s/dec-technologie/DAC-Technologie/gi
Im Rahmen des beantragten Vorhabens Air2Fuel soll eine effiziente und für die Synthese von eFuels ausgelegte DAC-Technologie des ZSW umgesetzt werden. Die Technologie wurde bereits im Maßstab 1 kg/h CO2 (DAC1) an einem Demonstrator validiert und soll im Rahmen des Projektes in Kooperation mit den Projektpartnern industrialisiert und erstmalig in den Maßstab 100 kg/h CO2 (DAC100) überführt werden. Die Wäscher-basierte Technologie besteht aus einem Ab- und Desorber und nutzt eine Polyethyleniminlösung als Sorbens. Die Technologie zeichnet sich durch eine kontinuierliche und robuste Betriebsweise, der Einbindung und Nutzung von Prozessabwärmen (Elektrolyse bzw. nachgelagerte Synthese) sowie einer einfachen Skalierbarkeit aus. Bei der Konzeption und technischen Entwicklung des DAC100-Prototypen sollen insbesondere auch für die Industrialisierung relevante Aspekte wie Serienfertigung, Robustheit und Recyclingfähigkeit der eingesetzten Materialien berücksichtigt werden. Dies betrifft insbesondere das bislang eingesetzte CO2-Sorbens, das in dem ZSW-Teilvorhaben weiterentwickelt werden soll.
In dem beantragten Vorhaben soll eine bereits erprobte, effiziente und für die Synthese von eFuels ausgelegte DAC-Technologie des ZSW, die bislang als Demonstrator im Maßstab 1 kg/h CO2 (DAC1) validiert wurde, aufgegriffen in Kooperation mit den Projektpartnern ela und atmosfair industrialisiert und erstmalig in den Maßstab 100 kg/h CO2 (DAC100) umgesetzt werden. Die Wäscher-basierte Technologie zeichnet sich durch eine kontinuierliche Betriebsweise, Nutzung von Prozessabwärmen (Elektrolyse bzw. nachgelagerte Synthese) und insbesondere eine einfache Skalierbarkeit aus. Beim Engineering des DAC100-Prototypen sollen insbesondere auch für die Industrialisierung relevanten Aspekte wie Fertigbarkeit in Serie, Robustheit und Recyclingfähigkeit der eingesetzten Materialien berücksichtigt werden. Ziel des Vorhabens ist es, die Technologie im Maßstab DAC100 in realer Einsatzumgebung im e-gas-Anlagenkomplex in Werlte zu betrieben und durch Vermessung der Performancedaten zu validieren. Hierzu wird die Technologie zur CO2-Bereitstellung in den Produktionsstandort für regeneratives Methan und LNG des Projektpartners ela integriert und im Demonstrationsbetrieb über mehrere Tausend Stunden betrieben. Ziel des Projektes und der begleitenden Wirtschaftlichkeitsanalysen ist es, die Wirtschaftlichkeit des Verfahrens nachzuweisen und die nächsten Skalierungsschritte in den energietechnischen relevanten Tonnen-Maßstab vorzubereiten. Es ist geplant, dass die Anlage nach Projektende im e-gas-Anlagenkomplex in Werlte weitergetrieben und regeneratives Luft-CO2 für die dortigen Syntheseprozesse bereitstellt.
In dem beantragten Vorhaben soll eine bereits erprobte, effiziente und für die Synthese von eFuels ausgelegte DAC-Technologie des ZSW, die bislang als Demonstrator im Maßstab 1 kg/h CO2 (DAC1) validiert wurde, aufgegriffen in Kooperation mit den Projektpartnern ela und atmosfair industrialisiert und erstmalig in den Maßstab 100 kg/h CO2 (DAC100) umgesetzt werden. Die Wäscher-basierte Technologie zeichnet sich durch eine kontinuierliche Betriebsweise, Nutzung von Prozessabwärmen (Elektrolyse bzw. nachgelagerte Synthese) und insbesondere eine einfache Skalierbarkeit aus. Beim Engineering des DAC100-Prototypen sollen insbesondere auch für die Industrialisierung relevanten Aspekte wie Fertigbarkeit in Serie, Robustheit und Recyclingfähigkeit der eingesetzten Materialien berücksichtigt werden. Ziel des Vorhabens ist es, die Technologie im Maßstab DAC100 in realer Einsatzumgebung im e-gas-Anlagenkomplex in Werlte zu betrieben und durch Vermessung der Performancedaten zu validieren. Hierzu wird die Technologie zur CO2-Bereitstellung in den Produktionsstandort für regeneratives Methan und LNG des Projektpartners ela integriert und im Demonstrationsbetrieb über mehrere Tausend Stunden betrieben. Ziel des Projektes und der begleitenden Wirtschaftlichkeitsanalysen ist es, die Wirtschaftlichkeit des Verfahrens nachzuweisen und die nächsten Skalierungsschritte in den energietechnischen relevanten Tonnen-Maßstab vorzubereiten. Es ist geplant, dass die Anlage nach Projektende im e-gas-Anlagenkomplex in Werlte weitergetrieben und regeneratives Luft-CO2 für die dortigen Syntheseprozesse bereitstellt.
Mit dem Aktionsprogramm Natürlicher Klimaschutz (ANK) will die Bundesregierung entscheidend dazu beitragen, den allgemeinen Zustand der Ökosysteme in Deutschland deutlich zu verbessern und so ihre Resilienz und ihre Klimaschutzleistung zu stärken. Diese Klimaschutzleistungen umfassen Minderung, Anpassung und Negativemissionen. Die Natur an Land und im Meer soll besser geschützt und widerstandsfähiger werden, um dauerhaft zu den nationalen Klimaschutzzielen beizutragen. Die Land- und Forstwirtschaft soll nachhaltig werden und mehr Raum lassen für eine vielfältige Tier- und Pflanzenwelt auf den bewirtschafteten Flächen. Natürlicher Klimaschutz und der erforderliche Ausbau erneuerbarer Energien sollen eng aufeinander abgestimmt und mögliche Synergien genutzt werden.
Mit der Langfriststrategie Negativemissionen zum Umgang mit unvermeidbaren Restemissionen will die Bundesregierung ein gemeinsames Verständnis der Rolle der CO₂-Entnahme für den Klimaschutz in Deutschland schaffen. Die Langfriststrategie Negativemissionen wird durch das BMWK in einem Beteiligungsverfahren erarbeitet. Die hier veröffentlichten Daten wurden in einer Online-Beteiligung vom 17. Oktober bis zum 17. November 2024 erhoben. Die strukturierte Datenerfassung erfolgte durch das Werkzeug SurveyXact. Es konnten Fragen zu der im Beteiligungsprozess erarbeiteten Bewertung der Methoden und Technologien zur CO₂-Entnahme beantwortet werden. Weitere Informationen zur Langfriststrategie Negativemissionen, dem Beteiligungsverfahren und den der Online-Beteiligung zugrunde liegenden Dokumenten sind auf den Internetseiten des BMWK veröffentlicht.
Six mesocosm experiments with specimens of Fucales or Laminariales were conducted across six georegions (3 mesocosms with brown algae, 3 mesocosms without brown algae). Incubations lasted 24 days, followed by a year-long monitoring of incubation water. During the first 12 days, brown algae were maintained in mesocosms adjacent to control mesocosms, with 1 L of water sampled every second day. Half of the mesocosm water was replaced with fresh seawater after each sampling. Environmental conditions and primary productivity of specimens was recorded during the incubation. After 12 days, specimens were removed and incubation continued for another 12 days, maintaing the same sampling routine. At the end of the 24 day- incubation period, long-term monitoring was set-up with 6-10L of incubation water in two different conditions: one exposed to a controlled light cycle at 20°C, the second set in darkness at 4°C with added nutrients (40 µM NO3- and 3µM PO43-). Additional water samples were collected along transects extending from near-shore brown algae poplulations. Water samples were filtered over pre-combusted GFF filters (450°C, 4.5h), and both the filtrate and filters were analysed for dissolved organic carbon (DOC), particulate organic carbon (POC). Fucoidan was quantified in dissolved (>1kDa) fraction and surface active fraction (SAF) (> 1kDa and negative charged fraction purified with anion exchange chromatography) fractions through monosaccharide quantification after acid-hydrolysis (100°C, 24h) using HPAEC-PAD, according to Engel and Händel, 2011. Intact polysaccharides were detected using structure-sensitive monoclonal antibodies (Torode et al., 2015; Vidal-Melgosa et al., 2021). Microbial cells were quantified using DAPI-cell staining and counting. Semi-quantitative measurements of particulate fucoidan were performed via acid hydrolysis of GFF filter pieces, followed by monosaccharide analysis via HPAEC-PAD. Sedimented particles to bottom of mesocosms were scooped out on day 24 for monosaccharide analysis and BAM1 antibody binding specific to fucoidan.
This report analyses and critically reviews assumptions on natural carbon dioxide removal (CDR) and storage potentials with a view to the objectives of the EU Land Use, Land-Use Change and Forestry ( LULUCF ) and Carbon Removal Certification Framework (CRCF) legislation agreed until February 2024. Therefore, EU impact assessment reports that were published over a period of eight years were analysed and compared with estimates in the scientific literature. It shows that potentials from the impact assessments are rather at the lower end of the range. While highest CDR potentials for 2050 in studies underlying the EU legislation assume -400 to -500 Mt CO 2 eq, literature studies often operate in the range of -500 to -600 Mt CO 2 eq, with one estimate reaching almost -800 Mt CO 2 eq. Veröffentlicht in Climate Change | 35/2024.
Global efforts to reduce emissions remain inadequate which resulted in an increasing need for negative emission technologies that actively remove and permanently sequester CO₂ from the atmosphere. We highlight the rapid growth of commercial mCDR start-ups, despite limited research and potential irreversible harm to marine ecosystems. These activities appear uncoordinated, lack oversight, and show no evidence of compliance with international frameworks such as the London Protocol. Our study underscores the urgent need for its ratification. Veröffentlicht in Fact Sheet.
| Origin | Count | 
|---|---|
| Bund | 121 | 
| Land | 2 | 
| Wissenschaft | 24 | 
| Type | Count | 
|---|---|
| Chemische Verbindung | 2 | 
| Daten und Messstellen | 23 | 
| Förderprogramm | 75 | 
| Gesetzestext | 2 | 
| Text | 24 | 
| Umweltprüfung | 1 | 
| unbekannt | 22 | 
| License | Count | 
|---|---|
| geschlossen | 41 | 
| offen | 101 | 
| unbekannt | 5 | 
| Language | Count | 
|---|---|
| Deutsch | 95 | 
| Englisch | 70 | 
| Resource type | Count | 
|---|---|
| Archiv | 8 | 
| Datei | 30 | 
| Dokument | 21 | 
| Keine | 89 | 
| Webseite | 21 | 
| Topic | Count | 
|---|---|
| Boden | 115 | 
| Lebewesen und Lebensräume | 125 | 
| Luft | 104 | 
| Mensch und Umwelt | 146 | 
| Wasser | 104 | 
| Weitere | 147 |