s/dec-technologie/DAC-Technologie/gi
This dataset comprises key carbonate chemistry parameters measured and calculated in incubation experiments under different experimental conditions. pH, water temperature, and salinity were measured with a WTW multimeter (MultiLine® Multi 3630 IDS). Total alkalinity was determined by open-cell titration with an 888 Titrando (Metrohm). Saturation state of calcite and aragonite were calculated using phreeqpython, a Python wrapper of the PhreeqC engine (Vitens 2021) with pH, water temperature, total alkalinity, and major ions as major input, and phreeqc.dat as database for the thermodynamic data (Parkhurst and Appelo 2013). As the original Elbe water was supersaturated with carbon dioxide (CO2) with respect to the atmosphere, its partial pressure of CO2 (pCO2) level decreased during the incubation period with open flasks, which caused an adjustment of calcite saturation state (ΩC) for ambient air conditions. To adapt for the impact of pCO2 variations during the experiment, saturation state of calcite and aragonite was calculated assuming an equilibrium with an atmospheric pCO2 of 415 ppm (normalized ΩC and normalized aragonite sautration state ΩA). Since ion concentrations were measured for only a small number of samples, the ion concentrations of the remaining samples were reconstructed using stoichiometry based on the initial solution composition and total alkalinity. The concentrations of conservative ions (Na+, K+, Cl-, SO42-) were assumed remain constant, while ions related to carbonate precipitation (Ca2+, Mg2+) were calculated based on changes in measured alkalinity (see Figure 5 of the associated paper). Detailed analysis and calculation procedures are described in the Method section of the associated paper.
Aktuelle sektorübergreifende Szenarienarbeiten des Umweltbundesamtes zeigen, dass mit einer ambitionierten Minderungsstrategie Treibhausgasneutralität bis 2045 theoretisch noch ohne die Technologie der Kohlenstoffabscheidung und -einlagerung möglich ist. Werden ergänzend technische Maßnahmen in die Transformation integriert, werden robust Treibhausgasneutralität und schon 2045 Netto-Negativemissionen ermöglicht. Ein moderater Hochlauf der technischen Negativemissionen in einer Größenordnung von -6 Mio. t CO2 bis 2045 scheint angemessen. Die festgelegten Ziele für den Sektor LULUCF können in 2045 noch erreicht werden. Gelingen kann dies mit einer Offensive für Wälder, Moorböden und Agroforst, die zu den wichtigsten Elementendes Instrumenten- und Maßnahmenspektrums zählen.
Verschiedene Klimaschutzszenarien zeigen eine unterschiedliche Menge an unvermeidbaren Restemissionen im Jahr 2045. Um bis dahin Treibhausgasneutralität zu erreichen, sollen technische Senken ergänzend zu natürlichen Senken genutzt werden, um diese Emissionen auszugleichen. Dafür steht ein begrenzter Speicherplatz zur Verfügung, der bisher fast ausschließlich für CO2 aus fossilen Prozessen genutzt wird. In dem Forschungsvorhaben 'Begleitforschung zur Umweltwirkung der Kohlenstoffwirtschaft' wird die Speicherung von CO2 in geologischen Formationen betrachtet. Um eine langfristig sichere Einlagerung zu gewährleisten, werden Anforderungen an ein Verfahren zur Identifikation umweltverträglicher CO2-Speicher geprüft, sowie an ein dauerhaftes Monitoring. Weiterhin werden die Auswirkungen von Leckagen auf Klima und Umwelt analysiert. Ein möglicher Markthochlauf von der CCS-Technologie wird betrachtet hinsichtlich der notwendigen Ressourcen, möglichen Konkurrenzen und des Zeitbedarfs zum Aufbau einer CO2-Infrastruktur.
Die verstärkte Umwandlung von Biomasse in hochwertige Energieträger und hier vor allem in Wasserstoff wird in den nächsten Jahren eine entscheidende Rolle in der Erreichung der nationalen Ziele zur Emissionsreduktion spielen. Durch die Verwendung von biogenen Rest- und Abfallstoffen zur Produktion von Biogas wird bereits ein wichtiger Beitrag geleistet. Das resultierende Biogas wird durch seine Verbrennung jedoch fast ausschließlich für die Erzeugung von Strom und Wärme verwendet, wodurch somit erneut CO2 freigesetzt wird. Ein entscheidender Beitrag für die Reduktion der Treibhausgasemission kann mithilfe dieses Vorgehens folglich nicht geleistet werden. Aus diesem Grund ist das Ziel des Projekts die Entwicklung eines energieautarken Plasma-Pyrolyse Moduls zur Erzeugung von grünem Wasserstoff aus Biomasse mit gleichzeitiger CO2-Entnahme in Form von immobilisiertem Kohlenstoff. Hierfür wird innerhalb der Projektarbeiten eine innovative Verfahrenskette aus Biogasaufbereitung, Umsetzung des Biomethans zu Wasserstoff über einen Mikrowellen-Pyrolysereaktor und die Reinigung des Wasserstoffs entwickelt. Zusätzlich wird die Stromerzeugung für den Spaltungsprozess über ein angegliedertes BHKW entwickelt und dieses Gesamtverfahren zu einer Pilotanlage zusammenführt. Durch die Kopplung des Reaktors an Biogasanlagen wird erstmals die Möglichkeit einer dezentralen Wasserstoff-Produktion mit negativem CO2-Fußabdruck geschaffen und praxisnah demonstriert.
Vor dem Hintergrund der Diskussion über die Entnahme und Speicherung von CO2 (Carbon Dioxide Removal) kommt die Frage auf, ob es auch Technologien gibt, um das 30-fach klimawirksamere Methan (CH4) aus der Atmosphäre zu entfernen (Methane Removal). Methan wird in der Atmosphäre durch natürliche Oxidationsprozesse mit einer mittleren Verweilzeit von 9 bis 12 Jahren in CO2 umgewandelt. In diesem Factsheet wird der Entwicklungsstand von technischen Ansätzen vorgestellt, die diesen Prozess beschleunigen und Methan bei der aktuellen atmosphärischen Konzentration von ca. 2 ppm aus der Atmosphäre entfernen sollen. Die Ansätze sind keine Alternative zu Vermeidung und Reduktion der Methanemissionen.
Global efforts to reduce emissions remain inadequate which resulted in an increasing need for negative emission technologies that actively remove and permanently sequester CO₂ from the atmosphere. We highlight the rapid growth of commercial mCDR start-ups, despite limited research and potential irreversible harm to marine ecosystems. These activities appear uncoordinated, lack oversight, and show no evidence of compliance with international frameworks such as the London Protocol. Our study underscores the urgent need for its ratification. Veröffentlicht in Fact Sheet.
Im Rahmen des beantragten Vorhabens Air2Fuel soll eine effiziente und für die Synthese von eFuels ausgelegte DAC-Technologie des ZSW umgesetzt werden. Die Technologie wurde bereits im Maßstab 1 kg/h CO2 (DAC1) an einem Demonstrator validiert und soll im Rahmen des Projektes in Kooperation mit den Projektpartnern industrialisiert und erstmalig in den Maßstab 100 kg/h CO2 (DAC100) überführt werden. Die Wäscher-basierte Technologie besteht aus einem Ab- und Desorber und nutzt eine Polyethyleniminlösung als Sorbens. Die Technologie zeichnet sich durch eine kontinuierliche und robuste Betriebsweise, der Einbindung und Nutzung von Prozessabwärmen (Elektrolyse bzw. nachgelagerte Synthese) sowie einer einfachen Skalierbarkeit aus. Bei der Konzeption und technischen Entwicklung des DAC100-Prototypen sollen insbesondere auch für die Industrialisierung relevante Aspekte wie Serienfertigung, Robustheit und Recyclingfähigkeit der eingesetzten Materialien berücksichtigt werden. Dies betrifft insbesondere das bislang eingesetzte CO2-Sorbens, das in dem ZSW-Teilvorhaben weiterentwickelt werden soll.
In dem beantragten Vorhaben soll eine bereits erprobte, effiziente und für die Synthese von eFuels ausgelegte DAC-Technologie des ZSW, die bislang als Demonstrator im Maßstab 1 kg/h CO2 (DAC1) validiert wurde, aufgegriffen in Kooperation mit den Projektpartnern ela und atmosfair industrialisiert und erstmalig in den Maßstab 100 kg/h CO2 (DAC100) umgesetzt werden. Die Wäscher-basierte Technologie zeichnet sich durch eine kontinuierliche Betriebsweise, Nutzung von Prozessabwärmen (Elektrolyse bzw. nachgelagerte Synthese) und insbesondere eine einfache Skalierbarkeit aus. Beim Engineering des DAC100-Prototypen sollen insbesondere auch für die Industrialisierung relevanten Aspekte wie Fertigbarkeit in Serie, Robustheit und Recyclingfähigkeit der eingesetzten Materialien berücksichtigt werden. Ziel des Vorhabens ist es, die Technologie im Maßstab DAC100 in realer Einsatzumgebung im e-gas-Anlagenkomplex in Werlte zu betrieben und durch Vermessung der Performancedaten zu validieren. Hierzu wird die Technologie zur CO2-Bereitstellung in den Produktionsstandort für regeneratives Methan und LNG des Projektpartners ela integriert und im Demonstrationsbetrieb über mehrere Tausend Stunden betrieben. Ziel des Projektes und der begleitenden Wirtschaftlichkeitsanalysen ist es, die Wirtschaftlichkeit des Verfahrens nachzuweisen und die nächsten Skalierungsschritte in den energietechnischen relevanten Tonnen-Maßstab vorzubereiten. Es ist geplant, dass die Anlage nach Projektende im e-gas-Anlagenkomplex in Werlte weitergetrieben und regeneratives Luft-CO2 für die dortigen Syntheseprozesse bereitstellt.
| Origin | Count |
|---|---|
| Bund | 125 |
| Land | 1 |
| Wissenschaft | 26 |
| Type | Count |
|---|---|
| Chemische Verbindung | 2 |
| Daten und Messstellen | 25 |
| Förderprogramm | 77 |
| Gesetzestext | 2 |
| Text | 26 |
| Umweltprüfung | 1 |
| unbekannt | 21 |
| License | Count |
|---|---|
| geschlossen | 42 |
| offen | 105 |
| unbekannt | 5 |
| Language | Count |
|---|---|
| Deutsch | 98 |
| Englisch | 73 |
| Resource type | Count |
|---|---|
| Archiv | 8 |
| Datei | 32 |
| Dokument | 21 |
| Keine | 91 |
| Webseite | 23 |
| Topic | Count |
|---|---|
| Boden | 118 |
| Lebewesen und Lebensräume | 120 |
| Luft | 107 |
| Mensch und Umwelt | 151 |
| Wasser | 105 |
| Weitere | 152 |