Der Betrieb von permanenten Beobachtungsstationen der Satelliten des Global Positioning System (GPS) ist in den unterschiedlichsten Anwendungsbereichen (Landesvermessung, Geodynamik, Navigation) unverzichtbar. Ziel des Vorhabens ist es, Verfahren fuer die Gestaltung und den Betrieb von multifunktionalen GPS-Permanentstationen zu entwickeln.
The TectoVision GNSS network in Greece was set up using European Research Council funding in partnership between German and Greek institutions. The project aims to deepen our understanding of suspected microplate motions in Greece. A total of 72 GNSS stations are planned for the TectoVision network. Two types of GNSS station equipment is used, reflected by the 4 character station ID. Stations with ID beginning with 'TT' were installed using the tinyBlack receiver. The stations with ID beginning 'TM' were set up using the Minimum Cost GNSS System (MCGS) design. RINEX (v3.05 as of May 2024) data at 30 seconds sampling interval are provided. Most of the data are sent over mobile internet via routers that are connected to the receivers via LAN cable. If required, the RINEX files can be converted to other versions using the GFZ software GFZRNX (Nischan, 2016). Raw observation data can be made available upon specific request. Hardware: The GFZ developed tinyBlack receiver combines cost efficient L2C GNSS receivers (here Swiftnav Piksi) with PC-based data logger package, internal storage, and interfaces. The control software is designed for remote operation ensuring long-term continuous tracking. The tinyBlack receivers provided by the GFZ spin-off maRam UG (Germany) are installed in combination with Harxon GPS500 survey antennas. The tinyBlack stations provide GPS (L1/L2), GLONASS (G1/G2), and Galileo (E1/E5b) data. The low-cost MCGS stations are coming in 2 versions from a GNSS technology transfer project at GFZ. Both versions operate a ublox F9P receiver and an integrated chip-antenna with a pyramidal antenna radome. One version provides GPS (L1/L2), Glonass (G1/G2), Galileo (E1/E5b) and also Beidou (B1/B2) data. The other version (currently only 3 systems installed) is designed for low power operation in remote areas with data telemetry over a narrrow bandwidth radio link. This version delivers only GPS (L1/L2) data without doppler observations at a reduced data rate of 60 seconds. Monumentation: There is a variety of monumentation for these stations, with the design of the monumentation being low-cost. Most are connected to a thread that is attached to a stainless steel pin which is glued into masonry or bedrock. Most sites are installed on rooftops of public buildings. The MCGS is sometimes clamped to an existing sturdy pole connected to the roof of the building. Some stations are connected to an extending stainless-steel arm that we have drilled into the side of a building. Photos of the station are provided with the standard GNSS station log-files (as metadata). If the instrumentation at existing monuments is later changed to other hardware types, the station ID retain the original TT and TM 4-character IDs. Metadata: Station-specific metadata records are stored in IGS sitelog files available via ftp.
Orbital products describe positions and velocities of satellites, be it the Global Navigation Satellite System (GNSS) satellites or Low Earth Orbiter (LEO) satellites. These orbital products can be divided into the fastest available ones, the Near Realtime Orbits (NRT, Zitat), which are mostly available within 15 to 60 minutes delay, followed by Rapid Science Orbit (RSO, Zitat) products with a latency of two days and finally the Precise Science Orbit (PSO) which, with a latency of up to a few weeks or longer in the case of reprocessing campaigns, are the most delayed. The absolute positional accuracy increases from NRT to PSO. This dataset compiles the PSO products for various LEO missions and GNSS constellation in sp3 format. GNSS Constellation: - GPS LEO Satellites: - ENVISAT - Jason-1 - Jason-2 - Jason-3 - Sentinel-3A - Sentinel-3B - Sentinel-6A - TOPEX Each solution follows specific requirements and parametrizations which are named in the respective processing metric table.
Achtung: Keine regelmäßige Datenerfassung! Wird aktuell für verschiedene Versuche genutzt und ist für eine temporäre mobile Datenerfassung vorgesehen. Wenn sich etwas am Status ändert, wird die Beschreibung angepasst.
This dataset provides Rapid Science Orbits (RSO) from the Low Earth Orbiter (LEO) satellite GRACE-A. It is part of the compilation of GFZ RSO products for various LEO missions and the appropriate GNSS constellation in sp3 format. The individual solutions for each satellite mission are published with individual DOI as part of the compilation (Schreiner et al., 2022). • The GRACE RSO cover the period: - GRACE-A from 2004 200 to 2017 334 (this DOI) - GRACE-B from 2004 200 to 2017 245 The LEO RSOs in version 1 are generated based on the 24-hour GPS RSOs in two pieces for the actual day with arc lengths of 14 hours and overlaps of 2 hours. One starting at 22:00 and ending at 12:00, one starting at 10:00 and ending at 24:00. For day overlapping arcs two 24h GNSS constellations are concatenated. The accuracy of the LEO RSOs is at the level of 1-2 cm in terms of SLR validation. Each solution in version 1 is given in the Conventional Terrestrial Reference System (CTS) based on the IERS 2003 conventions and related to the ITRF-2008 reference frame. The exact time covered by an arc is defined in the header of the files and indicated as well as in the filename.
This dataset provides Rapid Science Orbits (RSO) from the Low Earth Orbiter (LEO) satellite GRACE-A. It is part of the compilation of GFZ RSO products for various LEO missions and the appropriate GNSS constellation in sp3 format. The individual solutions for each satellite mission are published with individual DOI as part of the compilation (Schreiner et al., 2022). • The GRACE RSO cover the period: - GRACE-A from 2004 200 to 2017 334 - GRACE-B from 2004 200 to 2017 245 (this DOI) The LEO RSOs in version 1 are generated based on the 24-hour GPS RSOs in two pieces for the actual day with arc lengths of 14 hours and overlaps of 2 hours. One starting at 22:00 and ending at 12:00, one starting at 10:00 and ending at 24:00. For day overlapping arcs two 24h GNSS constellations are concatenated. The accuracy of the LEO RSOs is at the level of 1-2 cm in terms of SLR validation. Each solution in version 1 is given in the Conventional Terrestrial Reference System (CTS) based on the IERS 2003 conventions and related to the ITRF-2008 reference frame. The exact time covered by an arc is defined in the header of the files and indicated as well as in the filename.
Orbital products describe positions and velocities of satellites, be it the Global Navigation Satellite System (GNSS) satellites or Low Earth Orbiter (LEO) satellites. These orbital products can be divided into the fastest available ones, the Near Realtime Orbits (NRT), which are mostly available within 15 to 60 minutes delay, followed by Rapid Science Orbit (RSO) products with a latency of two days and finally the Precise Science Orbit (PSO) which, with a latency of up to a few weeks, are the most delayed. The absolute positional accuracy increases with the time delay. This dataset compiles the RSO products for various LEO missions and the appropriate GNSS constellation in sp3 format. The individual solutions for each satellite mission are published with individual DOI as part of this compilation. GNSS Constellation: • GNSS 24h (v01) • GNSS 30h (v02) LEO Satellites: • CHAMP • GRACE • GRACE-FO • SAC-C • TanDEM-X/ TerraSAR-X Each solution is given in the Conventional Terrestrial Reference System (CTS). • The GNSS RSOs are 30-hour long arcs starting at 21:00 the day before the actual day and ending at 03:00 the day after. The accuracy of the GPS RSO sizes at the 3-cm level in terms of RMS values of residuals after Helmert transformation onto IGS combined orbit solutions (Version 1 GNSS RSOs are 24-hour long arcs starting at 00:00 and ending at 24:00 the actual day). • The LEO RSOs are generated based on these 30-hour GNSS RSOs in two pieces for the actual day with arc lengths of 14 hours and overlaps of 2 hours. One starting at 22:00 and ending at 12:00, one starting at 10:00 and ending at 24:00. The accuracy of the LEO RSOs is at the level of 1-2 cm in terms of SLR validation. The exact time covered by an arc is defined in the header of the files and indicated as well as in the filename. This dataset compiles RSO products for various LEO missions and the corresponding GNSS constellation in sp3 format in a revised processing version 2. The switch from previous version 1 to 2 was performed on 18-Feb-2019. Major changes from version 1 to 2 are the change from IERS 2003 to IERS 2010 conventions and ITRF 2008 to ITRF-2014, as well as the temporal extension of the GNSS constellation from previous 24 hours (version 1) to 30 hours (version 2) arcs. This temporal expansion eliminates the chaining of two consecutive 24-hour GNSS constellation solutions previously used to process day-overlapping LEO arcs in Version 1. This 24h GNSS constellation (Version 1) will continue to operate and be stored on the ISDC ftp server, as discussed in more detail in Section 8.1. All RSO LEO arcs will no longer be continued in version 1 after the changeover date and will only be available in version 2 since then.
This dataset provides Rapid Science Orbits (RSO) from the Low Earth Orbiter (LEO) satellite SAC-C. It is part of the compilation of GFZ RSO products for various LEO missions and the appropriate GNSS constellation in sp3 format. The individual solutions for each satellite mission are published with individual DOI as part of the compilation (Schreiner et al., 2022). • The SAC-C RSO cover the period from 2000 202 to 2010 247 The LEO RSOs in version 1 are generated based on the 24-hour GPS RSOs in two pieces for the actual day with arc lengths of 14 hours and overlaps of 2 hours. One starting at 22:00 and ending at 12:00, one starting at 10:00 and ending at 24:00. For day overlapping arcs two 24h GNSS constellations are concatenated. The accuracy of the LEO RSOs is at the level of 1-2 cm in terms of SLR validation. Each solution in version 1 is given in the Conventional Terrestrial Reference System (CTS) based on the IERS 2003 conventions and related to the ITRF-2008 reference frame. The exact time covered by an arc is defined in the header of the files and indicated as well as in the filename.
This dataset provides Rapid Science Orbits (RSO) from the Low Earth Orbiter (LEO) satellite CHAMP. It is part of the compilation of GFZ RSO products for various LEO missions and the appropriate GNSS constellation in sp3 format. The individual solutions for each satellite mission are published with individual DOI as part of the compilation (Schreiner et al., 2022). • The CHAMP RSO cover the period from 2000 202 to 2010 247 The LEO RSOs in version 1 are generated based on the 24-hour GPS RSOs in two pieces for the actual day with arc lengths of 14 hours and overlaps of 2 hours. One starting at 22:00 and ending at 12:00, one starting at 10:00 and ending at 24:00. For day overlapping arcs two 24h GNSS constellations are concatenated. The accuracy of the LEO RSOs is at the level of 1-2 cm in terms of SLR validation. Each solution in version 1 is given in the Conventional Terrestrial Reference System (CTS) based on the IERS 2003 conventions and related to the ITRF-2008 reference frame. The exact time covered by an arc is defined in the header of the files and indicated as well as in the filename.
This dataset provides Rapid Science Orbits (RSO) from GNSS satellites. It is part of the compilation of GFZ RSO products for various LEO missions and the appropriate GNSS constellation in sp3 format. The individual solutions for each satellite mission are published with individual DOI as part of the compilation (Schreiner et al., 2022- Dach DOI). GNSS Constellation: GPS 30h The GPS RSOs of version 2 are 30-hour long arcs starting at 21:00 the day before and ending at 03:00 the day after. The accuracy of the GPS RSO sizes at the 3-cm level in terms of RMS values of residuals after Helmert transformation onto IGS combined orbit solutions.
Origin | Count |
---|---|
Bund | 20 |
Land | 5 |
Wissenschaft | 25 |
Zivilgesellschaft | 1 |
Type | Count |
---|---|
Förderprogramm | 18 |
Messwerte | 2 |
Strukturierter Datensatz | 1 |
unbekannt | 30 |
License | Count |
---|---|
offen | 43 |
unbekannt | 7 |
Language | Count |
---|---|
Deutsch | 24 |
Englisch | 26 |
Resource type | Count |
---|---|
Datei | 1 |
Keine | 43 |
Webseite | 6 |
Topic | Count |
---|---|
Boden | 39 |
Lebewesen & Lebensräume | 17 |
Luft | 31 |
Mensch & Umwelt | 49 |
Wasser | 9 |
Weitere | 50 |