent-borne DISeases. Project coordinator: Nathalie Charbonnel, Senior researcher (DR2, INRAE), nathalie.charbonnel@inrae.fr - https://www6.inrae.fr/biodiversa-bioroddis). The project comes with the purpose to explore on a large scale the relationship between biodiversity of rodents, rodent-borne diseases dynamics and differences over time in a changing climate and it includes data of small terrestrial mammals from temperate forests and urban parks from the following countries: Belgium, France, Germany, Ireland and Poland. The present dataset includes records of small mammals (Rodentia) occurrences trapped in urbanised and forested areas in northeast Germany in the district of Potsdam (Brandenburg). Samplings and data collection took place throughout three years and during a total of four seasons: winter 2020, spring 2021, autumn 2021 and spring 2022. The number of sampling sites varied between 2 and 4 per seasons, with two main sites (Germany EastA and Germany EastB) being permanent in each sampling season. These variations are mainly due to the impact of SARS-CoV-2 pandemic regulations (2020, 2021) on the organisation and the execution of fieldwork and to the exclusion subsequently of forested sites with very low density of animals (≤10 individuals: Germany EastC, Germany EastB). The two main sampling sites represent different levels of anthropisation. The site Germany EastA is around the Botanical Garden belonging to the University of Potsdam with a mixture of sealed and wooded areas and a constant human presence while the site Germany EastB is a forested sub-urbanised area outside of the city composed by mixed coniferous forests, meadows, crossed by a main road and with occasional human presence (hunters, foresters). All animals were live captured (as in Schirmer et al., 2019) using a combination of Ugglan and Longworth traps for a total of 100-150 traps, depending on site and year. Traps were placed in 4 to 6 lines with 25m distance, and each line was composed by a total of 25 traps placed with 10m distance from each other. Fieldwork actions generally started with 1-4 days of pre-baiting followed by 1-10 days of trapping, according to efficiency of trapping and subprojects included. The sites Germany EastC and Germany EastD were excluded from the last two seasons because of very low trapping success during the previous seasons. All the traps were controlled daily during early morning hours and were activated again in the evening, with animals spending not more than eight hours in the trap. Baiting mixture consisted of oat flakes and apples and all traps were equipped with insulating material, like hay or wood wool. Taxonomical identification was determined in the field at species level according to morphology and previously recorded species occurrences in the sampling area (Dolch, 1995). Molecular identification of Apodemus flavicollis and Microtus individuals that were subsequently dissected was performed by the CBGP (France) using CO1 sequencing for Microtus species following Pagès et al., 2010, and DNA fingerprinting (AP-PCR) for Apodemus species (Bugarski-Stanojević et al., 2013). Dissections and body measurements were performed following the protocols described in Herbreteau et al., 2011. At the end of all seasons, a total of 620 occurrences of rodents was recorded, belonging to two main families (Muridae, Cricetidae) and four different species (Apodemus flavicollis, Apodemus agrarius, Myodes glareolus and Microtus arvalis). Additionally, for a subset of individuals (n=264), body measurements like weight, body length, head width, tail length and hind foot length as well as sexual maturity data were recorded. Animals were captured in accordance with the applicable international and institutional guidelines for the use of animals in research. The trapping and collection of rodents was performed under the permission of “Landesamt für Arbeitsschutz, Verbraucherschutz und Gesundheit Brandenburg (LAVG)“ (no. 2347-A-16-1-2020 for procedure, LUGV_RW7-4744/41+5#243052/2015 and N1 0424 for trapping) and “Landesamt für Umwelt Brandenburg (LfU)” (no. LFU-N1-4744/97+17#194297/2020, for sites and species exemptions). This project was funded through the 2018-2019 BiodivERsA joint call for research proposals, under the BiodivERsA3 ERA-Net COFUND programme, and coordinated by the German Science Foundation DFG (Germany). Citations: 1) Bugarski-Stanojević, V., Blagojević, J., Adnađević, T., Jovanović, V., & Vujošević, M. (2013). Identification of the sibling species Apodemus sylvaticus and Apodemus flavicollis (Rodentia, Muridae)—Comparison of molecular methods. Zoologischer Anzeiger - A Journal of Comparative Zoology, 252(4), 579–587. https://doi.org/10.1016/j.jcz.2012.11.004 2) Dolch, D. (1995). Naturschutz und Landschaftspflege in Brandenburg. 97. 3) Herbreteau, V., Jittapalapong, S., Rerkamnuaychoke, W., Chaval, Y., Cosson, J.-F., & Morand, S. (2011). Protocols for field and laboratory rodent studies. 56. 4) Pagès, M., Chaval, Y., Herbreteau, V., Waengsothorn, S., Cosson, J.-F., Hugot, J.-P., Morand, S., & Michaux, J. (2010). Revisiting the taxonomy of the Rattini tribe: A phylogeny-based delimitation of species boundaries. BMC Evolutionary Biology, 10(1), 184. https://doi.org/10.1186/1471-2148-10-184 5) Schirmer, A., Herde, A., Eccard, J. A., & Dammhahn, M. (2019). Individuals in space: Personality-dependent space use, movement and microhabitat use facilitate individual spatial niche specialization. Oecologia, 189(3), 647–660. https://doi.org/10.1007/s00442-019-04365-5
Commissioned by EURIMA (European Insulation Manufacturers Association) we have created a new study, analyzing U-values (insulation thickness) for a better energy performance of European buildings. The study provides findings for 100 European cities. Aim of the study is to contribute to the discussion of policy makers when reconsidering national regulations. The study reveals that there is significant room for improvement of standards.
Das Gesamtziel dieses Projektes besteht im Aufbau einer Pilotanlage zur Herstellung von Dämmstoffen auf Basis von Buchenholz sowie der begleitenden Forschungsaktivitäten. In der geplanten Anlage sollen aus Buchenholzfasern flexible Dämmstoffe (Dämmstoffmatten und Holzschäume bzw. Granulate) als Füllstoff für Hohlziegel (lochbildabhängig und lochbildunabhängig) hergestellt werden.
Ziel des Vorhabens ist die Entwicklung von Verfahren zur Herstellung von Aerogelen mittels aus Altholz gewonnener Rohstoffe (Cellulose, Lignin, Hemicellulose). Aus den Aerogelen werden Dämmstoffe und/oder schadstoffabsorbierende Filter hergestellt, aus denen nach Ende der Gebrauchsdauer wieder die genannten Rohstoffe gewonnen werden können. Zusätzlich werden beispielhaft weitere Varianten aus nachwachsenden Rohstoffen aufgezeigt. Aerogele zeichnen sich durch hervorragende Dämmeigenschaften, geringe Schallübertragung und gute Absorptionswirkung für flüchtige chemische Stoffe aus. Das eröffnet diesen Materialien zahlreiche Anwendungsmöglichkeiten, z.B. als Dämmstoffe oder Filter. Während die ersten Aerogele aus Siliziumdioxid hergestellt wurden, gibt es heute vielseitige Ausgangsmaterialien, die u.a. auch aus nachwachsenden Rohstoffen gewonnen werden können, wie z.B. aus Cellulose, Lignin, Stärke oder aus Polysacchariden. Diese Stoffe können auch aus Abfällen oder Produktionsresten verschiedener Herstellungsverfahren gewonnen werden.
Die Normen DIN 4108 'Waermeschutz im Hochbau' und DIN 4109 'Schallschutz im Hochbau' werden zur Zeit von verschiedenen Arbeitsausschuessen des Normenausschusses Bauwesen im DIN Deutsches Institut fuer Normung e.V. ueberarbeitet. Durch eine umfassende Auswertung von vorliegenden Forschungsberichten soll sichergestellt werden, dass die Erkenntnisse aus der Bauforschung der letzten Jahre - soweit geeignet - in den Neufassungen der Normen beruecksichtigt und somit der Praxis zugefuehrt werden. Als Schwerpunkte dieser Forschungsarbeit, die in Fortfuehrung eines bereits im Zeitraum Juli 1975 bis Mai 1977 durchgefuehrten Forschungsvorhabens aufgegriffen worden sind, werden folgende Themen behandelt: Beim Waermeschutz: 1. Waermeleitfaehigkeit von Bau- und Daemmstoffen; 2. Feuchtigkeit und Waermeleitfaehigkeit; 3. Waermebruecken; 4. Thermische Beanspruchung von Bauteilen; 5. Raumklima; beim Schallschutz: 1. Schall-Laengsleitung leichter Bauteile; 2. Schalldaemmung zweischaliger Bauteile; 3. Einfluss des Verputzes auf die Luftschalldaemmung von Bauteilen 4. Schallschutz bei haustechnischen Anlagen 5. Erhoehter Schallschutz; 6. Schalldaemmung von Fenstern.
Das Gesamtziel dieses Projektes besteht im Aufbau einer Pilotanlage zur Herstellung von Dämmstoffen auf Basis von Buchenholz sowie der begleitenden Forschungsaktivitäten. In der geplanten Anlage sollen aus Buchenholzfasern flexible Dämmstoffe (Dämmstoffmatten und Holzschäume bzw. Granulate) als Füllstoff für Hohlziegel (lochbildabhängig und lochbildunabhängig) hergestellt werden.
Origin | Count |
---|---|
Bund | 655 |
Kommune | 2 |
Land | 52 |
Wissenschaft | 1 |
Zivilgesellschaft | 3 |
Type | Count |
---|---|
Daten und Messstellen | 1 |
Ereignis | 2 |
Förderprogramm | 576 |
Text | 96 |
Umweltprüfung | 2 |
unbekannt | 30 |
License | Count |
---|---|
geschlossen | 108 |
offen | 581 |
unbekannt | 18 |
Language | Count |
---|---|
Deutsch | 680 |
Englisch | 59 |
Resource type | Count |
---|---|
Archiv | 15 |
Bild | 5 |
Datei | 18 |
Dokument | 62 |
Keine | 409 |
Unbekannt | 1 |
Webseite | 249 |
Topic | Count |
---|---|
Boden | 493 |
Lebewesen und Lebensräume | 459 |
Luft | 341 |
Mensch und Umwelt | 707 |
Wasser | 237 |
Weitere | 665 |